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Abstract—In game theory, a trusted mediator acting on behalf of the
players can enable the attainment of correlated equilibria, which may
provide better payoffs than those available from the Nash equilibria
alone. We explore the approach of replacing the trusted mediator
with an unconditionally secure sampling protocol that jointly generates
the players’ actions. We characterize the joint distributions that can
be securely sampled by malicious players via protocols using error-
free communication. This class of distributions depends on whether
players may speak simultaneously (“cheap talk”) or must speak in
turn (“polite talk”). In applying sampling protocols toward attaining
correlated equilibria with rational players, we observe that security
against malicious parties may be much stronger than necessary. We
propose the concept of secure sampling by rational players, and show
that many more distributions are feasible given certain utility functions.
However, the payoffs attainable via secure sampling by malicious players
are a dominant subset of the rationally attainable payoffs.

Index Terms—game theory, secure sampling, correlated randomness

I. INTRODUCTION

The fields of game theory and secure computation are both primar-
ily concerned with the interactions of mutually untrusting parties.
Game theory studies the behavior of rational players that seek to
maximize their personal payoffs as derived from the outcome of their
interaction [1]. Equilibria are an important concept in understanding
how rational players may attain and enforce desirable payoffs. Secure
computation concerns the design of interactive protocols that allow
the parties to perform computations while retaining privacy of their
inputs [2], [3]. These parties may be semi-honest, i.e., they follow
the protocol but may attempt to infer information about other parties,
or they may be malicious, i.e., they may arbitrarily deviate from
the protocol in an attempt to subvert its privacy and/or correctness.
Loosely speaking, both equilibria and secure protocols are means to
ensure resilience against, respectively, selfish rationality and arbitrary
maliciousness. Thus, there are interesting philosophical and theoreti-
cal connections that have motivated cross-pollination of ideas across
these disciplines [4], [5]. This work explores the application of secure
computation in attaining equilibria with rational players.

Informally, consider players that observe some randomness (e.g.,
a coin flip) that assigns correlated actions to each player. Such a
strategy is a correlated equilibrium if no player has an incentive
to unilaterally deviate from its assigned action [1]. The expected
payoffs of this correlated equilibrium may be better than those
obtained by any Nash equilibrium. One method for realizing a
correlated equilibrium is to use a trusted mediator who generates
the correlated actions for the players. However, we are concerned
with situations in which a trusted mediator is not available. In this
case, secure computation suggests a solution: The players can run a
secure protocol that simulates the mediator while guaranteeing the
correctness of correlated action distribution, and the privacy of the
actions assigned to each player. This specific secure computation
problem of securely generating samples from a joint distribution

is known as secure sampling. While much of the existing work
has considered settings with computationally bounded players, we
study the feasibility of simulating the mediator with unconditional
(information-theoretic) security guarantees.

The remainder of this paper is organized as follows: In Sec. II,
we briefly review background material on correlated equilibria and
secure sampling with semi-honest parties. Sec. III contains our main
result, which characterizes the class of joint distributions that can
be securely sampled by malicious players, and discusses the payoffs
attainable via the secure sampling of correlated equilibria.

II. PRELIMINARIES

A. Games and Equilibria

For simplicity of exposition, our development will focus on two-
player strategic games with complete information and finite action
sets1. Such games are given by a pair of finite action sets X ,Y , and
utility functions u1, u2 : X × Y → R. In an execution of the game,
the first player (who we will call Alice) plays an action X ∈ X , and
the second player (who we will call Bob) plays an action Y ∈ Y . The
actions (X,Y ), together called an action profile, may be randomly
chosen, but are revealed simultaneously. Each realization (x, y) ∈
X ×Y constitutes an outcome in the game, with the utility functions
u1(x, y) and u2(x, y) quantifying the respective payoffs for Alice
and Bob under that outcome.

The objective of a rational player is to play in a manner that
maximizes his or her personal utility. The concept of equilibria is
important toward understanding how rational players may behave in
playing such games [1]. We will use the definition of mixed-strategy
Nash equilibrium and subsequently refer to them as Nash equilibria2.

Definition 1: A pair of distributions (PX , PY ) on X and
Y , respectively, is a mixed-strategy Nash equilibrium of game
(X ,Y, u1, u2) if, and only if, for all distributions PX′ on X
and PY ′ on Y , we have that E[u1(X,Y )] ≥ E[u1(X

′, Y )]
and E[u2(X,Y )] ≥ E[u2(X,Y

′)], where the random variables
(X,X ′, Y, Y ′) ∼ PXPX′PY PY ′ .

An interpretation of Nash equilibria is that they are strategy profiles
to which, if the players have committed, there is no incentive for
either player to unilaterally deviate in their action. For the finite action
set games that we consider, the set of mixed-strategy Nash equilibria
is non-empty [1].

Definition 2: A joint distribution PX,Y on X ×Y is a correlated
equilibrium of game (X ,Y, u1, u2) if, and only if, for all random
variables X ′ and Y ′ such that X ′ −X − Y and Y ′ − Y −X form

1Strictly speaking, our analysis inherently must consider extended games
with infinite action sets in order to analyze mixed strategies, however, the
core game motivating the development is assumed to have finite action sets.

2The pure-strategy Nash equilibria are the subset of mixed-strategy Nash
equilibria where the action profiles are deterministic.
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Fig. 1. Common examples of two-player games

Markov chains with (X,Y ) ∼ PX,Y , we have that E[u1(X,Y )] ≥
E[u1(X

′, Y )] and E[u2(X,Y )] ≥ E[u2(X,Y
′)].

The Nash equilibria are also correlated equilibria (with PX,Y =
PXPY ), and hence the set of correlated equilibria is also non-empty.
An interpretation for correlated equilibria is that if a trusted mediator
chose actions (X,Y ) ∼ PX,Y and revealed each action only to
its respective player to play, then there would be no incentive for
either player to unilaterally deviate from their given action3. For the
correlated equilibria that are also Nash equilibria, the mediator is not
necessary, since players could choose their actions independently.
Thus, of particular interest are the correlated equilibria that are not
also Nash equilibria, hence seeming to require a mediator to be
realized.

For a given game, we say that a pair (p1, p2) ∈ R2 is a Nash
payoff (or correlated payoff) if, and only if, the game has a Nash
(respectively, correlated) equilibrium with expected payoffs (p1, p2).
The sets of Nash and correlated equilibria correspond to sets of Nash
and correlated payoffs.

Some examples of well-known games are given in Fig. 1. The
“Battle-of-the-Sexes” game, given in Fig. 1(a), has three Nash
equilibria (PX(M) = PY (M) = 1, PX(O) = PY (O) = 1, and
PX(M) = PY (O) = 2/3) and a correlated equilibrium for every
λ ∈ [0, 1] (PX,Y (x, y) = λ1(x = y =M)+(1−λ)1(x = y = O)).
The “Chicken-or-Dare” game, given in Fig. 1(b), has three Nash
equilibria (PX(C) = PY (D) = 1, PX(D) = PY (C) = 1,
and PX(D) = PY (D) = 1/2) and a correlated equilibrium
(PX,Y (x, y) = 1/3 for (x, y) ∈ {(C,C), (C,D), (D,C)}).

B. Secure Sampling Protocols

In the problem of secure two-party sampling, the objective is to
design a secure interactive protocol that allows the two parties to gen-
erate correlated randomness according to a given joint distribution,
where security means that correctness (in terms of the randomness
actually matching the desired distribution) and privacy (in terms of
revealing nothing about either output except what is inherent due to
correlation) of the outputs are assured.

A two-party interactive protocol is a pair of algorithms designed
to interact over several rounds via communication channels. In this
work, we will restrict our scope to protocols using only error-
free channels. We will further consider two specific cases of error-
free communication. Using the game-theoretic terminology, they are
cheap talk, where parties may exchange messages simultaneously,
and polite talk, where parties must take turns in exchanging mes-

3Formally speaking, a Nash equilibrium of the extended game, where nature
(acting as the mediator) first chooses and distributes actions to the players
before they play, would be both players following their given action.

sages4. In between the rounds of interaction, the algorithms may
generate independent randomness, perform local computations, and
compute the next message to be sent from everything observed in
previous rounds. After the interaction has terminated, each party
produces an output that may be computed from everything that they
have observed during the protocol. Unlike previous work (see [6]), we
will not place a finite bound on the rounds of interaction and instead
allow protocols that potentially last a random, unbounded number of
rounds, provided that they terminate almost surely when at least one
of the parties is honest.

Motivated by the application to rational players, we are primarily
interested in the security of protocols against malicious parties that
may arbitrarily deviate from the protocol in an attempt to undermine
correctness and privacy. The following definition for secure sampling
stipulates that the correctness and privacy of the honest parties be
maintained if there is at least one honest party. This definition is an
adaptation of a definition for secure computation in [7], where it is
shown to be equivalent to simulating a trusted mediator.

Definition 3: (see [7]) A two-party protocol for sampling PX,Y

is secure against malicious parties if, and only if, for any execution
generating outputs (U, V ), we have that:

1) When both parties are honest, (U, V ) ∼ PX,Y .
2) When Bob is honest, there exists random variable X such that

(X,V ) ∼ PX,Y , and U −X − V forms a Markov chain.
3) When Alice is honest, there exists random variable Y such that

(U, Y ) ∼ PX,Y , and V − Y − U forms a Markov chain.
Note that in conditions 2 and 3 of Defn. 3, one player is fixed to

be honest while the other can arbitrarily deviate from the protocol.
This may include the deviating party changing their output to be
any information gathered about the other party’s output, and hence
the Markov chain requirements capture privacy in the sense that a
deviating party can only extract information that would have been
inherent to a hypothetical output (i.e., X or Y ).

The next definition provides the conditions for security against
semi-honest parties where the parties execute the protocol honestly
but may attempt to infer additional information from what they
observe. This is a weaker security condition implied by that for
malicious parties (see Lem. 2) and will be useful for proving
impossibility results for the malicious party case. The conditions
require that, for an honest execution of the protocol, the outputs
are correctly generated and that the view of each player (consisting
of all intermediate computations, local randomness, and messages
exchanged) does not reveal any information not already derivable
from each player’s own output.

Definition 4: (see [6]) A two-party protocol for sampling PX,Y

is secure against semi-honest parties if, and only if, for any honest
execution generating outputs (U, V ), we have that:

1) (U, V ) ∼ PX,Y .
2) ViewA−U−V forms a Markov chain, where ViewA denotes

the view of Alice.
3) ViewB−V −U forms a Markov chain, where ViewB denotes

the view of Bob.

C. Background Results

The feasibility of secure two-party sampling with semi-honest
parties has been previously characterized in [6].

4In each round of cheap talk, neither party is able to see the other’s
message before sending their own. In either scenario, we assume some weak
synchronization (i.e., a “timeout” mechanism) preventing a missing message
from holding up the protocol.



Theorem 1: (see [6, Cor. 1]) Given polite and/or cheap talk chan-
nels, there exist two-party protocols5 for securely sampling PX,Y

against semi-honest parties if, and only if,

I(X;Y ) = C(X;Y ) := min
W :I(X;Y |W )=0

I(X,Y ;W ), (1)

where C(X;Y ) is called the Wyner common information [8].
In general, I(X;Y ) ≤ C(X;Y ), with equality holding only for

the special class of random variables (X,Y ) where a minimizing W
in (1) is the ergodic decomposition of (X,Y ) [9], [10]. The ergodic
decomposition is given by first uniquely labeling the connected com-
ponents in the graphical representation6 of PX,Y , and then assigning
W to the label of the connected component in which (X,Y ) falls.
Clearly, the ergodic decomposition is also a deterministic function of
either X or Y alone. As a consequence of the above, the following
lemma provides a condition equivalent to I(X;Y ) = C(X;Y ), in
terms of a simple property of the ergodic decomposition of (X,Y ).

Lemma 1: Given PX,Y , I(X;Y ) = C(X;Y ) if, and only if, for
W , the ergodic decomposition of (X,Y ), the Markov chain X −
W − Y holds.

A widely studied special case of the secure sampling with ma-
licious parties is that of generating an unbiased coin-flip, that is,
PX,Y (x, y) = 0.5 · 1(x = y) with X = Y = {0, 1}. It is well
known that it is impossible to perform a secure coin flip given only
bounded polite talk [11], [12]. A tight characterization of the tradeoff
between protocol reliability (in an honest execution) and the potential
bias that can be introduced by a cheating party is given in [12], which
shows that at least one party must always be able to significantly bias
the coin flip. On the other hand, given cheap talk, performing a secure
coin flip is trivial; each player chooses a uniform bit independently,
the players simultaneously exchange bits via cheap talk, and assign
the coin flip as the binary XOR of the bits7. Also, given cheap
talk, this procedure can be extended to securely sample a series of
independent coin flips or any general discrete random variable.

III. MAIN RESULTS

Our main result is the characterization of the set of distributions
that can be securely sampled by malicious parties via protocols using
either cheap talk or only polite talk. The feasibility region boils
down to “separable” distributions (where I(X;Y ) = C(X;Y )) for
the cheap talk case, and “trivial” distributions (where X and Y are
independent) for the polite talk case. For a given game, the correlated
equilibria (and their corresponding payoffs) that are in this feasible
set can be realized via a secure protocol replacing a trusted mediator.
However, we ask whether security against malicious parties is too
strong a requirement, and discuss the correlated equilibria and payoffs
attainable by rational players.

A. Secure Protocols for Sampling

Lemma 2: If a two-party protocol for sampling PX,Y is secure
against malicious parties (see Defn. 3), then it is also secure against
semi-honest parties (see Defn. 4).

Proof: Consider an “almost honest” execution of the protocol,
where the parties follow the protocol honestly, except that they
append their full views to their honest outputs. Let these outputs be

5This result assumed bounded rounds of communication, however the
converse can be extended to unbounded communication. The corresponding
achievability result trivially extends to the unbounded case.

6The graphical representation of PX,Y is the bipartite graph with an edge
between (x, y) ∈ X × Y iff PX,Y (x, y) > 0.

7If one party chooses not to send a valid bit, the other will simply set the
coin flip to their own bit.

denoted by U ′ := (ViewA, U) and V ′ := (ViewB , V ) respectively,
where (U, V ) are the outputs and (ViewA,ViewB) are the views
produced by an honest execution. The security of the protocol against
malicious parties implies that (U, V ) ∼ PX,Y , and that there exist X
and Y such that (X,V ) ∼ PX,Y , (U, Y ) ∼ PX,Y , and the Markov
chains (ViewA, U) −X − V and (ViewB , V ) − Y − U hold. The
Markov chain (ViewA, U)−X − V implies that

0 = I(ViewA, U ;V |X)

= H(V |X)−H(V |X,ViewA, U)

≥ H(V |U)−H(V |ViewA, U) = I(ViewA;V |U),

and hence the Markov chain ViewA−U −V holds. Similarly, it can
be shown that the Markov chain ViewB − V − U holds. Therefore,
the protocol is secure against semi-honest parties.

Theorem 2: Given cheap talk channels, there exist two-party pro-
tocols for securely sampling PX,Y against malicious players if, and
only if, I(X;Y ) = C(X;Y ). Secondly, given only polite talk
channels, there exist two-party protocols for securely sampling PX,Y

against malicious players if, and only if, PXY = PXPY , that is, the
random variables are independent.

Proof: (sketch) First, we consider the situation with cheap talk.
The converse (“only if”) direction is due to the impossibility of
securely sampling PX,Y if I(X;Y ) 6= C(X;Y ) even against semi-
honest parties (see Thm. 1) which also applies to the malicious case
by Lem. 2. To show the achievability (“if”) direction, we argue that
given I(X;Y ) = C(X;Y ), a secure protocol can be constructed
that first securely generates the ergodic decomposition W of (X,Y )
using cheap talk, followed by each party independently generating X
and Y , respectively, from W . Since W is a function of either X or
Y alone, it does not reveal to each party any additional information
about the other party’s output than their own output.

Next, we consider the situation with only polite talk. In the
converse (“only if”) direction, the semi-honest converse requiring
I(X;Y ) = C(X;Y ) similarly applies as above. Thus, given a
protocol securely sampling PX,Y , we must have that the ergodic
decomposition W of (X,Y ) satisfies the Markov chain X−W −Y .
We argue by contradiction that W must be deterministic, and hence
that PX,Y = PXPY following from the Markov chain. If W is
not deterministic, then there exists a partitioning of its alphabet W
into W0 and W1 such that Pr(W ∈ W0),Pr(W ∈ W1) ∈ (0, 1).
Thus, since W is a function of either X or Y , one can convert the
secure protocol for PX,Y into a protocol for a secure biased coin
flip8 by mapping X (or Y ) to the Z ∈ {0, 1} where W ∈ WZ .
It follows from [12] that generating such a secure coin flip from
polite talk is impossible9, and hence W must be deterministic. The
achievability (“if”) direction is immediate for PX,Y = PXPY via
the trivial protocol with no interaction and the parties independently
generating X and Y .

The secure sampling feasibility results of Thm. 1 and Thm. 2 are
summarized in Table I.

B. Rational Protocols for Games

Secure sampling protocols can be applied toward realizing corre-
lated equilibria when players lack a trusted mediator but are able

8This coin flip would be inherently biased, but secure in the sense that no
player can alter that bias.

9The proof of [12] assumes protocols with finitely bounded interaction,
however, this result can be extended, albeit with a non-trivial argument that
we must omit due to space, to protocols with unbounded interaction but almost
sure termination given at least one honest party.



Semi-honest Parties Malicious Parties

Polite Talk
I(X;Y ) = C(X;Y )

PX,Y = PXPY

Cheap Talk I(X;Y ) = C(X;Y )

TABLE I
FEASIBILITY CONDITIONS FOR SECURE TWO-PARTY SAMPLING

to first communicate via cheap talk or polite talk. The following
definition provides sufficient conditions for a protocol that would
allow rational players to realize a given correlated equilibrium in
lieu of a mediator10.

Definition 5: Let u1, u2 : X × Y → R be the payoffs in a
two-player game with a correlated equilibrium PX,Y . A two-party
protocol for sampling PX,Y is secure against rational players if, and
only if, for any execution generating outputs (U, V ) with support in
X × Y11, we have that:

1) When both parties are honest, (U, V ) ∼ PX,Y .
2) When Bob is honest, E[u1(U, V )] ≤ E[u1(X,Y )], where

(X,Y ) ∼ PX,Y .
3) When Alice is honest, E[u2(U, V )] ≤ E[u2(X,Y )], where

(X,Y ) ∼ PX,Y .
Protocols that are secure against malicious parties ensure that any

deviation cannot subvert the correctness or privacy of the sampling.
Hence, such protocols would be sufficient for realizing correlated
equilibria for rational players (see Lem. 3 below).

Lemma 3: Given a two-player game with a correlated equilibrium,
PX,Y , if a two-party protocol for sampling PX,Y is secure against
malicious parties (see Defn. 3), then it is also secure against rational
players (see Defn. 5).

Proof: The first condition of Defn. 5 is immediate from Defn. 3.
For the second condition of Defn. 5, Defn. 3 requires that for any
Alice (including those that only output U ∈ X ), there exists X
such that U − X − V and (X,V ) ∼ PX,Y . Since, PX,Y is a
correlated equilibrium, we have that E[u1(U, V )] ≤ E[u1(X,V )] =
E[u1(X,Y )]. The third condition of Defn. 5 follows similarly.

However, protocols that are secure for malicious parties may be
unnecessarily strong for rational players that will only deviate if it
serves their best interests. Further, as follows from Thm. 2, only a
limited correlated equilibria can be securely sampled by malicious
parties. In particular, given only polite talk, this is limited to only the
trivial Nash equilibria. Hence, a valid question is whether requiring
security against only rational players would allow for a larger set of
attainable correlated equilibria or corresponding payoffs.

Consider the (somewhat pathological12) scenario where the payoff
functions are constant, and hence all joint distributions over the action
profiles are correlated equilibria. All distributions can be securely
sampled against rational players given constant payoffs, using the
simple protocol where the first party generates both (X,Y ) ∼ PX,Y ,
gives Y to the second party, and then each party outputs its respective
variable. However, notice that, for this example, all of the correlated
and Nash payoffs are the same, thus the expanded range of equilibria

10Formally speaking, for any correlated equilibrium for which a rationally
secure protocol exists, a Nash equilibrium of the extended game, where parties
may first interact via cheap or polite talk and then play moves, would be both
players honestly executing that protocol and playing the outputs generated.

11Without loss of generality, we need only consider deviations that still
generate outputs in the appropriate alphabets, since the ultimate choice of
action can be subsumed into the deviation from the protocol.

12Following similar principles, one can also construct less pathological
examples exhibiting this significant gap.

that can be sampled with rational parties does not correspond to an
expansion of the attainable correlated payoffs. Thus, the pertinent
comparison appears to be the payoffs attainable by rational players
versus those attainable via secure sampling by malicious parties.

The sets of correlated payoffs achievable by rational players using
cheap or polite talk have been characterized in [13]. Their results,
specialized to our scenario, give that the set of the achievable
payoffs for rational players with cheap talk is the convex hull
of the Nash payoffs, while the set of achievable payoffs with
polite talk is the biconvex-span of the Nash payoffs13. Any payoff
in the convex hull of Nash payoffs corresponds to a correlated
equilibrium that is a convex combination of the Nash equilibria,
i.e., there exist Z such that PX,Y =

∑
z∈Z PZ(z)PX,Y |Z=z ,

where PX,Y |Z=z = PX|Z=zPY |Z=z are the Nash equilibria. The
distribution PA,B , given by A := (X,Z) and B := (Y,Z), is a
correlated equilibrium14 that can be securely sampled by malicious
parties (i.e., I(X,Z;Y,Z) = C(X,Z;Y,Z)). Hence, the payoffs
attainable by rational players with cheap talk are the same as those
realizable via secure sampling by malicious parties. On the other
hand, the payoffs in the biconvex-span of the Nash payoffs (attainable
by rational players with polite talk) do not necessarily correspond
to any Nash equilibria, and hence may not be realizable via secure
sampling by malicious parties with polite talk. However, all payoffs in
the biconvex span of Nash payoffs are dominated by the Nash payoffs
themselves, which are immediately attainable via a Nash equilibrium
that can be securely sampled by malicious parties with polite talk.
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