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Transmission Capacity of Wireless Ad Hoc

Networks with Energy Harvesting Nodes

Rahul Vaze

Abstract

Transmission capacity of an ad hoc wireless network is aealywhen each node of the network
harvests energy from nature, e.g. solar, wind, vibratian &ansmission capacity is the maximum
allowable density of nodes, satisfying a per transmitbeeiver rate, and an outage probability constraint.
Energy arrivals at each node are assumed to follow a Beirthstitibution, and each node stores energy
using an energy buffer/battery. For ALOHA medium accessqua (MAP), optimal transmission
probability that maximizes the transmission capacity isivéel as a function of the energy arrival
distribution. Game theoretic analysis is also presentedA\fdHA MAP, where each transmitter tries
to maximize its own throughput, and symmetric Nash equilitoris derived. For CSMA MAP, back-off

probability and outage probability are derived in termsngiit energy distribution, thereby characterizing
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the transmission capacity.

|. INTRODUCTION
Consider an ad hoc wireless network, where multiple sodesgination pairs try to commu-
nicate without the help of a centralized controller. There many examples of real life ad hoc
networks, such as military networks, vehicular networle)ser networks, etc. Typically, each
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node of an ad hoc network is powered by a conventional battieay has limited lifetime and

needs to be replenished periodically. Recently, to imptbedifetime of nodes, and to provide a
means ofgreencommunication, the concept of equipping nodes with eneagydsting devices

that can extract or tap energy from renewable energy soustef as solar, wind, vibration,
etc., has been introduced. Harvesting energy from natwegeVver, makes the future energy
availability random, and the transmission strategies havadapt dynamically to the energy
arrivals.

In this paper, we are interested in characterizing the tnésson capacity of an ad hoc network
when each transmitter has energy harvesting capability.tidnsmission capacity of an ad hoc
network is the maximum allowable density of nodes, satigfya per transmitter-receiver rate,
and outage probability constraint/ [1],/[2]. Similar to [IB], we assume that the locations of
transmitters are distributed as a homogenous Poissongroiceéss (PPP) with a fixed density. We
assume that energy arriving to each node through naturedesiollows a Bernoulli distribution,
where in each discrete time, a unit amount of energy arriviéls probability p or no energy
arrives with probabilityl — p. Energy arrivals are independent and identically distatduacross
all transmitters in the network. We remark in the sequel &évan though we consider Bernoulli
energy arrival model, our results apply to general energyardistributions with unbounded
battery capacity.

In this paper we consider two medium access protocols (MARISPHA, and CSMA, to be
used by each transmitter. For ALOHA MAP, we derive the optitr@nsmission probability as
a function of energy harvesting ragethat maximizes the transmission capacity of the ad hoc
network. We also consider a selfish setting, where eachni#es is interested in maximizing
its own throughput, and derive symmetric Nash equilibriunategies. For the CSMA MAP,

we derive the back-off probability and the outage probgbithat together characterize the



transmission capacity. Before describing our contrimgjove first review some recent work on

the design of wireless networks with energy harvesting.

A. Prior Work

Assuming non-causal knowledge of future energy arrivapginmal offline power allocation
strategies to maximize throughput have been derived faglesisource-destination pair/[3],
interference channell[4], and broadcast channel [5]. Fanglessource-destination pair, structure
of a causal throughput optimal strategy with energy arriiistribution knowledge has been
derived in [6], while a distribution free online algorithna$1been derived in [7]. For a wireless
network with energy harvesting nodes, the probability thaiode successfully transmits a data
packet to a fusion center is analyzed for time division nplatiaccess and ALOHA MAP in
[8]. From a queuing theoretic point of view, queue stahiligpolicies have been derived for a
single source-destination pairl [9], and a two-user interfee channel [10].

The most relevant work to this paper is [11], where each nddkeoad hoc network harvests
energy with arbitrary energy arrival distribution with ftkeate of arrivalp. Each transmitter is
scheduled to transmit with powe? if it has more thanP amount of energy irrespective of all
other nodes. Optimal value d? is derived in [11] that maximizes the transmission capaagy
a function of network parameters. Compared td [11], in tl#ipgy we take a different viewpoint
and couple the energy queue dynamics with the ALOHA/CSMAdnaission probability, and
try to find the best ALOHA transmission probability that maxzes the transmission capacity.
In our model, a transmitter sends a packet with probahjlityith ALOHA (if channel is sensed
idle with CSMA) if there is energy available at the transenitt

For the selfish setting, where each transmitter of an ad hboeonie powered with a con-

ventional power source tries to unilaterally maximize iwgnothroughput, optimal transmission



probability for ALOHA MAP has been derived in_[12]. Not suigingly an always transmit
strategy is selfishly optimal, and to improve the selfish behavior talsaglobally optimal
solution, a penalty function is introduced in the objectfuaction that linearly increases the

penalty with the transmission probability of each node.

B. Contributions

« For ALOHA MAP, we find the optimal transmission probabilityat each transmitter should
use to maximize the transmission capacity of the ad hoc nktfeo both finite and infinite
battery capacity. For the infinite battery capacity case,dptimal transmission probability
takes two values depending on a threshold that is a functictheo network parameters.
For finite battery capacity case, the optimal transmissiagbility is shown to satisfy the
probability of having non-zero energy in the energy queubdaqual to a constant, with
explicit solution found for the unit battery capacity case.

« For ALOHA MAP, we find the optimal transmission probabilityat each transmitter should
use that maximizes its own throughput (selfish setting), emracterize symmetric Nash
equilibrium (SNE). At SNE, each transmitter uses transiomsprobability ¢ such that
p < ¢ < 1 with infinite battery capacity, ang = 1 with finite battery capacity. It is
shown that the price of anarchy, that is ratio of globallyimai transmission capacity to
transmission capacity obtained at the worst SNE, is quitealiod is actually equal tonefor
some cases. Thus, in contrast/tol[12], the selfishly optitnategyy in the energy harvesting
setting is not much different from the globally optimal $&égy, since with energy harvesting
nodes, individual objective functions are inherently gyeaware.

« For CSMA MAP, we derive the back-off probability and the aeaprobability for each

transmitter when each transmitter harvests energy froewahle sources, consequently the



transmission capacity.

We remark that using a simple Bernoulli energy arrival modetl energy queue based
transmission probability framework, this work takes fewtiat steps towards understanding the
fundamental performance of energy harvesting ad hoc nksyand a lot more work is required

for complete characterization.

II. SYSTEM MODEL FORALOHA MAP

Consider a wireless ad hoc network where multiple sourcéra@g®ns pairs want to commu-
nicate with each other without any centralized controlldwing [1], the location of transmitter
nodes7,,, m € N is assumed to be distributed as a homogenous Poisson pougssr (PPP)
o = {7,,} on a two-dimensional plane with density[13]. The receiverR,, associated with
transmitter7,,, is assumed to be at a fixed distanceddfom T,, with an arbitrary orientation.

We assume that each transmitter harvests energy from natgrehrough solar, wind, peizo-
eletric sources etc. Each transmitter is assumed to havétexrybaf capacityB using which it
can store the harvested energy. The energy arrival prosessumed to be i.i.d. Bernoulli with
ratep across different transmitters, i.e. at each timeither a unit amount of energy arrives at
any transmitter with probability, or no energy arrives with probability — p. The results of
this paper are applicable to general energy arrivals astqubiout in Remark]1. The Bernoulli
energy arrival assumption is made for simplicity of expositand for deriving critical insights
into the problem.

If x,, is the transmitted signal fro,,, at timet, then the received signgl,, at R,, is given

by
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Ts€2\{To}



where P is the power transmitted by each transmitter;> 2 is the path-loss exponenty. ()
is the indicator function that ig if 7, transmits at time and is zero otherwisey,, is the
fading channel coefficient between transmitigiand receiver?;, that is assumed to be Rayleigh
distributed, and:,,, is the zero mean unit variance additive white Gaussian noise

We consider the interference limited regime, i.e. noise grow negligible compared to the
interference power, and henceforth drop the noise corlimimhl]H With the interference limited
regime, we assume unit power transmissifrns= 1, since the signal to interference ratio (SIR)

does not depend oR. Let SIR,,(¢) denote the SIR betwe€h,, and R,, at timet, then using

@
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We consider a slotted ALOHA like random access MAP, whereheagnsmitter attempts

SIR,, (1) :

to transmit its packet with an access probabitjtyindependently of all other transmitters if it
has energy to transmit. Thus, with transmit power= 1, any transmitter attempts to transmit
if it has non-zero amount of energy. Lét, (¢) be the amount of energy available wiih,

at time ¢. Then E,,(¢) is an i.i.d. birth-death Markov process with the followingrsition
probabilities, P(E,,(t + 1) = E,,(t) + 1) = p(1 — q), P(E,(t +1) = E,(t) — 1) = ¢(1 — p),
P(E,(t+1) =1|E,(t) =0) =pand P(E,,(t+ 1) = 0| E,,(t) = 0) = 1 — p as shown in Fig.
. Letr := P(E,,(t) > 1) be the probability ofE,,(t) > 1. Let x,,(t) = 1 if T,, transmits at
time ¢ given thatE,,(t) > 1, and x,,(t) = 0 otherwise. ThusP(x..(t) = 1|E,(t) > 1) = q.
By definition, any transmitter transmitdr, () = 1) with probability P(E,,(t) > 1,xm =1) =
P(E,(t) > 1)P(xm(t) = 1|E,(t) > 1) = P(E,(t) > 1)q = rq, independently of all other
nodes. Consequently, the active transmitter process isro¢enous PPP on a two-dimensional

1This assumption is made for simplicity of exposition, antirakults of this paper can be easily extended to the case of

additive noise as well.



plane with density\, := qrA.

We define that the transmission frdf), to R,,, at timet is successful if the SIR betwedh,
and R,, is greater than a thresholt i.e. SIR,,(¢) > 6. Thus, the probability of success at time
t is defined to be

We assume that the rate of transmission corresponding &shbid 6 is R = log(1 + 6)
bits/sec/Hz. Then the transmission capadily [1] is defimedetC' = )\, P,..(t)R bits/sec/Hz/m.
Our goal is find the optimaj that maximizes the transmission capacity= arg max, C. For
the purpose of analyzing the success probabiity. and C', we consider a typical transmitter
receiver pairl,,, R,,. It has been shown in[1] that for the PPP distributed trattemliocations,
the performance of the typical source destination pair éniital to the network wide perfor-
mance using Slivnyak’s Theorem [13]. Next, we first analyme ¢ase when each transmitter has

an unbounded battery capaciB/= oo, and later extend it to the finite battery capacity case.

A. B = ~o (Infinite Battery Capacity)

From Fig.[1, using well-known analysis of the infinite statgtbdeath Markov process we
have that = P(FE,,(t) > 1) = min {g, 1} for p,q > 0, V m. Throughout this paper, the only
guantity we will be interested in from the energy queue pointiew is the probability that the
energy queue is not in state P(E,,(t) > 1). Next, we remark that because of this restricted
dependence, the results of this paper generalize to angyemerval distribution, and are not
restricted to just Bernoulli distribution.

Remark 1:Let the energy arrival process bEt) with an arbitrary distribution of rate that
is independent and identically distributed for all trantéens. Let each transmitter transmit with

probability ¢, if there is more tharP amount of energy in the battery, and uses powdor its



transmission (similar to the ALOHA setup described befofdée energy queue dynamics at any
transmitter is given by (¢t + 1) = E(t) + A(t) — Plge>px(t), whereq = E{x(t)|E(t) > P}.
For this general model witls = oo, it has been shown in [11] th&(E(t) > P) = 1if p > Py,
andP(E(t) > P) = 7, If p < Pg. In [11], the result is obtained foy = 1, but it can be readily
generalized for any; € [0, 1]. Specializing, this result for our model with unit power= 1,
we get thatP(E(t) > 1) = min {g, 1} for any energy arrival distribution. Thus, we do not lose
any generality by restricting ourselves to the Bernoullkergry arrival distribution.

Consider the success probability (2),

Py = P(SIR,(t) > 0),

A= R |2
= P >01,
(Z'Eeé\{%} 17, (t)d;{gmmsP )

= exp <—)\qu29%fi(oz)), [14] where k(a) = —2%

asin(2n/a) "

Let \0p = = én(a). Hence the transmission capacity(s= Arqexp <—A’%) R. We derive
the optimal transmission probability in Theoreni IL. We need the following definition for the
proof of Theorent]l.

Definition 1: A function f : R — R is calledunimodalif for some valuen, it is monotonically
increasing forr < m and monotonically decreasing far> m.

Theorem 1:The optimal ALOHA transmission probability witl® = oo that maximizes the

transmission capacity ig® = 2zex if p > Amee and anyg € [p, 1] is optimal otherwise.

Proof: With » = min {g, 1}, for § < 1, the transmission capacity (S = Apexp ( pA ) R,

A7’7La.’l/'

>\77L(L(L'

while with 2 > 1, wherer = 1, C = Agexp (— 2 ) R.
Case 1 2mw < 1 andp > dmee } Note thatizer = arg max, Ag exp (—%) R [14]. More-

I mazx Amaz 1 1 — Amaz —
over, sincetze < 1 andp > 2zex, considering) < ¢ < p, wherer = 1, 222 = argmaxg<,<, C' =

arg maXo<q<p ¢ €Xp <—%) R, sinceq = A’“T lies in the feasible sebd < ¢ < p. With



qg = Amaz , the optimal transmission capacity 5= AW”.

Case 2: Letp < A"T SinceC = )\qexp( )R is a unimodal function ofy, and
achieves its maxima él"— it implies that\q exp ( ) R is an increasing function of for
0<qg<pforp< A’“T Hencemaxy<,<, C = Apexp( ) R. Moreover, for anyg > p,
C = Apexp <—%> R. Hence, ifp < 2ze= then anyg € [p, 1] is optimal. ]

Next, we consider the more realistic case of finite battepacdy B at each node.

B. Finite B (Finite Battery Capacity)

With finite battery capacityB, the energy queue transition probabilities are illusttateFig.
2, and letrp := P(E,,(t) > 1). With finite battery capacity3, the energy queue is a finite state

birth-death Markov process for which we have that for= 1, 7y = P(E () > 1) = I,

plq1— P(17‘Z)
while for B > 1, rg = ql((q(—lp)),) for p,q > 0,p # q andrp = for p = ¢. Similar

~E(5)

to B = co case, the transmission capacity expression for fiBits C' = Argqexp <—M> ,

B+1 —p

max

and we want to maximiz€' with respect tog. We first prove this intermediate result that is
important for subsequent analysis.
Lemma 1:For finite B, function f5(q) := ¢rp is an increasing function af for ¢ € [0, 1].
Proof: See Appendix’A. [
Theorem 2:The optimal ALOHA transmission probability with finite baty capacityB is
¢* = min {¢, 1}, whereg is the solution to the equatiofi;(z) = 2mez,
Proof: From Lemmalll, we know thafs(q) is an increasing function of for ¢ € [0, 1].
Hence for fixed\ and \,..., C = Afg(q)exp (—ﬁfB(Q)> is a unimodal function of;.

Thus, either the maxima af’ lies in [0, 1], or C' is an increasing function foj0, 1]. To find

)\maz

the maxima ofC, we equate the first derivative af', C' = \fj;(q)exp (— A fB(Q)> -

Mp(q) 32— fr(q) exp (—ﬁfﬂq)) to zero, which yields¥2 = 1 and fz(q) =
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solve fz(q) = 2z If ¢ > 1, theng* = 1, otherwiseg* = g. |

Corollary 1: With unit battery capacity3 = 1, ¢* = min {miﬂij(l_p), 1}.

Proof: From Lemmdll forB =1, f{(q) > 0 for ¢ € [0,1]. Hence using Theorefd 2, we know

Consequently* = )\pl—f\)\ia(lp) -

that ¢* satisfies’/'C) = 1, where f,(q) = 2.

Discussionin this section, we derived the optimal transmission prdiglior ALOHA MAP
when each transmitter is harvesting energy with a padernoulli distribution. We also remarked
that our results apply to any general energy arrival distitim. For the infinite battery capacity
case, we showed that the optimal transmission probabuiked two values depending on a
threshold that is function of the network parameters. The natural connection between the
optimal transmission probability with nodes that are pegewith energy harvesting sources
and conventional power sources [2]. If rates more than the optimal transmission probability
with conventional power sources, then we know that the itbathat there is more than unit
energy in the queue it Hence there is always energy to transmit, and the optiraakmission
probability with energy harvesting case is equal to the eatienal power sources. If rageis
less than the optimal transmission probability with corigaral power sources, then we show
that transmission capacity is an increasing function ofgnaission probability fromD to p
and then becomes a constant for any transmission prolyapiiater or equal t@. Thus, any
transmission probability greater or equalztas shown to be optimal.

We also derived results for the realistic case of finite We showed that the transmission
capacity expression is unimodal, and its maxima as a fumaifotransmission probability can
be found by solving the probability of non-zero energy in wgi¢o be equal to a constant. For
the special case dB = 1, we derived explicit solution for the optimal transmissigmobability.

In this section, we considered maximizing system wide trassion capacity that captures the

sum throughput of the network. In the next section, we carside case when each transmitter



11

selfishly tries to maximize its own throughput and derive sytric Nash equilibrium strategies.

[1l. SELFISHLY OPTIMAL TRANSMISSION STRATEGY

In this section, we consider the case when each transmit@tswto maximize his own
throughput, and derive the selfishly optimal transmissioobgbility for each transmitter us-
ing ALOHA MAP. The energy harvesting and transmission peotoat each transmission is
assumed identical to the previous section except for thestnéssion probabilityy, which is
now transmitter dependent, and we denote the transmissatralpility of transmitter7;, by g,,.
Therefore the objective function (utility) that each trami$er maximizes is it own throughput
TH,, := r,¢, P(SIR,.(t) > )R, wherer, = P(E,(t) > 1).

In this selfish setting, we will consider symmetric Nash &guum (SNE), at which all nodes
use the same transmission probabitity since no two transmitters are distinguishable from each
other. For more details sele [15]. In this setting, let#Hetransmitter use,, = ¢ (r,, = r), while
the m'* transmitter uses,, = ¢, m # n (r,, = 7). Then we denote the throughput of the
n'h transmitter asTH,, (¢, §) := rqP(SIR,(t) > §)R. Theng* is a SNE if for each transmitter
TH(q*, ¢*) = maxyecp1 TH(g, ¢*). The transmission capacity of the ad hoc network is defined

as the sum of throughput of all nodés= ATH(q¢*, ¢*)R.

A. Infinite Battery Capacity = oo

Theorem 3:In the infinite battery capacity casé3 (= oo), any ¢* such thatp < ¢* < 1 is

a SNE, wherep is the rate of energy arrivals. Moreover, at any SNE, eaadfstrgtter gets the

A azr max

same throughpufH = pexp <—i—*) and the transmission capacitys= Ap exp (—A”A )
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Proof: Consider

TH,(q,q) = rqP(SIR,(t) > 0),

A By |2 B
= rqP - >0, wherelr (t) =1 w.p.7q,
(ZTSGQ\{%} 17, (t>dm§‘hms|2 )

. ( TgA )
= rgexp | — .
)\ma:v

We note that the throughput of th&" transmitter is monotone increasingqin. Hence we need

to find the optimal; that maximizes-q. From the previous section, we know that for the infinite
battery capacity caseB(= oc), r = min {g, 1}. Thus, if¢ < p, thenr = 1 andrq = ¢, while
if ¢g>p,r= § andrq = p. Thus, anyg such thatp < ¢ < 1, maximizesrq, and provides the

selfishly optimal throughput for the'” transmitter. Therefore, eaafi such thatp < ¢* < 1 is

a SNE, and the throughput of each transmittergfet ¢* < 1 is TH = pexp (—Af*) [ |
Since anyg such thatp < ¢ < 1 is a SNE, it might appear that some transmitters canyused,
and create more interference for other transmitters. E@stsinitter, however, gets to transmit
only with probabilityrq = p for p < ¢ <1, since ifq is large, transmitter uses up more energy
and there is higher chance of energy queue to be in StalMext, we compute the price of
anarchy that compares the performance loss incurred duglftehmess by each transmitter.

Definition 2: The price of anarchy (PoA) of a game is the ratio of the utiditythe globally

optimal solution to the utility at the worst equilibrium.

Lemma 2: The PoA of the throughput game isif p < AT“ and m otherwise.

Amazx

Proof: If p < A’“T the globally optimal transmission probabiligy is that such thap < ¢* <1
(Theorem[1l), which is identical to the selfishly optimal samssion probability;* achieving
the SNE (Theoremh]3). Hence PoA iswhenp < Am% Forp > A’“T the globally optimal

transmission probability ig* = A"T whereas the selfishly optimal policy is< ¢* < 1. The

required expression is obtained by taking the ratio of dlgbaptimal transmission capacity
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expression and transmission capacity expression at any SNE [ |

Remark 2:Recently, selfishly optimal transmission probability fot @HA MAP has been
derived in [12] for throughput maximizationTH(q, ) defined above) with PPP distributed
transmitters, where each transmitter is powered by a coiored energy source. As expected,
without any energy constraintg,= 1 (always transmit strategy) is selfishly optimal, however, i
provides a very poor PoA performance. To improve the selfedtabior towards globally optimal
solution, a modified objective function is considerBd(q, §) — pq in [12] that linearly penalizes
the increase in transmission probabilify where p is a constant. It has been shown that by
carefully choosing the scaling parameterthe PoA can be significantly improved.

In comparison to [12], for the setting in this paper, wherehg@ansmitter harvests energy from
nature and stores it in a battery, the objective funciiét(q, ) is already energy aware, and no
extra energy dependent factors need to be introduced fairoig good PoA performance. More
importantly, we notice that PoA obtained with the improveergy penalty strategy [12] is worse
than the PoA obtained with our model of energy queue depérnidarsmission probability. Thus,
even for conventioanal energy powered sources, using @alienergy queue based transmission

probability can improve the PoA performance.

B. Finite B

Theorem 4:With finite battery capacity3, ¢* = 1 is a SNE. At any SNE, each transmitter gets

the same throughpdtH = pexp <—A> and transmission capacity & = A\pexp (— PA )

>\77L(L‘L )\Tnaw

Proof: Similar to the B = oo case, we have thatH, (¢, §) = rqexp (—fcjexp (ﬁ)) and

we need to find the optimal that maximizes-q, i.e. find ¢ that maximizesrq = fz(q). The

function fz(q) is an increasing function of (Lemmall), and achieves its optimal value equal

top atq = 1. Thusq* = 1 is a SNE with throughput of each transmitfeid = p exp <— pA )

)\Tnaw
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Next, we compute the PoA for the finite battery capacity case.

Lemma 3:The PoA of the throughput game with finite battery capacity is y* > 1, where

* 3 1 — )\rnaw )\q* OXP(—;;:—:I>
y* is the solution tofp(y) = 2mes, andm

Amazx

where f5(g*) = 2ze=, otherwise.

Proof: If y* satisfiesfz(y) = Am% andy > 1, then the globally optimal transmission probability
q¢* = 1 (Theorem_2) is equal to the selfishly optimal transmissiabpbility ¢* = 1 (Theoreni 4).
Otherwise, the globally optimal transmission capacityjSexp (—;;—A) , Wherefg(¢*) = AT“
(Theorem R2), while the transmission capacity at SNBzisxp <—%> (Theoren(4). [

Discussion:In this section, we considered the game theoretic settingAlctOHA MAP
where each transmitter unilaterally tries to maximize isdghroughput. With each transmitter
harvesting energy from nature at a finite rate, we showedthtigaselfishly optimal and globally
optimal strategies are not very different, and the PoA igeqamall. With conventional energy
powered transmitters, the selfish strategy is to alwaystninhowever, in the energy harvesting
setting there is no incentive for any transmitter to transaggressively, since more transmission
attempts deplete the energy available for future transamiss

In the previous two sections we analyzed the transmissipaaity of an ad hoc network with

ALOHA MAP. Another widely used MAP is CSMA, and in the next §ea we analyze the

performance of CSMA in an ad hoc network with energy harmgstiodes.

IV. CSMA

In this section, we consider the CSMA MAP and consider a fiygtifferent network model
compared to Sectionlll, that has been introduced_in [16]]. [tV Section[]l, we assumed that
transmitter locations are distributed as a 2-D PPP, and gankmitter always had a packet to
transmit and uses ALOHA MAP for packet transmissions. WiB8M2\,, analyzing such model is

rather challenging. In this section, we consider an ateand model the packet arrival process
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as a one-dimensional PPP with arrival rate/ L)\, whereL is the fixed packet duration. Each
packet after arrival is assigned to a transmitter locatiwat is uniformly distributed in area
A, and the receiver corresponding to a particular transmistdocated at a fixed distancé
away with a random orientation, as shown in Hig. 3. For~ oo, with ALOHA MAP, this
process corresponds to a 2-D PPP of transmitter locatiotts density A\ (Section[ll), where

each transmitter has packet arrival rate%of

A= |2

The SIR between transmitté}, and its receiveR,, at timet isSIR,,(t) = > rr (T
Tee@\(Tn} 175 (D)dns |hns

similar to Sectiori_ll, whereb is the set of all transmitters, and-, (¢t) = 1, if the transmitterT
is not in back-off and has energy to transmit, &ndtherwise. With CSMA MAP, transmittéef,,
sends its packet at timeif the channel is sensadle at timet, which in our case corresponds
to SIR,(t) > 6, with unit power if available energy, (¢) > 1. Otherwise, the transmitter backs
off and makes a retransmission attempt after a random anmufutine. If 7, transmits the
packet, the packet transmission can still failSiR,, falls below ¢ for the duration of packet
transmissionL. Thus, the outage probabilit],.; = P, + (1 — F;) Phailjno backots Where B, is the
back off probability, andPino backer IS the probability that the transmission fails. Hence, the
transmission capacity with CSMA MAP is defined @s= \(1 — P,.;) R bits/sec/Hz/rmh.

Similar to Sectiori_1l, we assume that the energy arrival gsscis i.i.d. Bernoulli with rate
p across different transmitters. In this section, we onlysider the B = oo case. Analysis for
finite B follows similarly. The transition probability diagram f@nergy queue with CSMA is
identical to Fig[ 1 withg replaced byl — P,, andr = P(E,(t) > 1) = min {1%}), 1}.

Remark 3: CSMA MAP introduces correlation among different transerit back-off events,
and hence the number of simultaneously active transmittetbe 2-D plane no longer follows a
PPP. Nevertheless, for analytical tractability, as an @yapration we assume that the transmitter

back-off events are independent, and simultaneously ettansmitter locations are still PPP
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distributed. The simulation results show that this assiongs reasonable [16]] [17].

In the next Theorem we derive the back-off probability foy armnsmitter with the CSMA MAP.

Theorem 5:The backoff probabilityP, = 1 — exp (‘ML) if —Amazlib > g otherwiseP,

satisfiesP, = 1 — exp ( M) which can be solved using Lambert’s functidiry(.).

Proof: Transmitter?,, goes into backoff at timé@ if SIR, at time0 is less thard. Note that
the set of transmitters active at timeare those that started transmitting betweeh to 0 since

the packet length id.. The transmitters that become active at any tinfeetween time-L and

0 is a PPP with density}(1 — P,)r. Assuming independent back off events across different
transmitters, the active set of transmitters at any time Isédween— L and 0 are independent,
and since the union of independent PPPs is also a PPP with ktime densities, transmitters
that are active at time is a PPP with density___, 2(1=Py)r = A(1—B,)r. For largeA, this
translates to having PPP distributed active transmitteations on the 2-D plane with density
A1 — B)r. Thus, P, = P(SIR,(0) < ) = 1 — exp ( Ad=Fy)r ) 2.

Next, we proceed using contradiction. L& > 1 — p. Thenr = 1, and henceP, = 1 —
exp (—%) > 1—p, which results inl — P, > —2me=1"2_ However,p, A, and\,,,,, are fixed
parameters and if they satisfy the relatiéhm;’”ﬂ > p, it implies thatP, < 1 — p. Thus, we
get a contradiction, since we started with > 1 — p. Hence if 2melo? > p P, < 1 —p, and

correspondingly- = and Py=1—exp (——) The other case is obvious. [ |

Next, we derive an explicit expression for packet failurel@bility with the CSMA MAP.

(1—Pp)r
Joo 1= —=—bT 11 (1-Pp)r L)
L+1 L+1 T R 1+d% 0z~
22 (—1)f ( ¢ ) Xp ( )

ey . ForL =1,

Theorem 6:Pfail\no backoff = 1 —

Pfail\no backoff = 11— (1 - Pb) exp (2)‘92/ad2(1 - Pb>2 2 2a 2080( ))
Proof: Note that Piijno vackott iS the probability that at any timg SIR,(t) < 0 for 0 <t < L

given thatSIR,,(0) > 6. The transmitters that become active at any tirmeetween time) and
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L is a PPP with density (1 — P,)r. Then,

Pfai||n0 backoff — 1 — P(SIRn(l) > ‘9, .- -,San(L) > 9‘S|R0 > «9),

P(SIRy > 6,SIR,(1) > 0,...,SIR, (L) > )

= 1= P(SIRy > 0) ’

L+1(_1)Z (L+1

_ 1 2= ¢ )exp__

where the expression in the numerator follows framl/ [18]. &bwer, for the special case of
L =1, P(SIR; > 0|SIRy > 0) = (1 — P) exp (2A0%°d*(1 — P)*r*n*22csc () [19]. m

Hence usingP,.; = P, + (1 — P,) Piljno backos W€ get the transmission capacity = A\(1 —
P,.;)R for CSMA MAP by combining Theorer5 arid 6. Finding the closethf expression
for Prailjno backoff d€rived in Theorerl6 is quite challenging. An upper boundh@/Aaiijno backofs
however, can be found using the FKG inequality! [20] as foow

Definition 3: Let (€2, F,P) be the probability space. Let € F, and 14 be the indicator
function of A. EventA € F is called increasing il 4 (w) < 14(w’), whenevew < w’ for some
partial ordering orw. The eventA is called decreasing if its complemeat is increasing.

Lemma 4:(FKG Inequality ) If both A, B € F are increasing or decreasing events then
P(AB) > P(A)P(B) [20].

Lemma 5:The outage probability of CSMA MARP,,; <1 — (1 — B,)F*L,
Proof: SinceSIR,(¢) is decreasing function of the number of interferers, by merngw =
(ay,aq,...,) where form € N, a,, = 1 if transmitter7,, is active, and) otherwise, it follows
that the success evefi§IR, () > 6} is a decreasing event. Hence, from the FKG inequality,
P(SIR,(0) > 6,SIR,, (1) > 0,...,SIR,(L) > 6) > P(SIR, > 0)LT!, sinceSIR,(¢) is identically
distributed for anyt. Hence, Prijno backot < 1 — (1 — P)%, and P, <1 — (1 — B,)X . [}

Discussionin this section, we considered the CSMA MAP for an ad hoc ngtwath energy

harvesting nodes. We derived expressions for back-off artdge probability for the CSMA
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MAP, thereby characterizing the transmission capacitysttved that depending on the rate of
energy arrivalp, back-off probability can be written in closed form or caneb@ressed in terms
of Lambert’s function. We also derived an exact expressand (a simplified lower bound) for

the outage probability, to characterize the transmissapacity with CSMA MAP.

V. SIMULATIONS

In this section, we present some numerical examples tdrfitesour theoretical results. In all
simulations we use energy arrival rate= .5, o = 3, = 2, andd = 2, such that\,,,., = .023,
except for Fig[h, where = 3, 0 = 1, andd = 1, and\,,,, = .2632 is used. In Figd.]4 arid 5, we
plot the transmission capacity for ALOHA MAP fd8 = oo with 2ze= > p andamee < p = (.5,
respectively, from which we can see that ﬁazf— < p, the optimal transmission probability is
g = A’“T while in the other case < ¢* < 1, as derived in Theoreml 1. In Figsl 6 7,
we plot the transmission capacity for ALOHA MAP witB = 1, and B = 5, respectively.
From Figs.[4[ B, andl7, we can see that/asncreases;* goes from0.3 for B = 1 to 0.23
for B = oo for fixed set of parameters. Finally, in Fig. 8, we plot the keaff probability with
CSMA MAP as a function of\. Following Theorem 5, we see that far= .01 and .035 for
which ~2@2ma 4, hack off probability is equal ta — exp~(xhez), while for A\ = .05 and

r'(lbe)A>

1, wherem < p, it satisfies the equatioR, =1 — exp_( Amaz

VI. CONCLUSIONS

In this paper we considered ALOHA and CSMA MAP for an ad hoavwoek, and derived op-
timal transmission probability for ALOHA MAP, and back-@thd outage probability expressions
for CSMA MAP, when each node in the network harvest energmnfrature. We characterized
the dependence of system throughput on the energy arritealaad derived system parameters

for optimal performance. In this work, we assumed that eetsimitter attempts to transmit with
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same probability irrespective of the current energy stéfieh finite battery capacity, it makes
more sense to transmit aggressively in high energy statégiaee-versa. Analyzing energy aware
transmission strategies remains an important problem lie so future with energy harvesting

nodes.

APPENDIX A

Proof of Lemmd_IL: We first consider the case®f= 1. For B =1, fi(q) = —2.—. Hence

pP+q—pq

filg) = ﬁ and hencef{(q) > 0 for ¢ € [0,1]. For B > 1, for p # ¢, we next show that

B
f5(q) > 0 for ¢ € [0,p) U (p,1]. Let ¢ := <1%p) . For B > 1, ¢ # p we compute the first

derivative of f5(q) as fj(g) = “-—leellod? e BupC1B10)) ¢ for g € [0,p) U (p, 1],

In the interest of space we do not provide intermediate sagplsonly write the final answer.

Also note that forg = p with B > 1, fp(q) = rq = Bf_’f_q. It can be checked thatz(p — 9) <

Ie(p) < fe(p+9), for smallé > 0. Hencefz(q) is an increasing function of € [0, 1].
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Fig. 1. Transition state probabilities of infinite statethideath Markov process.
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Fig. 2. Transition state probabilities of finite state biddbath Markov process.
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Fig. 3. Packet arrival model for CSMA MAP.
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