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Transmission Capacity of Wireless Ad Hoc

Networks with Energy Harvesting Nodes

Rahul Vaze

Abstract

Transmission capacity of an ad hoc wireless network is analyzed when each node of the network

harvests energy from nature, e.g. solar, wind, vibration etc. Transmission capacity is the maximum

allowable density of nodes, satisfying a per transmitter-receiver rate, and an outage probability constraint.

Energy arrivals at each node are assumed to follow a Bernoulli distribution, and each node stores energy

using an energy buffer/battery. For ALOHA medium access protocol (MAP), optimal transmission

probability that maximizes the transmission capacity is derived as a function of the energy arrival

distribution. Game theoretic analysis is also presented for ALOHA MAP, where each transmitter tries

to maximize its own throughput, and symmetric Nash equilibrium is derived. For CSMA MAP, back-off

probability and outage probability are derived in terms of input energy distribution, thereby characterizing

the transmission capacity.

I. INTRODUCTION

Consider an ad hoc wireless network, where multiple source-destination pairs try to commu-

nicate without the help of a centralized controller. There are many examples of real life ad hoc

networks, such as military networks, vehicular networks, sensor networks, etc. Typically, each
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node of an ad hoc network is powered by a conventional battery, that has limited lifetime and

needs to be replenished periodically. Recently, to improvethe lifetime of nodes, and to provide a

means ofgreencommunication, the concept of equipping nodes with energy harvesting devices

that can extract or tap energy from renewable energy sources, such as solar, wind, vibration,

etc., has been introduced. Harvesting energy from nature, however, makes the future energy

availability random, and the transmission strategies haveto adapt dynamically to the energy

arrivals.

In this paper, we are interested in characterizing the transmission capacity of an ad hoc network

when each transmitter has energy harvesting capability. The transmission capacity of an ad hoc

network is the maximum allowable density of nodes, satisfying a per transmitter-receiver rate,

and outage probability constraint [1], [2]. Similar to [1],[2], we assume that the locations of

transmitters are distributed as a homogenous Poisson pointprocess (PPP) with a fixed density. We

assume that energy arriving to each node through natural sources follows a Bernoulli distribution,

where in each discrete time, a unit amount of energy arrives with probability p or no energy

arrives with probability1− p. Energy arrivals are independent and identically distributed across

all transmitters in the network. We remark in the sequel thateven though we consider Bernoulli

energy arrival model, our results apply to general energy arrival distributions with unbounded

battery capacity.

In this paper we consider two medium access protocols (MAPs): ALOHA, and CSMA, to be

used by each transmitter. For ALOHA MAP, we derive the optimal transmission probability as

a function of energy harvesting ratep that maximizes the transmission capacity of the ad hoc

network. We also consider a selfish setting, where each transmitter is interested in maximizing

its own throughput, and derive symmetric Nash equilibrium strategies. For the CSMA MAP,

we derive the back-off probability and the outage probability that together characterize the
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transmission capacity. Before describing our contributions, we first review some recent work on

the design of wireless networks with energy harvesting.

A. Prior Work

Assuming non-causal knowledge of future energy arrivals, optimal offline power allocation

strategies to maximize throughput have been derived for single source-destination pair [3],

interference channel [4], and broadcast channel [5]. For a single source-destination pair, structure

of a causal throughput optimal strategy with energy arrivaldistribution knowledge has been

derived in [6], while a distribution free online algorithm has been derived in [7]. For a wireless

network with energy harvesting nodes, the probability thata node successfully transmits a data

packet to a fusion center is analyzed for time division multiple access and ALOHA MAP in

[8]. From a queuing theoretic point of view, queue stabilizing policies have been derived for a

single source-destination pair [9], and a two-user interference channel [10].

The most relevant work to this paper is [11], where each node of the ad hoc network harvests

energy with arbitrary energy arrival distribution with fixed rate of arrivalp. Each transmitter is

scheduled to transmit with powerP if it has more thanP amount of energy irrespective of all

other nodes. Optimal value ofP is derived in [11] that maximizes the transmission capacityas

a function of network parameters. Compared to [11], in this paper we take a different viewpoint

and couple the energy queue dynamics with the ALOHA/CSMA transmission probability, and

try to find the best ALOHA transmission probability that maximizes the transmission capacity.

In our model, a transmitter sends a packet with probabilityq with ALOHA (if channel is sensed

idle with CSMA) if there is energy available at the transmitter.

For the selfish setting, where each transmitter of an ad hoc network powered with a con-

ventional power source tries to unilaterally maximize its own throughput, optimal transmission
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probability for ALOHA MAP has been derived in [12]. Not surprisingly an always transmit

strategy is selfishly optimal, and to improve the selfish behavior towards globally optimal

solution, a penalty function is introduced in the objectivefunction that linearly increases the

penalty with the transmission probability of each node.

B. Contributions

• For ALOHA MAP, we find the optimal transmission probability that each transmitter should

use to maximize the transmission capacity of the ad hoc network for both finite and infinite

battery capacity. For the infinite battery capacity case, the optimal transmission probability

takes two values depending on a threshold that is a function of the network parameters.

For finite battery capacity case, the optimal transmission probability is shown to satisfy the

probability of having non-zero energy in the energy queue tobe equal to a constant, with

explicit solution found for the unit battery capacity case.

• For ALOHA MAP, we find the optimal transmission probability that each transmitter should

use that maximizes its own throughput (selfish setting), andcharacterize symmetric Nash

equilibrium (SNE). At SNE, each transmitter uses transmission probability q such that

p ≤ q ≤ 1 with infinite battery capacity, andq = 1 with finite battery capacity. It is

shown that the price of anarchy, that is ratio of globally optimal transmission capacity to

transmission capacity obtained at the worst SNE, is quite low and is actually equal toonefor

some cases. Thus, in contrast to [12], the selfishly optimal strategy in the energy harvesting

setting is not much different from the globally optimal strategy, since with energy harvesting

nodes, individual objective functions are inherently energy aware.

• For CSMA MAP, we derive the back-off probability and the outage probability for each

transmitter when each transmitter harvests energy from renewable sources, consequently the
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transmission capacity.

We remark that using a simple Bernoulli energy arrival modeland energy queue based

transmission probability framework, this work takes few initial steps towards understanding the

fundamental performance of energy harvesting ad hoc networks, and a lot more work is required

for complete characterization.

II. SYSTEM MODEL FOR ALOHA MAP

Consider a wireless ad hoc network where multiple source destinations pairs want to commu-

nicate with each other without any centralized control. Following [1], the location of transmitter

nodesTm, m ∈ N is assumed to be distributed as a homogenous Poisson point process (PPP)

Φ = {Tm} on a two-dimensional plane with densityλ [13]. The receiverRm associated with

transmitterTm is assumed to be at a fixed distance ofd from Tm with an arbitrary orientation.

We assume that each transmitter harvests energy from nature, e.g. through solar, wind, peizo-

eletric sources etc. Each transmitter is assumed to have a battery of capacityB using which it

can store the harvested energy. The energy arrival process is assumed to be i.i.d. Bernoulli with

ratep across different transmitters, i.e. at each timet, either a unit amount of energy arrives at

any transmitter with probabilityp, or no energy arrives with probability1 − p. The results of

this paper are applicable to general energy arrivals as pointed out in Remark 1. The Bernoulli

energy arrival assumption is made for simplicity of exposition and for deriving critical insights

into the problem.

If xm is the transmitted signal fromTm at timet, then the received signalym at Rm is given

by

ytm =
√
Pd−α/2hmmxm +

∑

Ts∈Φ\{T0}

√
P1Ts

(t)d−α/2
ms hmsxs + zm, (1)
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whereP is the power transmitted by each transmitter,α > 2 is the path-loss exponent,1Ts
(t)

is the indicator function that is1 if Ts transmits at timet and is zero otherwise,hkℓ is the

fading channel coefficient between transmitterTℓ and receiverRk that is assumed to be Rayleigh

distributed, andzm is the zero mean unit variance additive white Gaussian noise.

We consider the interference limited regime, i.e. noise power is negligible compared to the

interference power, and henceforth drop the noise contribution [1].1 With the interference limited

regime, we assume unit power transmission,P = 1, since the signal to interference ratio (SIR)

does not depend onP . Let SIRm(t) denote the SIR betweenTm andRm at time t, then using

(1)

SIRm(t) :=
d−α|hmm|2

∑

Ts∈Φ\{Tm} 1Ts
(t)d−α

ms |hms|2
.

We consider a slotted ALOHA like random access MAP, where each transmitter attempts

to transmit its packet with an access probabilityq, independently of all other transmitters if it

has energy to transmit. Thus, with transmit powerP = 1, any transmitter attempts to transmit

if it has non-zero amount of energy. LetEm(t) be the amount of energy available withTm

at time t. Then Em(t) is an i.i.d. birth-death Markov process with the following transition

probabilities,P (Em(t + 1) = Em(t) + 1) = p(1 − q), P (Em(t + 1) = Em(t) − 1) = q(1 − p),

P (Em(t + 1) = 1|Em(t) = 0) = p andP (Em(t + 1) = 0|Em(t) = 0) = 1 − p as shown in Fig.

1. Let r := P (Em(t) ≥ 1) be the probability ofEm(t) ≥ 1. Let χm(t) = 1 if Tm transmits at

time t given thatEm(t) ≥ 1, andχm(t) = 0 otherwise. Thus,P (χm(t) = 1|Em(t) ≥ 1) = q.

By definition, any transmitter transmits(1Ts
(t) = 1) with probabilityP (Em(t) ≥ 1, χm = 1) =

P (Em(t) ≥ 1)P (χm(t) = 1|Em(t) ≥ 1) = P (Em(t) ≥ 1)q = rq, independently of all other

nodes. Consequently, the active transmitter process is a homogenous PPP on a two-dimensional

1This assumption is made for simplicity of exposition, and all results of this paper can be easily extended to the case of

additive noise as well.
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plane with densityλa := qrλ.

We define that the transmission fromTm to Rm at timet is successful if the SIR betweenTm

andRm is greater than a thresholdθ, i.e. SIRm(t) > θ. Thus, the probability of success at time

t is defined to be

Psuc(t) = P (SIRm(t) > θ), (2)

We assume that the rate of transmission corresponding to threshold θ is R = log(1 + θ)

bits/sec/Hz. Then the transmission capacity [1] is defined to beC = λaPsuc(t)R bits/sec/Hz/m2.

Our goal is find the optimalq that maximizes the transmission capacity,q⋆ = argmaxq C. For

the purpose of analyzing the success probabilityPsuc andC, we consider a typical transmitter

receiver pairTm, Rm. It has been shown in [1] that for the PPP distributed transmitter locations,

the performance of the typical source destination pair is identical to the network wide perfor-

mance using Slivnyak’s Theorem [13]. Next, we first analyze the case when each transmitter has

an unbounded battery capacityB = ∞, and later extend it to the finite battery capacity case.

A. B = ∞ (Infinite Battery Capacity)

From Fig. 1, using well-known analysis of the infinite state birth-death Markov process we

have thatr = P (Em(t) ≥ 1) = min
{

p
q
, 1
}

for p, q > 0, ∀ m. Throughout this paper, the only

quantity we will be interested in from the energy queue pointof view is the probability that the

energy queue is not in state0, P (Em(t) ≥ 1). Next, we remark that because of this restricted

dependence, the results of this paper generalize to any energy arrival distribution, and are not

restricted to just Bernoulli distribution.

Remark 1:Let the energy arrival process beA(t) with an arbitrary distribution of ratep that

is independent and identically distributed for all transmitters. Let each transmitter transmit with

probability q, if there is more thanP amount of energy in the battery, and uses powerP for its
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transmission (similar to the ALOHA setup described before). The energy queue dynamics at any

transmitter is given byE(t+ 1) = E(t) +A(t)− P1E(t)≥Pχ(t), whereq = E{χ(t)|E(t) ≥ P}.

For this general model withB = ∞, it has been shown in [11] thatP (E(t) ≥ P ) = 1 if p ≥ Pq,

andP (E(t) ≥ P ) = p
Pq

if p < Pq. In [11], the result is obtained forq = 1, but it can be readily

generalized for anyq ∈ [0, 1]. Specializing, this result for our model with unit powerP = 1,

we get thatP (E(t) ≥ 1) = min
{

p
q
, 1
}

for any energy arrival distribution. Thus, we do not lose

any generality by restricting ourselves to the Bernoulli energy arrival distribution.

Consider the success probability (2),

Psuc = P (SIRm(t) > θ),

= P

(

d−α|hmm|2
∑

Ts∈Φ\{T0}
1Ts

(t)d−α
ms |hms|2

> θ

)

,

= exp
(

−λrqd2θ
2
ακ(α)

)

, [14] where κ(α) = 2π2

αsin(2π/α)
.

Let λmax := 1

d2θ
2
α κ(α)

. Hence the transmission capacity isC = λrq exp
(

− rqλ
λmax

)

R. We derive

the optimal transmission probabilityq⋆ in Theorem 1. We need the following definition for the

proof of Theorem 1.

Definition 1: A functionf : R → R is calledunimodalif for some valuem, it is monotonically

increasing forx ≤ m and monotonically decreasing forx > m.

Theorem 1:The optimal ALOHA transmission probability withB = ∞ that maximizes the

transmission capacity isq⋆ = λmax

λ
if p > λmax

λ
, and anyq ∈ [p, 1] is optimal otherwise.

Proof: With r = min
{

p
q
, 1
}

, for p
q
< 1, the transmission capacity isC = λp exp

(

− pλ
λmax

)

R,

while with p
q
≥ 1, wherer = 1, C = λq exp

(

− qλ
λmax

)

R.

Case 1:
{

λmax

λ
< 1 andp ≥ λmax

λ
.
}

Note thatλmax

λ
= argmaxq λq exp

(

− qλ
λmax

)

R [14]. More-

over, sinceλmax

λ
< 1 andp ≥ λmax

λ
, considering0 ≤ q ≤ p, wherer = 1, λmax

λ
= argmax0≤q≤pC =

argmax0≤q≤p q exp
(

− qλ
λmax

)

R, since q = λmax

λ
lies in the feasible set0 ≤ q ≤ p. With
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q⋆ = λmax

λ
, the optimal transmission capacity isC = λmax

e
.

Case 2: Letp < λmax

λ
. SinceC = λq exp

(

− qλ
λmax

)

R is a unimodal function ofq, and

achieves its maxima atλmax

λ
, it implies thatλq exp

(

− qλ
λmax

)

R is an increasing function ofq for

0 ≤ q ≤ p for p < λmax

λ
. Hencemax0≤q≤pC = λp exp

(

− pλ
λmax

)

R. Moreover, for anyq > p,

C = λp exp
(

− pλ
λmax

)

R. Hence, ifp < λmax

λ
, then anyq ∈ [p, 1] is optimal.

Next, we consider the more realistic case of finite battery capacityB at each node.

B. FiniteB (Finite Battery Capacity)

With finite battery capacityB, the energy queue transition probabilities are illustrated in Fig.

2, and letrB := P (Em(t) ≥ 1). With finite battery capacityB, the energy queue is a finite state

birth-death Markov process for which we have that forB = 1, r1 = P (Em(t) ≥ 1) = p
p+q−pq

,

while for B > 1, rB =

p

q

(

1−( p(1−q)
q(1−p))

B
)

1− p

q (
p(1−q)
q(1−p))

B for p, q > 0, p 6= q and rB = B
B+1−p

for p = q. Similar

to B = ∞ case, the transmission capacity expression for finiteB is C = λrBq exp
(

− λrBq
λmax

)

,

and we want to maximizeC with respect toq. We first prove this intermediate result that is

important for subsequent analysis.

Lemma 1:For finiteB, function fB(q) := qrB is an increasing function ofq for q ∈ [0, 1].

Proof: See Appendix A.

Theorem 2:The optimal ALOHA transmission probability with finite battery capacityB is

q⋆ = min {q̂, 1}, whereq̂ is the solution to the equationfB(x) = λmax

λ
.

Proof: From Lemma 1, we know thatfB(q) is an increasing function ofq for q ∈ [0, 1].

Hence for fixedλ and λmax, C = λfB(q) exp
(

− λ
λmax

fB(q)
)

is a unimodal function ofq.

Thus, either the maxima ofC lies in [0, 1], or C is an increasing function for[0, 1]. To find

the maxima ofC, we equate the first derivative ofC, C ′ = λf ′
B(q) exp

(

− λ
λmax

fB(q)
)

−

λfB(q)
λ

λmax
f ′
B(q) exp

(

− λ
λmax

fB(q)
)

to zero, which yieldsλfB(q)
λmax

= 1 andfB(q) = λmax

λ
. Let q̂
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solvefB(q) = λmax

λ
. If q̂ > 1, thenq⋆ = 1, otherwiseq⋆ = q̂.

Corollary 1: With unit battery capacityB = 1, q⋆ = min
{

pλmax

λp+λmax(1−p)
, 1
}

.

Proof: From Lemma 1 forB = 1, f ′
1(q) > 0 for q ∈ [0, 1]. Hence using Theorem 2, we know

that q⋆ satisfiesλf1(q⋆)
λmax

= 1, wheref1(q) =
pq

p+q−pq
. Consequentlyq⋆ = pλmax

λp+λmax(1−p)
.

Discussion:In this section, we derived the optimal transmission probability for ALOHA MAP

when each transmitter is harvesting energy with a ratep Bernoulli distribution. We also remarked

that our results apply to any general energy arrival distribution. For the infinite battery capacity

case, we showed that the optimal transmission probability takes two values depending on a

threshold that is function of the network parameters. Thereis a natural connection between the

optimal transmission probability with nodes that are powered with energy harvesting sources

and conventional power sources [2]. If ratep is more than the optimal transmission probability

with conventional power sources, then we know that the probability that there is more than unit

energy in the queue is1. Hence there is always energy to transmit, and the optimal transmission

probability with energy harvesting case is equal to the conventional power sources. If ratep is

less than the optimal transmission probability with conventional power sources, then we show

that transmission capacity is an increasing function of transmission probability from0 to p

and then becomes a constant for any transmission probability greater or equal top. Thus, any

transmission probability greater or equal top is shown to be optimal.

We also derived results for the realistic case of finiteB. We showed that the transmission

capacity expression is unimodal, and its maxima as a function of transmission probability can

be found by solving the probability of non-zero energy in queue to be equal to a constant. For

the special case ofB = 1, we derived explicit solution for the optimal transmissionprobability.

In this section, we considered maximizing system wide transmission capacity that captures the

sum throughput of the network. In the next section, we consider the case when each transmitter
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selfishly tries to maximize its own throughput and derive symmetric Nash equilibrium strategies.

III. SELFISHLY OPTIMAL TRANSMISSION STRATEGY

In this section, we consider the case when each transmitter wants to maximize his own

throughput, and derive the selfishly optimal transmission probability for each transmitter us-

ing ALOHA MAP. The energy harvesting and transmission protocol at each transmission is

assumed identical to the previous section except for the transmission probabilityq, which is

now transmitter dependent, and we denote the transmission probability of transmitterTn by qn.

Therefore the objective function (utility) that each transmitter maximizes is it own throughput

THn := rnqnP (SIRn(t) > θ)R, wherern = P (En(t) ≥ 1).

In this selfish setting, we will consider symmetric Nash equilibrium (SNE), at which all nodes

use the same transmission probabilityq∗, since no two transmitters are distinguishable from each

other. For more details see [15]. In this setting, let thenth transmitter useqn = q (rn = r), while

the mth transmitter usesqm = q̃, m 6= n (rm = r̃). Then we denote the throughput of the

nth transmitter asTHn(q, q̃) := rqP (SIRn(t) > θ)R. Then q∗ is a SNE if for each transmitter

TH(q∗, q∗) = maxq∈[0,1] TH(q, q
∗). The transmission capacity of the ad hoc network is defined

as the sum of throughput of all nodesC = λTH(q∗, q∗)R.

A. Infinite Battery CapacityB = ∞

Theorem 3:In the infinite battery capacity case (B = ∞), any q∗ such thatp ≤ q∗ ≤ 1 is

a SNE, wherep is the rate of energy arrivals. Moreover, at any SNE, each transmitter gets the

same throughputTH = p exp
(

− pλ
λmax

)

, and the transmission capacity isC = λp exp
(

− pλ
λmax

)

.
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Proof: Consider

THn(q, q̃) = rqP (SIRn(t) > θ),

= rqP

(

d−α|hmm|2
∑

Ts∈Φ\{T0}
1Ts

(t)d−α
ms |hms|2

> θ

)

, where1Ts
(t) = 1 w.p. r̃q̃,

= rq exp

(

− r̃q̃λ

λmax

)

.

We note that the throughput of thenth transmitter is monotone increasing inrq. Hence we need

to find the optimalq that maximizesrq. From the previous section, we know that for the infinite

battery capacity case (B = ∞), r = min
{

p
q
, 1
}

. Thus, if q < p, thenr = 1 and rq = q, while

if q ≥ p, r = p
q

and rq = p. Thus, anyq such thatp ≤ q ≤ 1, maximizesrq, and provides the

selfishly optimal throughput for thenth transmitter. Therefore, eachq∗ such thatp ≤ q∗ ≤ 1 is

a SNE, and the throughput of each transmitter forp ≤ q∗ ≤ 1 is TH = p exp
(

− pλ
λmax

)

.

Since anyq such thatp ≤ q ≤ 1 is a SNE, it might appear that some transmitters can useq = 1,

and create more interference for other transmitters. Each transmitter, however, gets to transmit

only with probabilityrq = p for p ≤ q ≤ 1, since if q is large, transmitter uses up more energy

and there is higher chance of energy queue to be in state0. Next, we compute the price of

anarchy that compares the performance loss incurred due to selfishness by each transmitter.

Definition 2: The price of anarchy (PoA) of a game is the ratio of the utilityat the globally

optimal solution to the utility at the worst equilibrium.

Lemma 2:The PoA of the throughput game is1 if p < λmax

λ
, and λmax

epλ exp( −pλ

λmax
)
, otherwise.

Proof: If p < λmax

λ
, the globally optimal transmission probabilityq⋆ is that such thatp ≤ q⋆ ≤ 1

(Theorem 1), which is identical to the selfishly optimal transmission probabilityq∗ achieving

the SNE (Theorem 3). Hence PoA is1 when p < λmax

λ
. For p > λmax

λ
, the globally optimal

transmission probability isq⋆ = λmax

λ
, whereas the selfishly optimal policy isp ≤ q∗ ≤ 1. The

required expression is obtained by taking the ratio of globally optimal transmission capacity
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expression and transmission capacity expression at any SNE.

Remark 2:Recently, selfishly optimal transmission probability for ALOHA MAP has been

derived in [12] for throughput maximization (TH(q, q̃) defined above) with PPP distributed

transmitters, where each transmitter is powered by a conventional energy source. As expected,

without any energy constraints,q = 1 (always transmit strategy) is selfishly optimal, however, it

provides a very poor PoA performance. To improve the selfish behavior towards globally optimal

solution, a modified objective function is consideredTH(q, q̃)−ρq in [12] that linearly penalizes

the increase in transmission probabilityq, whereρ is a constant. It has been shown that by

carefully choosing the scaling parameterρ, the PoA can be significantly improved.

In comparison to [12], for the setting in this paper, where each transmitter harvests energy from

nature and stores it in a battery, the objective functionTH(q, q̃) is already energy aware, and no

extra energy dependent factors need to be introduced for obtaining good PoA performance. More

importantly, we notice that PoA obtained with the improved energy penalty strategy [12] is worse

than the PoA obtained with our model of energy queue dependent transmission probability. Thus,

even for conventioanal energy powered sources, using a virtual energy queue based transmission

probability can improve the PoA performance.

B. FiniteB

Theorem 4:With finite battery capacityB, q∗ = 1 is a SNE. At any SNE, each transmitter gets

the same throughputTH = p exp
(

− pλ
λmax

)

and transmission capacity isC = λp exp
(

− pλ
λmax

)

.

Proof: Similar to theB = ∞ case, we have thatTHn(q, q̃) = rq exp
(

−r̃q̃ exp
(

λ
λmax

))

, and

we need to find the optimalq that maximizesrq, i.e. find q that maximizesrq = fB(q). The

function fB(q) is an increasing function ofq (Lemma 1), and achieves its optimal value equal

to p at q = 1. Thusq∗ = 1 is a SNE with throughput of each transmitterTH = p exp
(

− pλ
λmax

)

.
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Next, we compute the PoA for the finite battery capacity case.

Lemma 3:The PoA of the throughput game with finite battery capacity is1 if y∗ > 1, where

y∗ is the solution tofB(y) = λmax

λ
, and

λq⋆ exp
(

− q⋆λ

λmax

)

pλ exp(− pλ

λmax
)

wherefB(q⋆) = λmax

λ
, otherwise.

Proof: If y∗ satisfiesfB(y) = λmax

λ
andy > 1, then the globally optimal transmission probability

q⋆ = 1 (Theorem 2) is equal to the selfishly optimal transmission probabilityq∗ = 1 (Theorem 4).

Otherwise, the globally optimal transmission capacity isλq⋆ exp
(

− q⋆λ
λmax

)

, wherefB(q⋆) = λmax

λ

(Theorem 2), while the transmission capacity at SNE isλp exp
(

− pλ
λmax

)

(Theorem 4).

Discussion: In this section, we considered the game theoretic setting for ALOHA MAP

where each transmitter unilaterally tries to maximize its own throughput. With each transmitter

harvesting energy from nature at a finite rate, we showed thatthe selfishly optimal and globally

optimal strategies are not very different, and the PoA is quite small. With conventional energy

powered transmitters, the selfish strategy is to always transmit, however, in the energy harvesting

setting there is no incentive for any transmitter to transmit aggressively, since more transmission

attempts deplete the energy available for future transmission.

In the previous two sections we analyzed the transmission capacity of an ad hoc network with

ALOHA MAP. Another widely used MAP is CSMA, and in the next section we analyze the

performance of CSMA in an ad hoc network with energy harvesting nodes.

IV. CSMA

In this section, we consider the CSMA MAP and consider a slightly different network model

compared to Section II, that has been introduced in [16], [17]. In Section II, we assumed that

transmitter locations are distributed as a 2-D PPP, and eachtransmitter always had a packet to

transmit and uses ALOHA MAP for packet transmissions. With CSMA, analyzing such model is

rather challenging. In this section, we consider an areaA, and model the packet arrival process
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as a one-dimensional PPP with arrival rate(A/L)λ, whereL is the fixed packet duration. Each

packet after arrival is assigned to a transmitter location that is uniformly distributed in area

A, and the receiver corresponding to a particular transmitter is located at a fixed distanced

away with a random orientation, as shown in Fig. 3. ForA → ∞, with ALOHA MAP, this

process corresponds to a 2-D PPP of transmitter locations with densityλ (Section II), where

each transmitter has packet arrival rate of1
L

.

The SIR between transmitterTn and its receiverRn at timet is SIRn(t) =
d−α|hnn|2

∑

Ts∈Φ\{Tn} 1Ts (t)d
−α
ns |hns|2

,

similar to Section II, whereΦ is the set of all transmitters, and1Ts
(t) = 1, if the transmitterTs

is not in back-off and has energy to transmit, and0 otherwise. With CSMA MAP, transmitterTn

sends its packet at timet if the channel is sensedidle at time t, which in our case corresponds

to SIRn(t) > θ, with unit power if available energyEn(t) ≥ 1. Otherwise, the transmitter backs

off and makes a retransmission attempt after a random amountof time. If Tn transmits the

packet, the packet transmission can still fail ifSIRn falls below θ for the duration of packet

transmissionL. Thus, the outage probabilityPout = Pb + (1 − Pb)Pfail|no backoff, wherePb is the

back off probability, andPfail|no backoff is the probability that the transmission fails. Hence, the

transmission capacity with CSMA MAP is defined asC = λ(1− Pout)R bits/sec/Hz/m2.

Similar to Section II, we assume that the energy arrival process is i.i.d. Bernoulli with rate

p across different transmitters. In this section, we only consider theB = ∞ case. Analysis for

finite B follows similarly. The transition probability diagram forenergy queue with CSMA is

identical to Fig. 1 withq replaced by1− Pb, andr = P (En(t) ≥ 1) = min
{

p
1−Pb

, 1
}

.

Remark 3:CSMA MAP introduces correlation among different transmitter’s back-off events,

and hence the number of simultaneously active transmitterson the 2-D plane no longer follows a

PPP. Nevertheless, for analytical tractability, as an approximation we assume that the transmitter

back-off events are independent, and simultaneously active transmitter locations are still PPP
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distributed. The simulation results show that this assumption is reasonable [16], [17].

In the next Theorem we derive the back-off probability for any transmitter with the CSMA MAP.

Theorem 5:The backoff probabilityPb = 1 − exp
(

− λ
λmax

)

if −λmax ln p
λ

> p, otherwisePb

satisfiesPb = 1− exp
(

−λ(1−Pb)
λmax

)

which can be solved using Lambert’s functionW0(.).

Proof: TransmitterTn goes into backoff at time0 if SIRn at time 0 is less thanθ. Note that

the set of transmitters active at time0 are those that started transmitting between−L to 0 since

the packet length isL. The transmitters that become active at any timet between time−L and

0 is a PPP with densityλ
L
(1 − Pb)r. Assuming independent back off events across different

transmitters, the active set of transmitters at any time slot between−L and 0 are independent,

and since the union of independent PPPs is also a PPP with sum of the densities, transmitters

that are active at time0 is a PPP with density
∑0

i=−L
λ
L
(1−Pb)r = λ(1−Pb)r. For largeA, this

translates to having PPP distributed active transmitter locations on the 2-D plane with density

λ(1− Pb)r. Thus,Pb = P (SIRn(0) < θ) = 1− exp
(

−λ(1−Pb)r
λmax

)

[2].

Next, we proceed using contradiction. LetPb > 1 − p. Then r = 1, and hencePb = 1 −

exp
(

−λ(1−Pb)
λmax

)

> 1− p, which results in1−Pb ≥ −λmax ln p
λ

. However,p, λ, andλmax are fixed

parameters and if they satisfy the relation−λmax ln p
λ

> p, it implies thatPb ≤ 1 − p. Thus, we

get a contradiction, since we started withPb > 1− p. Hence if −λmax ln p
λ

> p, Pb ≤ 1 − p, and

correspondinglyr = p
1−Pb

andPb = 1− exp
(

− λ
λmax

)

. The other case is obvious.

Next, we derive an explicit expression for packet failure probability with the CSMA MAP.

Theorem 6:Pfail|no backoff = 1 −
∑L+1

ℓ=0 (−1)ℓ(L+1
ℓ ) exp

− λ
T

(

∫

R2
1−

(

(1−Pb)r

1+dαθx−α
+1−(1−Pb)r

)ℓ
dx

)

1−Pb
. For L = 1,

Pfail|no backoff= 1− (1− Pb) exp
(

2λθ2/αd2(1− Pb)
2r2π2 α−2

α
csc
(

2π
α

))

.

Proof: Note thatPfail|no backoff is the probability that at any timet, SIRn(t) < θ for 0 < t ≤ L

given thatSIRn(0) > θ. The transmitters that become active at any timet between time0 and
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L is a PPP with densityλ
L
(1− Pb)r. Then,

Pfail|no backoff = 1− P (SIRn(1) > θ, . . . , SIRn(L) > θ|SIR0 > θ),

= 1− P (SIR0 > θ, SIRn(1) > θ, . . . , SIRn(L) > θ)

P (SIR0 > θ)
,

= 1−
∑L+1

ℓ=0 (−1)ℓ
(

L+1
ℓ

)

exp
− λ

L

(

∫

R2 1−
(

(1−Pb)r

1+dαθx−α+1−(1−Pb)r
)ℓ

dx

)

1− Pb
,

where the expression in the numerator follows from [18]. Moreover, for the special case of

L = 1, P (SIR1 > θ|SIR0 > θ) = (1− Pb) exp
(

2λθ2/αd2(1− Pb)
2r2π2 α−2

α
csc
(

2π
α

))

[19].

Hence usingPout = Pb + (1 − Pb)Pfail|no backoff, we get the transmission capacityC = λ(1 −

Pout)R for CSMA MAP by combining Theorem 5 and 6. Finding the closed form expression

for Pfail|no backoff derived in Theorem 6 is quite challenging. An upper bound on thePfail|no backoff,

however, can be found using the FKG inequality [20] as follows.

Definition 3: Let (Ω,F ,P) be the probability space. LetA ∈ F , and 1A be the indicator

function ofA. EventA ∈ F is called increasing if1A(ω) ≤ 1A(ω
′), wheneverω ≤ ω′ for some

partial ordering onω. The eventA is called decreasing if its complementAc is increasing.

Lemma 4: (FKG Inequality ) If bothA,B ∈ F are increasing or decreasing events then

P (AB) ≥ P (A)P (B) [20].

Lemma 5:The outage probability of CSMA MAPPout ≤ 1− (1− Pb)
L+1.

Proof: SinceSIRn(t) is decreasing function of the number of interferers, by considering ω =

(a1, a2, . . . , ) where form ∈ N, am = 1 if transmitterTm is active, and0 otherwise, it follows

that the success event{SIRn(t) > θ} is a decreasing event. Hence, from the FKG inequality,

P (SIRn(0) > θ, SIRn(1) > θ, . . . , SIRn(L) > θ) ≥ P (SIR0 > θ)L+1, sinceSIRn(t) is identically

distributed for anyt. Hence,Pfail|no backoff≤ 1− (1− Pb)
L, andPout ≤ 1− (1− Pb)

L+1.

Discussion:In this section, we considered the CSMA MAP for an ad hoc network with energy

harvesting nodes. We derived expressions for back-off and outage probability for the CSMA



18

MAP, thereby characterizing the transmission capacity. Weshowed that depending on the rate of

energy arrivalp, back-off probability can be written in closed form or can beexpressed in terms

of Lambert’s function. We also derived an exact expression (and a simplified lower bound) for

the outage probability, to characterize the transmission capacity with CSMA MAP.

V. SIMULATIONS

In this section, we present some numerical examples to illustrate our theoretical results. In all

simulations we use energy arrival ratep = .5, α = 3, θ = 2, andd = 2, such thatλmax = .023,

except for Fig. 5, whereα = 3, θ = 1, andd = 1, andλmax = .2632 is used. In Figs. 4 and 5, we

plot the transmission capacity for ALOHA MAP forB = ∞ with λmax

λ
> p and λmax

λ
≤ p = 0.5,

respectively, from which we can see that forλmax

λ
≤ p, the optimal transmission probability is

q⋆ = λmax

λ
, while in the other casep ≤ q⋆ ≤ 1, as derived in Theorem 1. In Figs. 6 and 7,

we plot the transmission capacity for ALOHA MAP withB = 1, and B = 5, respectively.

From Figs. 4, 6, and 7, we can see that asB increasesq⋆ goes from0.3 for B = 1 to 0.23

for B = ∞ for fixed set of parameters. Finally, in Fig. 8, we plot the back-off probability with

CSMA MAP as a function ofλ. Following Theorem 5, we see that forλ = .01 and .035 for

which − ln(p)λmax

λ
> p, back off probability is equal to1 − exp−( pλ

λmax
), while for λ = .05 and

.1, where− ln(p)λmax

λ
≤ p, it satisfies the equationPb = 1− exp

−
(

r(1−Pb)λ

λmax

)

.

VI. CONCLUSIONS

In this paper we considered ALOHA and CSMA MAP for an ad hoc network, and derived op-

timal transmission probability for ALOHA MAP, and back-offand outage probability expressions

for CSMA MAP, when each node in the network harvest energy from nature. We characterized

the dependence of system throughput on the energy arrival rate, and derived system parameters

for optimal performance. In this work, we assumed that each transmitter attempts to transmit with
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same probability irrespective of the current energy state.With finite battery capacity, it makes

more sense to transmit aggressively in high energy states and vice-versa. Analyzing energy aware

transmission strategies remains an important problem to solve in future with energy harvesting

nodes.

APPENDIX A

Proof of Lemma 1: We first consider the case ofB = 1. For B = 1, f1(q) =
pq

p+q−pq
. Hence

f ′
1(q) =

p2

(p+q−pq)2
and hencef ′

1(q) > 0 for q ∈ [0, 1]. For B > 1, for p 6= q, we next show that

f ′
B(q) > 0 for q ∈ [0, p) ∪ (p, 1]. Let c :=

(

p
1−p

)B

. For B > 1, q 6= p we compute the first

derivative offB(q) asf ′
B(q) =

c(1−q)B−1(pc(1−q)B+1+qB(Bq+p(−1−B+q)))
(qB+1−pc(1−q)B)2

> 0 for q ∈ [0, p) ∪ (p, 1].

In the interest of space we do not provide intermediate stepsand only write the final answer.

Also note that forq = p with B > 1, fB(q) = rq = qB
B+1−q

. It can be checked thatfB(p− δ) <

fB(p) < fB(p+ δ), for small δ > 0. HencefB(q) is an increasing function ofq ∈ [0, 1].
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s = 1− p(1−q)−q(1−p)
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q(1−p) q(1−p)

p(1−q)s s

Fig. 1. Transition state probabilities of infinite state birth-death Markov process.
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s = 1− p(1−q)−q(1−p), t = 1−q(1−p)

Fig. 2. Transition state probabilities of finite state birth-death Markov process.
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Fig. 3. Packet arrival model for CSMA MAP.
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Fig. 4. Plot of transmission capacity forB = ∞ with λmax
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Fig. 6. Plot of transmission capacity forB = 1 with p = 0.5.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
6

6.5

7

7.5

8

8.5

9

9.5
x 10

−3

ALOHA access probabi l i ty q

T
ra

ns
m

is
si

on
 C

ap
ac

ity

Transmission Capacity for B=5 vs q for λ=0.1, λ
max

= .02327 and  p=.5

 

 
Simulated
Analytical

Fig. 7. Plot of transmission capacity forB = 5 with p = 0.5.
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