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Abstract—We consider a two-hop communication network consisted of
a source node, a relay and a destination node in which the source and the
relay node have external traffic arrivals. The relay forwards a fraction
of the source node’s traffic to the destination and the cooperation is
performed at the network level. In addition, both source and relay nodes
have energy harvesting capabilities and an unlimited battery to store the
harvested energy. We study the impact of the energy constraints on the
stability region. Specifically, we provide inner and outer bounds on the
stability region of the two-hop network with energy harvesting source
and relay.

I. INTRODUCTION

Taking advantage of renewable energy resources from the environ-
ment, also known as energy harvesting, allows unattended operability
of infrastructure-less wireless networks. There are various forms of
energy that can be harvested, including thermal, solar, acoustic, wind,
and even ambient radio power. However, the additional functionality
of harvesting energy calls for our assessment of the system long-
term performance such as in terms of the throughput and stability.
In [1], the slotted ALOHA protocol was considered for a network of
nodes having energy harvesting capability and the maximum stable
throughput region was obtained for bursty traffic.

Cooperative communication helps overcome fading and attenuation
in wireless networks. Most cooperative techniques studied so far
have been on physical layer cooperation that achieves non-trivial
benefits [2]. Nevertheless, there is evidence that the same gains can
be achieved with network layer cooperation, which is plain relaying
without any physical layer considerations [3]–[5]. A key difference
between physical layer and network layer cooperation is that the latter
can capture the bursty nature of traffic.

In [6], the authors studied the stability region of a cognitive
network under energy constraints. They employed an opportunistic
multiple access protocol that observes the priorities among the users
to better utilize the limited energy resources. The impact of network-
level cooperation in an energy harvesting network with a pure-relay
(without its own traffic) under scheduled access was studied in [7].

In this paper, we study the impact of energy constraints on a
network with a source-user, a relay and a destination under random
access of the medium. Specifically, we provide necessary and suffi-
cient conditions for the stability of a network consisting of a source,
a relay and a destination node as shown in Fig. 1. We consider the
collision channel with erasures and random access of the medium.
The source and the relay node have external arrivals; furthermore, the
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relay is forwarding part of the source node’s traffic to the destination,
the cooperation is taking place at the network-level.

The analysis is not trivial even for such a simple network because
the service process of a node not only depends on the status of its
battery but also on the idleness or not of the other node. Note that the
reason why the exact region is known only for the two-node and the
three-node cases (with or without energy availability constraints) is
the interaction between the queues of the nodes [8]–[10]. First, we
obtain an inner bound of the stability region, afterwards we apply
the stochastic dominance technique [9] and Loynes’ theorem [11] to
obtain an outer bound of the stability region.

The rest of this paper is organized as follows. In section II, we
define the stability region, describe the channel model, and explain
the packet arrival and energy harvesting models. In III, we present
an inner and an outer bound of the stability region, the proofs of the
results are given in IV. Finally, we conclude our work in V.

II. SYSTEM MODEL

We consider a time-slotted system in which the nodes randomly
access a common receiver as shown in Fig. 1, where both source
and relay nodes are powered from randomly time-varying renewable
energy sources. Each node stores the harvested energy in a battery of
unlimited capacity. We denote with S, R, and D the source, the relay
and the destination, respectively. Packet traffic originates from S and
R. Because of the wireless broadcast nature, R may receive some of
the packets transmitted from S, which in turn can be relayed to D.
The packets from S that fail to be received by D but are successfully
received by R are relayed by R. A half-duplex constraint is imposed
here, i.e. R can overhear S only when it is idle.

Each node has an infinite size buffer for storing incoming packets,
and the transmission of each packet occupies one time slot. Node R
has separate queues for the exogenous arrivals and the endogenous
arrivals that are relayed through R. Nevertheless, we can let R have
a single queue and merge all arrivals into a single queue as the
achievable stable throughput region is not affected [12]. This is due
to the fact that the link quality between R and D is independent of
which packet is selected for transmission.

The packet arrival and energy harvesting processes at S and R
are assumed to be Bernoulli distributed with rates λS , δS and λR,
δR, respectively, and are independent of each other. Qi and Bi,
i = S,R, denote the steady state number of packets and energy
units in the queue and the energy source at node i, respectively.
Furthermore, a node i is called active if both its packet queue and
its battery are nonempty at the same time, which is denoted by the
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event Ai = {Bi 6= 0} ∩ {Qi 6= 0} and idle otherwise (denoted
by Ai). In each time slot, nodes S and R attempt to transmit with
probabilities qS and qR, respectively, if they are active. Decisions
on transmission are made independently among the nodes and each
transmission consumes one energy unit. We assume collision channel
with erasures in which if both S and R transmit at the same time slot,
a collision occurs and both transmissions fail. The probability that a
packet transmitted by node i is successfully decoded at node j( 6= i)
is denoted by pij , which is the probability that the signal-to-noise
ratio (SNR) over the specified link exceeds a certain threshold for
successful decoding. These erasure probabilities capture the effect of
random fading at the physical layer. The probabilities pSD , pRD , and
pSR denote the success probabilities over the link S − D, R − D,
and S − R, respectively. We also assume that node R has a better
channel to D than S, i.e. pRD > pSD .

The cooperation is performed at the protocol (network) level as
follows: when S transmits a packet, if D decodes it successfully,
it sends an ACK and the packet exits the network; if D fails to
decode the packet but R does, then R sends an ACK and takes
over the responsibility of delivering the packet to D by placing it
in its queue. If neither D nor R decode (or if R does not store
the packet), the packet remains in S’s queue for retransmission. The
ACKs are assumed to be error-free, instantaneous, and broadcasted
to all relevant nodes.

The average service rate for the source node is given by

µS =
{
qS(1− qR)Pr (BS 6= 0,AR) + qSPr(BS 6= 0,AR)

}
× [pSD + (1− pSD)pSR] ,

(1)

and for the relay is given by

µR =
{
qR(1− qS)Pr (BR 6= 0,AS) + qRPr(BR 6= 0,AS)

}
pRD.

(2)
Denote by Qt

i the length of queue i at the beginning of time slot
t. Based on the definition in [10], the queue is said to be stable if

lim
t→∞

Pr[Qt
i < x] = F (x) and lim

x→∞
F (x) = 1

Loynes’ theorem [11] states that if the arrival and service processes
of a queue are strictly jointly stationary and the average arrival rate
is less than the average service rate, then the queue is stable. If the
average arrival rate is greater than the average service rate, then the
queue is unstable and the value of Qt

i approaches infinity almost
surely. The stability region of the system is defined as the set of
arrival rate vectors λ = (λ1, λ2) for which the queues in the system
are stable.

III. MAIN RESULTS

This section presents the stability conditions of a network con-
sisting of energy harvesting source and relay, and a destination, as
depicted in Fig. 1. The source and the relay are assumed to have
infinite size queues to store the harvested energy.

The next proposition presents an inner bound on the stability region
by providing sufficient conditions for stability.

Proposition III.1. If (λS , λR) ∈ Rinner , whereRinner is described
in (3), then the network in Fig. 1 is stable.

Proof: The proof is given in Section IV-A.
The following proposition describes an outer bound of the stability

region by obtaining necessary conditions for stability.
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Fig. 1: The wireless network topology with energy harvesting capa-
bilities.

R

S

 1 min( , ) min( , )S S R R RDq q p 

 1 min( , )S S RDq p

   
 

min( , ) 1 min( , ) (1 )

1 min( , ) min( , )(1 )

S S S S RD SD SD SR

S S RD S S SD SR

q q p p p p

q p q p p

 

 

  

  

   min( , ) 1 min( , ) (1 )

(1 )

R R S S RD SD SD SR

SD SR

q q p p p p

p p

   



  

   

*

*

min( , ) 1 min( , ) (1 )

min( , ) 1 min( , ) min( , ) 1 min( , ) (1 )

S S S R R SD SD SR

R R R S S RD S S R R SD SR

q q p p p

q q p q q p p

  

    

   

    

1R

(a) R1

R

S

min( , )R R RDq p

 

 

1 min( , ) min( , )

min( , ) 1 min( , ) (1 )

S S R R RD

S S R R SD SR

q q p

q q p p

 

 

 

  

  min( , ) 1 min( , ) (1 )S S R R SD SD SRq q p p p   

2R

(b) R2.

Fig. 2: An outer bound of the stability region R = R1

⋃
R2,

described in Proposition III.2.

Proposition III.2. If the network in Fig. 1 is stable then (λS , λR) ∈
R, where R = R1

⋃
R2. R1 and R2 are described by (4) and (5)

respectively.

Proof: The proof is given in Section IV-B.
Fig. 2(a) and 2(b) illustrate the R1 and R2 described in Proposi-

tion III.2.



Rinner = {(λS , λR) : λS < min (δS , qS) [1−min (δR, qR)] [pSD + (1− pSD)pSR] ,

λR +
(1− pSD)pSR

pSD + (1− pSD)pSR
λS < min (δR, qR) [1−min (δS , qS)] pRD

}
. (3)

R1 =

{
(λS , λR) :

[
1 +

min(δS , qS)(1− pSD)pSR

[1−min(δS , qS)] pRD

]
λS+

+
min(δS , qS) [pSD + (1− pSD)pSR]

[1−min(δS , qS)] pRD
λR < min(δS , qS) [pSD + (1− pSD)pSR] ,

λR +
(1− pSD)pSR

pSD + (1− pSD)pSR
λS < min(δR, qR) [1−min(δS , qS)] pRD

}
. (4)

R2 =

{
(λS , λR) : λR +

[1−min(δR, qR)] (1− pSD)pSR +min(δR, qR)pRD

[1−min(δR, qR)] [pSD + (1− pSD)pSR]
λS < min(δR, qR)pRD,

λS < min(δS , qS) [1−min(δR, qR)] [pSD + (1− pSD)pSR]} (5)

IV. ANALYSIS

To derive the stability condition for the queue in the relay node,
we need to calculate the total arrival rate. There are two independent
arrival processes at the relay: the exogenous traffic with arrival rate
λR and the endogenous traffic from S. Denote by SA the event that
S transmits a packet and the packet leaves the queue, then

Pr(SA) = [1− qRPr(AR)] [pSD + (1− pSD)pSR] . (6)

Among the packets that depart from the queue of S, some will exit
the network because they are decoded by the destination directly,
and some will be relayed by R. Denote by SB the event that the
transmitted packet from S will be relayed from R, then

Pr(SB) = [1− qRPr(AR)] (1− pSD)pSR. (7)

The conditional probability that a transmitted packet from S is
relayed by R given that the transmitted packet exits node S’s queue
is given by

Pr(SB |SA) =
(1− pSD)pSR

pSD + (1− pSD)pSR
. (8)

The arrivals from the source to the relay are

λS→R = Pr(SB |SA)λS . (9)

The total arrival rate at the relay node is given by

λR,total = λR +
(1− pSD)pSR

pSD + (1− pSD)pSR
λS . (10)

A. Sufficient Conditions

A queue is considered saturated if in each time slot there is always
a packet to transmit, i.e. the queue is never empty. Assuming saturated
queues for the source and the relay node, the saturated throughput
for the source node is given by

µ
s
S = {qS(1− qR)Pr (BS 6= 0, BR 6= 0) + qSPr (BS 6= 0, BR = 0)}

× [pSD + (1− pSD)pSR] ,
(11)

and for the relay is given by

µs
R = {qR(1− qS)Pr (BS 6= 0, BR 6= 0)+

+qRPr(BS = 0, BR 6= 0)} pRD. (12)

Each node transmits with probability qi, i = S,R, whenever its
battery is not empty and each transmission demands one energy
packet. Each energy queue i is then decoupled and forms a discrete-
time M/M/1 queue with input rate δi and service rate qi, thus the
probability the energy queue to be empty is given by

Pr (Bi 6= 0) = min

(
δi
qi
, 1

)
. (13)

Then, after some calculations we obtain that the saturated through-
put for the source is

µs
S = min (δS , qS) [1−min (δR, qR)] [pSD + (1− pSD)pSR] ,

(14)
and for the relay is

µs
R = min (δR, qR) [1−min (δS , qS)] pRD. (15)

The sufficient conditions (Rinner) for the stability are obtained
by λS < µs

S and λR,total < µs
R and are given by (3), in

Proposition III.1.

B. Necessary Conditions

The average service rates for the source and the relay are given
by (1) and (2), respectively. The average service rate of each queue
depends on the status of its own energy and also the queue size and
the energy statues of the other queues. The coupling between the
queues (both packet and energy) forms a four dimensional Markov
chain which makes the analysis hard.

The stochastic dominant technique [9] is essential in order to
decouple the interaction between the queues, and thus to characterize
the stability region. That is we first construct parallel dominant
systems in which one of the nodes transmits dummy packets when
its packet queue is empty. Note that even in the dominant system a
node cannot transmit if the energy source is empty (because even the
dummy packet consumes one energy unit).

We consider the first hypothetical system in which the source node
transmits dummy packets when its queue is empty and all the other
assumptions remain intact. The average service rate for the relay
given by (2) becomes

µR = {qR(1− qS)Pr (BS 6= 0, BR 6= 0) + qRPr(BS = 0, BR 6= 0)} pRD.
(16)



The average service rate of the relay, µR, in the first hypothetical
system is the same with the saturated throughput of the relay obtained
in (15). From Loyne’s criterion, the relay is stable if λR,total < µR.

λR+
(1− pSD)pSR

pSD + (1− pSD)pSR
λS < min (δR, qR) [1−min (δS , qS)] pRD.

(17)
The average number of packets per active slot for R is

[1−min (δS , qS)] qRpRD , thus the fraction of active slots is given
by

Pr (BR 6= 0, QR 6= 0) =
λR + (1−pSD)pSR

pSD+(1−pSD)pSR
λS

[1−min (δS , qS)] qRpRD
(18)

After changing (13) and (18) into (1), the service rate for the source
becomes

µS = min (δS , qS)

[
1−

λR + (1−pSD)pSR
pSD+(1−pSD)pSR

λS

[1−min (δS , qS)] pRD

]
× [pSD + (1− pSD)pSR] .

(19)

The queue in S is stable if λS < µS and after some manipulations
we obtain [

1 +
min (δS , qS) (1− pSD)pSR

[1−min (δS , qS)] pRD

]
λS+

+
min (δS , qS) [pSD + (1− pSD)pSR]

[1−min (δS , qS)] pRD
λR

< min (δS , qS) [pSD + (1− pSD)pSR] .

(20)

The derived stability conditions from the first hypothetical system
are summarized in (4).

In the second hypothetical system, the relay node transmits dummy
packets and all the other assumptions remain intact. Thus, the average
service rate for the source given by (1), becomes

µS = {qS(1− qR)Pr (BS 6= 0, BR 6= 0) + qSPr(BS 6= 0, BR = 0)}
× [pSD + (1− pSD)pSR] ,

(21)
which is equal to saturated throughput of the source and is given

by

µS = min (δS , qS) [1−min (δR, qR)] [pSD + (1− pSD)pSR] .
(22)

From Loyne’s theorem, the queue in source is stable if λS < µS

thus

λS < min (δS , qS) [1−min (δR, qR)] [pSD + (1− pSD)pSR] .
(23)

The average number of packets per active slot for S is
qS [1−min (δR, qR)] [pSD + (1− pSD)pSR]. The fraction of active
slots for the source S is

Pr (BS 6= 0, QS 6= 0) =
λS

qS [1−min (δR, qR)] [pSD + (1− pSD)pSR]
.

(24)
After replacing from (13) and (24) into (2), the service rate for the

relay is

µR = min (δR, qR)

[
1−

λS

[1−min (δR, qR)] [pSD + (1− pSD)pSR]

]
pRD.

(25)

The queue in the relay node R is stable if λR,total < µR and after
some manipulations we obtain

λR +
[1−min (δR, qR)] (1− pSD)pSR +min (δR, qR) pRD

[1−min (δR, qR)] [pSD + (1− pSD)pSR]
λS

< min (δR, qR) pRD.
(26)

The derived stability conditions from the second hypothetical
system are given by (5).

An important observation made in [9] is that the stability conditions
obtained by using the stochastic dominance technique are not merely
sufficient conditions for the stability of the original system but are
sufficient and necessary conditions. However, the indistinguishability
argument does not apply to our problem. In a system with batteries,
the dummy packet transmissions affect the dynamics of the batteries.
For example, there are instants when a node is no more able to
transmit in the hypothetical system because of the lack of energy,
while it is able to transmit in the original system, thus it may result
to a better chance of success for the other node.

The obtained stability conditions are necessary conditions of the
original system and are summarized in Proposition III.2.

V. CONCLUSION

In this paper, we studied the effect of energy constraints on a
wireless network with energy harvesting source and relay and a
destination. The source and the relay nodes have external arrivals and
network-level cooperation is employed in which the relay forwards
a fraction of the source’s traffic to the destination. We derived
necessary and sufficient stability conditions of the above cooperative
communication scenario. A next step is to obtain the closure for
the inner and outer bounds presented here. Further extensions will
investigate the effect of finite battery capacity and that of multi-packet
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