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Abstract—The ability to detect change-points in a dynamic network
or a time series of graphs is an increasingly important task in many
applications of the emerging discipline of graph signal processing. This
paper formulates change-point detection as a hypothesis testing problem
in terms of Stochastic Block Model time series. We analyze two classes of
scan statistics, based on distinct underlying locality statistics presented
in the literature. Our main contribution is the derivation of the limiting
distributions and power characteristics of the competing scan statistics.
Performance is compared theoretically, on synthetic data, and on the
Enron email corpus. We demonstrate that both statistics are admissible
in one simple setting, while one of the statistics is inadmissible in a second
setting.

Index Terms—Dynamic network, Anomaly Detection, Scan statistics,
Hypothesis testing, Random Graphs

I. INTRODUCTION

Dynamic network data are often readily observed, with vertices
denoting entities and time evolving edges signifying relationships
between entities, and thus considered as a time series of graphs
which is a natural framework for investigation. An anomalous signal
is broadly interpreted as constituting a deviation from some normal
network pattern while a change-point is the time-window during
which the anomaly appears.

In this paper, we approach the dynamic anomaly detection problem
through the use of locality-based scan statistics. Scan statistics are
commonly used in signal processing to detect a local signal in an
instantiation of some random field [1]. The idea is to scan over
a small time or spatial window of the data and calculate some
locality statistic for each window. The maximum of these locality
statistics is known as the scan statistic. Large values of the scan
statistic suggests existence of nonhomogeneity, for example, a local
region with significantly excessive communications. Under some
homogeneity hypothesis, change-point detection can then be reduced
to statistical hypotheses testing (c.f. § II) using scan statistics.

Specifically, we identify excessive communication activity in a sub-
region of a dynamic network by employing scan statistics Sτ,`,k(t; ·)
with τ, `, k defined in (c.f. § III).

We utilize two locality statistics, Ψ and Φ, building on [2] and [3]
respectively. Ψ is introduced in [2] to detect the emergence of local
excessive activities in time series of Enron graphs. Φ is proposed in
[3] to detect communication pattern changes in their department email
network. However, all these previous works are only experiment-
oriented. Under the assumption that the time series of graphs is
stationary before the change-point, this paper demonstrates that the
limiting distributions of Sτ,`,k(t; Ψ) and Sτ,`,k(t; Φ) are statistical
multinomial mixtures of Gumbel distributions in representative case
τ = 1, ` = 0. Through these limiting distributions, comparative
power analysis between Sτ,`,k(t; Ψ) and Sτ,`,k(t; Φ) is performed.
We demonstrate that both Ψ and Φ are admissible if k = 0, while
Ψ is inadmissible if k = 1.

A. Notation

In this paper, we consider only undirected and unweighted graphs
without self-loops. Generally, a graph is denoted by G, with vertex
set V = V (G) and edge set E = E(G). The number of vertices of a
graph is usually denoted by n. For a graph G on n vertices, the vertex
set is usually taken to correspond to the set [n] = {1, 2, . . . , n}. In
our subsequent discussion, we might also partition V into subsets,
or blocks. If V is partitioned into B blocks of size n1, n2, . . . , nB
vertices, then, with a slight abuse of notation, we shall denote by [ni]
the vertices in block i.

Let G be a graph. For any u, v ∈ V , we write u ∼ v if there exists
an edge between u and v in G. We write d(u, v) for the shortest
path distance between u and v in G. For v ∈ V , we denote by
Nk[v;G] the set of vertices u at distance at most k from v, i.e.,
Nk[v;G] = {u ∈ V : d(u, v) ≤ k}. For V ′ ⊂ V , Ω(V ′, G) is the
subgraph of G induced by V ′. Thus, Ω(Nk[v;G], G) is the subgraph
of G induced by vertices at distance at most k from v.

II. CHANGE-POINT DETECTION PROBLEM IN STOCHASTIC

BLOCK MODEL FORMULATION

An important inference task in time series analysis is to infer, from
{Gt}, if there exists anomalous activities, e.g., excessive phone calls
among a subgroup in the network. Statistically speaking, we want to
test, for a given t ∈ N, the null hypothesis H0 that t is not a change-
point against the alternative hypothesis HA that t is a change-point.
The following formulation is a reasonable and sufficiently general
way to form the basis of our discussion.

We say that t∗ is a change-point for {Gt} if there exists distinct
choices of matrices P0, PA independent of t such that

HA : Gt ∼

{
SBM(P0, {[ni]}) for t ≤ t∗ − 1

SBM(PA, {[ni]}) for t ≥ t∗
,

where SBM(P, {[ni]}) denotes the stochastic blockmodel of [4],
with block connectivity probabilities P and unknown block mem-
berships {[ni]}. Specifically, V is partitioned into B distinct blocks
[n1], . . . , [nB ]. In each block [ni], vertices follow the same proba-
bilistic behavior and P is a B × B symmetric matrix where Pj,k

denotes the block connectivity probability between blocks j and k.
In contrast, the null hypothesis, i.e. the nonexistence of change-point,
is

H0 : Gt ∼ SBM(P0, {[ni]}) for all t.

In the following, we discuss a specific form for P0 and PA,
illustrating a subset of vertices with altered communication behavior
in an otherwise stationary setting.

The change parameters (t∗, {[ni]},P0,PA) we are concerned
about is of the form, for some δ > 0,

P0 = P + diag(0, h2 − p, . . . , hB−1 − p, 0), (1)



PA = P0 + diag(0, . . . , 0, δ) (2)

where P is a matrix that every element is p and n1, n2, . . . , nB
being of size (n1, n2, . . . , nB) = (Θ(n), O(n), . . . , O(n)). For this
form of P0 and PA, before the change-point, each of the blocks
i = 2 up to B − 1 have self-connectivity probability hi. The case
where h2 > p, . . . , hB−1 > p is of interest because we can consider
each of the [ni] as representing a “chatty” group for time t ≤ t∗−1,
and at t∗, the previously non-chatty group [nB ] becomes more chatty.
See Fig. 1 for a notional illustration of P0 and PA for the case of
B = 3 blocks. The detection of this transition for the vertices in [nB ]
is one of the main reasons behind the locality statistics that will be
introduced in § III.
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Fig. 1. Notional depiction of P0 and corresponding PA. P0: all vertices
connect with probability p except that the self-connectivity probability of [n2]
is h; PA: the self-connectivity probability of [n3] transitions from p to p+δ
while [n2] retains its previous behavior.

III. LOCALITY STATISTICS FOR CHANGE-POINT DETECTION IN

TIME SERIES OF GRAPHS

A. Two locality statistics

Suppose we are given a time series of graphs {Gt}t≥1 where Gt
are constructed on the same vertex set V . We now define two different
but related locality statistics on {Gt}. For a given t, let Ψt;k(v) be
defined for all k ≥ 1 and v ∈ V by

Ψt;k(v) = |E(Ω(Nk(v;Gt);Gt))|. (3)

Ψt;k(v) counts the number of edges in the subgraph of Gt induced
by Nk(v;Gt), the set of vertices u at a distance at most k from v in
Gt. In a slight abuse of notation, we let Ψt;0(v) denote the degree
of v in Gt. The statistic Ψt was introduced in [2]. [2] investigated
the use of Ψt in analyzing the Enron data corpus.

Let t and t′ be given, with t′ ≤ t. Now define Φt,t′;k(v) for all
k ≥ 1 and v ∈ V by

Φt,t′;k(v) = |E(Ω(Nk(v;Gt);Gt′))|. (4)

The statistic Φt,t′;k(v) counts the number of edges in the subgraph
of Gt′ induced by Nk(v;Gt). Once again, with a slight abuse of
notation, we let Φt,t′;0(v) denote the degree of v in Gt∩Gt′ , where
G ∩ G′ for G and G′ with V (G) = V (G′) denotes the graph
(V (G), E(G) ∩ E(G′)). The statistic Φt,t′;k(v) is motivated by a
statistic named the permanent window metric introduced in [3].

Φt,t′;k(v) uses the community structure Nk(v;Gt) at time t in its
computation of the locality statistic at time t′ ≤ t.

B. Temporally-normalized statistics

Let Jt,t′;k be either the locality statistic Ψt′;k in Eq. (3) or
Φt,t′;k in Eq. (4), where for ease of exposition the index t is a
dummy index when Jt,t′;k = Ψt′;k. We now define two normalized
statistics for Jt,t′;k, a vertex-dependent normalization and a temporal
normalization. These normalizations and their use in the change-point
detection problem are depicted in Fig. 2.
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Fig. 2. Temporal standardization: when testing for change at time t, the
recent past graphs Gt, Gt−1, . . . are used to standardize the invariants.

For a given integer τ ≥ 0 and v ∈ V , we define the vertex-
dependent normalization J̃t,τ ;k(v) of Jt,t′;k(v) by

J̃t;τ,k(v) =


Jt,t;k(v) τ = 0

Jt,t;k(v)− µ̂t;τ,k(v) τ = 1

(Jt,t;k(v)− µ̂t;τ,k(v))/σ̂t;τ,k τ > 1

, (5)

where µt;τ,k and σt;τ,k are defined as

µ̂t;τ,k(v) =
1

τ

τ∑
s=1

Jt,t−s;k(v), (6)

σ̂t;τ,k(v) =

√√√√ 1

τ − 1

τ∑
s=1

(Jt,t−s;k(v)− µ̂t;τ,k(v))2. (7)

We then consider the maximum of these vertex-dependent temporal
normalization for all v ∈ V , i.e., we define a Mτ,k(t) by

Mτ,k(t) = max
v

(J̃t,τ ;k(v)). (8)

We shall refer to Mτ,0(t) as the standardized max-degree and to
Mτ,1 as the standardized scan statistics. Finally, for a given integer
l ≥ 0, we define the temporal normalization of Mτ,k(t) by

Sτ,`,k(t) =


Mτ,k(t) ` = 0

Mτ,k(t)− µ̃τ,`,k(t) ` = 1

(Mτ,k(t)− µ̃τ,`,k(t))/σ̃τ,`,k(t) ` > 1

, (9)

where µ̃τ,`,k and σ̃τ,`,k are defined as

µ̃τ,`,k(t) =
1

`

∑̀
s=1

Mτ,k(t− s), (10)

σ̃τ,`,k(t) =

√√√√ 1

`− 1

∑̀
s=1

(Mτ,k(t− s)− µ̃τ,`,k(t))2. (11)

The statistics Sτ,`,k were defined to capture excessively increasing
communications among a subset of vertices. We will use these Sτ,`,k
as the test statistics for the change-point detection problem described
in § II. For convenience of notation, since Sτ,`,k(t) is essentially
a function of the Jt,t′;k, we denote by Sτ,`,k(t; Ψ) and Sτ,`,k(t; Φ)
the Sτ,`,k(t) when the underlying statistic Jt,t′;k is Ψt′,k and Φt,t′;k,
respectively.

IV. POWER ESTIMATES OF Sτ=1,`=0,k=0(t; ·)
In Section IV, we will derive the limiting distributions of

Sτ=1,`=0,k=0(t; ·), showing that S1,0,0(t; ·) is a statistical multino-
mial mixture of Gumbel-distributed random variables. To clarify the
notation, let G(µ, γ) denote the Gumbel distribution with location



parameter µ and scale parameter γ. For theorems and propositions
in Section IV and V, S d→

∑B
i=1 π(ni; ·)G(µ(ni; ·), γ(ni; ·)) means

that there exists Z ∼Multinomial(1, ~π) such that
S − µ(nb; ·)
γ(nb; ·)

d→
G(0, 1) given Z = b. Moreover, due to space restriction, detailed
Gumbel parameters in the following Theorem 1 and Proposition 3
are provided in [5].

Theorem 1. Let {Gt} be a time series of random graphs ac-
cording to the alternative HA detailed in § II. In particular,
Gt ∼ SBM(P0, {[ni]}Bi=1) for t ≤ t∗ − 1 and Gt ∼
SBM(PA, {[ni]}Bi=1) for t ≥ t∗ with P0 and PA being of
the form in (1) and (2), respectively. Let S1,0,0(t; ·) denote the
statistic Sτ,l,k(t; ·) with τ = 1, l = 0, and k = 0. Then as
n =

∑
ni → ∞, both S1,0,0(t; Ψ) and S1,0,0(t; Φ) converge in

distribution to a statistical multinomial mixture of Gumbel-distributed
random variables i.e.,

S1,0,0(t; ·) d→
B∑
i=1

π0(ni; ·)G(µ0(ni; ·), γ0(ni; ·)) t < t∗,

S1,0,0(t; ·) d→
B∑
i=1

πA(ni; ·)G(µA(ni; ·), γA(ni; ·)) t = t∗.

We note the following corollary to Theorem 1 for the case of
B = 3 blocks.

Corollary 2. Assume the setting in Theorem 1 with B = 3. Let α > 0
be given. Let β· be the power of the test statistic S1,0,0(t; ·) for t = t∗

at significance level α. Then, as (n1, n2, n3) = (Θ(n), O(n), O(n)),
βΦ, βΨ and α have the following relationship:

1) n3 = o(
√
n) implies βΦ = α, βΨ = α.

2) n3 = Ω(
√
n) implies βΨ > α.

3) n3 = Θ(
√
n) = Θ(n2) implies βΦ > α.

4) n3 = ω(
√
n) = Θ(n2) implies

βΦ = α if lim
n→∞

n2(h(1−h)−p(1−p))
n3δ(1−p)

> 1,

βΦ > α if lim
n→∞

n2(h(1−h)−p(1−p))
n3δ(1−p)

≤ 1.

5) n3 = Ω(
√
n) = ω(n2) implies βΦ > α.

6) n3 = Ω(
√
n) = o(n2) implies

βΦ = α if h+ p < 1,

βΦ > α if h+ p ≥ 1.

From Corollary 2, an unanswered question is whether there exists
a dominance between S1,0,0(t; Φ) and S1,0,0(t; Ψ). By using Theo-
rem 1, we now present an example to show that both statistics are
admissible. Our setup is as follows. Let p = 0.43. For each pair
(h, p + δ) satisfying p < h < 1 and p < p + δ < 1, we generate
a null and alternative hypothesis pair H0 and HA according to the
model in § II with B = 3 blocks. n = n1 + n2 + n3 = 1000 and
n1, n2, n3 are functions of n, h and δ (n2 = n3 = cp,h,δ

√
n logn

where the constant cp,h,δ is dependent on p, h and δ). In order to
compare sensitivities of S1,0,0(t; Ψ) and S1,0,0(t; Φ) in detection,
we then calculate βΨ − βΦ by deriving the limiting distributions
of S1,0,0(t; Ψ) and S1,0,0(t; Φ) using Theorem 1. The result is
illustrated in Fig. 3 where we have plotted βΨ − βΦ for different
combinations of h and q(= p + δ). Fig. 3 indicates that the two
statistics S1,0,0(·; Ψ) and S1,0,0(·; Φ) are both admissible.

V. POWER ESTIMATES OF Sτ=1,`=0,k=1(t; ·)
In this section, we provide investigations of Sτ,`,k(t; ·) with larger

scale parameter k = 1 instead of k = 0. We keep τ and ` the
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Fig. 3. A comparison, using the limiting distributions of S1,0,0(t; Ψ) and
S1,0,0(t; Φ), of βΨ − βΦ for different null and alternative hypotheses pairs
as parametrized by h and q(= p + δ). The blue-colored region correspond
to values of h and q(= p + δ) for which βΨ < βΦ while the red-colored
region correspond to values of h and p+ δ with βΨ > βΦ.

same as before, i.e., τ = 1, ` = 0. To make conclusions concise
and presentable, firstly, we delve into the limiting distributions in the
model presented in § II with number of blocks B = 3.

Proposition 3. Assume the same setting in Theorem 1 with B = 3.
As (n1, n2, n3) = (Θ(n), o(n), o(n)) and n → ∞, S1,0,1(t; Ψ)
converges in distribution to a statistical multinomial mixture of
Gumbel-distributed random variables and so does S1,0,1(t; Φ).

Proposition 4. In the model shown in Fig.1, Let α > 0 be given, β′·
be the power of the test statistic S1,0,1(t; ·) for t = t∗ at significance
level α As n→∞, β′Φ, β

′
Ψ and α have the following relationship:

1) n3 = o(
√
n) implies β′Φ = β′Ψ = α.

2) n3 = Ω(
√
n) implies β′Φ ≥ β′Ψ > α.

Consequently, Proposition 4 leads to the conclusion that the
performance of S1,0,1(t; Φ) dominates S1,0,1(t; Ψ) in the 3-block
model. Moreover, this superiority can be generalized to the case with
any given number of blocks B ≥ 3. This is because each block [ni]
with 1 < i < B in B-blocks model follows a similar probabilistic
behavior as block [n2] in 3-blocks model while both β′Φ and β′Ψ
in B-blocks model can be characterized as a function of p, δ, nB
only. In other words, though h2 > p, . . . , hB−1 > p, the ”chatty”
groups [n2], . . . , [nB−1] do not make any contribution on β′Φ or β′Ψ.
Hence, the number of ”chatty groups”, namely B−2, is independent
of the fact of dominance of S1,0,1(t; Φ). Due to the superiority
of S1,0,1(t; Φ), only the limiting distribution of S1,0,1(t; Φ) in the
general B-block model is derived below.

Theorem 5. Assume the same setting in Theorem 1. Let S1,0,1(t; Φ)
denote the statistic Sτ,l,k(t; Φ) with τ = 1, l = 0, and k = 1. For a
given n ∈ N, let an and bn be given by

an =
√

2 logn
(

1− log logn+ log 4π

4 logn

)
, bn =

1√
2 logn

.

Then as n =
∑
ni → ∞, S1,0,1(t; Φ) converges in distribution

to a statistical multinomial mixture of Gumbel-distributed random



variables. , i.e.,

S1,0,1(t; Φ)
d→

B∑
i=1

π′0(ni; Φ)G(µ′0(ni; Φ), γ′0(ni; Φ)) t < t∗,

S1,0,1(t; Φ)
d→

B∑
i=1

π′A(ni; Φ)G(µ′A(ni; Φ), γ′A(ni; Φ)) t = t∗,

where

η(p) = p3(1− p)
ξ0(ni; Φ) = 1{i/∈{1,B}}ni(hi(1− hi)− p(1− p))
µ′0(ni; Φ) = ani

√
Cn2η(p) + np(1− p) + ξ0(ni; Φ)

γ′0(ni; Φ) = bni

√
Cn2η(p)

ζ(nB , p, δ, i) =
δ

2
[n2
B(1{i6=B}p

2 + 1{i=B}(p+ δ)2)

+nB(1{i 6=B}p(1− p) + 1{i=B}(p+ δ)(1− p− δ))]

µ′A(ni; Φ) = µ′0(ni; Φ) + 1{i=B}nBδ(1− p) + ζ(nB , p, δ, i)

γ′A(ni; Φ) = γ′0(ni; Φ)

Corollary 6. Assume the setting in Theorem 5. Let β′· be the power of
the test statistic S1,0,1(t; ·) for t = t∗. Then, as (n1, n2, . . . , nB) =
(Θ(n), o(n), . . . , o(n)) and n→∞, β′Φ ≥ β′Ψ and thus S1,0,1(t; Ψ)
is inadmissible.

VI. EXPERIMENT

We use the Enron email data used in [2] for this experiment. It
consists of time series of graphs {Gt} with |V | = 184 vertices and
undirected edges for each week t = 1, . . . , 189, where we draw a
unweighted edge when vertex v sends at least one email to vertex w
during a one week period.

Figure 4 depicts Sτ,`,k(t; Ψ) using dashed lines and Sτ,`,k(t; Φ)
using solid lines for a 20 week period from February 2001 through
June 2001 ( both τ = ` = 20 were used in [2]). As indicated in [2],
detections are defined as weeks t such that Sτ,`,k > 5. We observe
from bottom Figure 4 that the second order scan statistic, i.e. k = 2,
using Sτ,`,k(t; Ψ) indicates a clear anomaly at t∗ = 132 in May
2001. For Sτ,`,k(t; Φ) , with the same detection condition, it is also
apparent that there is a detection with max-degree (k = 0) at week
t∗ = 132 and is another one with the second order scan statistic at
week t∗ = 136 in June 2001.

Both detections using Sτ,`,k(t; Φ), however, yield different v∗’s
(j.lavorato and m..scott) from the one using Sτ,`,k(t; Ψ)
(k..allen). This indicates that by using different locality statistic
we can achieve different detections.

VII. CONCLUSION & DISCUSSION

The simulation experiments indicate that the analytic power esti-
mates, even when they are limited in scope, are useful in answering
some important questions about the locality statistics. In particular, it
was shown that Ψ and Φ are both admissible with respect to one an-
other when τ = 1, ` = 0, k = 0. In addition, if τ = 1, ` = 0, k = 1,
it is worthwhile to note that Ψ, compared with Φ, is inadmissible
but computationally inexpensive. The locality statistics based on Ψ
can be readily computed in a real-time streaming data environment,
in contrast to those based on Φ. Thus, the adaption or approximation
of locality statistics based on Φ for streaming environments is of
interest. The investigations presented in this paper do not take into
account attributes on the edges. The incorporation of edge attributes
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Fig. 4. Sτ,`,k(t), the temporally-normalized standardized scan statistics
using τ = ` = 20, on zoomed-in time series of Enron e-mail graphs during
a period of 20 weeks in 2001. Top: k = 0; Middle: k = 1; Bottom: k = 2.
Dashed lines show a detection using Sτ,`,k(t; Ψ) (a standardized statistic
M̃τ,k(t) which achieves a value greater than 5 standard deviations above its
running mean) at week t = 132 in May 2001 for scale k = 2, but not for
k = 0 or k = 1. Solid lines show detections using Sτ,`,k(t; Φ) at week
t∗ = 132 in May 2001 for scale k = 0 and t∗ = 136 in June 2001 for scale
k = 2, both yield different v∗’s from the one in Sτ,`,k(t; Ψ).

into the current paper is, however, straightforward. For example, [6]
handles attributes by linear fusion, and many of the results there
can be adapted to the current paper. In particular, one can define
fused locality statistics for attributed graphs. Power estimates for
these locality statistics can be derived in a similar manner to those
presented in this paper. Other considerations, e.g., construction of
fusion of graph invariants in [7] and corresponding optimal fusion
parameters, can also be investigated.
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