Parametric Dictionary Learning for Graph Signals

Dorina Thanou, David I Shuman, and Pascal Frossard
Signal Processing Laboratory (LTS4)
Ecole Polytechnique Fédérale de Lausanne (EPFL)
CH-1015 Lausanne, Switzerland
Email:{dorina.thanou, david.shuman, pascal.frossard} @epfl.ch

Abstract—We propose a parametric dictionary learning algorithm to
design structured dictionaries that sparsely represent graph signals.
We incorporate the graph structure by forcing the learned dictionaries
to be concatenations of subdictionaries that are polynomials of the
graph Laplacian matrix. The resulting atoms capture the main spatial
and spectral components of the graph signals of interest, leading to
adaptive representations with efficient implementations. Experimental
results demonstrate the effectiveness of the proposed algorithm for the
sparse approximation of graph signals.

I. INTRODUCTION

Graphs are flexible data representation tools, suitable for modeling
the geometric structure of topologically complicated domains on
which signals reside. Examples of such signals can be found in social,
transportation, energy, and sensor networks [1]. In these applications,
the vertices of the graph represent the discrete data domain, and the
edge weights capture the pairwise relationships between the vertices.
A graph signal is then defined as a function that assigns a real value
to each vertex. A simple example of a graph signal is the current
temperature at each location in a sensor network.

We are interested in finding meaningful graph signal representa-
tions that i) capture the most important characteristics of the graph
signals, and ii) are sparse. That is, given a weighted graph and a
class of signals on that graph, we want to construct an overcomplete
dictionary of atoms that can sparsely represent graph signals from
the given class as linear combinations of only a few atoms in the
dictionary. An additional challenge when designing dictionaries for
graph signals is that in order to identify and exploit structure in the
data, we need to account for the intrinsic geometric structure of the
underlying weighted graph. This is because signal characteristics such
as smoothness depend on the topology of the graph on which the
signal resides (see, e.g., [1, Example 1]).

For signals on Euclidean domains as well as signals on irregular
data domains such as graphs, the choice of the dictionary often
involves a tradeoff between two desirable properties — the ability
to adapt to specific signal data and a fast implementation of the
dictionary [2]. In the dictionary learning or dictionary training
approach to dictionary design, many numerical algorithms such as K-
SVD and the Method of Optimal Directions (MOD) (see [2, Section
IV] and references therein) have been constructed to learn a dictionary
from a set of realizations of the data (training signals). The learned
dictionaries are highly adapted to the given class of signals and
therefore usually exhibit good representation performance. However,
the learned dictionaries are highly non-structured, and therefore costly
to apply in various signal processing tasks. On the other hand,
analytic dictionaries based on signal transforms such as the Fourier,
Gabor, wavelet, and curvelet transforms are based on mathematical
models of signal classes. These structured dictionaries often feature
fast implementations, but they are not adapted to specific realizations
of the data. Therefore, their ability to efficiently represent the data
depends on the accuracy of the mathematical model of the data.

Returning specifically to the graph setting, numerical approaches
such as K-SVD and MOD can certainly be applied to graph signals,
which can be viewed as vectors in RY. However, the learned
dictionaries will neither feature a fast implementation, nor explicitly
incorporate the underlying graph structure. Meanwhile, a number
of transform-based dictionaries for graph signals have recently been
proposed. For example, the graph Fourier transform has been shown
to sparsely represent smooth graph signals, wavelet transforms such
as diffusion wavelets and spectral graph wavelets target piecewise-
smooth graph signals, and the windowed graph Fourier transform can
be used to analyze signal content at specific vertex and frequency
locations (see [1] for an overview and complete list of references).
These dictionaries feature pre-defined structures derived from the
graph and some of them can be efficiently implemented; however,
they generally are not adapted to the signals at hand (one exception
are the diffusion wavelet packets of [3], which feature extra adaptiv-
ity). The recent work in [4] tries to bridge the gap between the graph-
based transform methods and the purely numerical dictionary learning
algorithms. The learned dictionary in [4] has a structure derived from
the graph topology, while its parameters are learned from the data.
However, it does not necessarily lead to efficient implementations.

In this work, we capitalize on the benefits of both numerical and
analytical approaches by learning a dictionary that incorporates the
graph structure and can be implemented efficiently. We assume that
the graph signals consist of local patterns, describing localized events
on the graph. We incorporate the underlying graph structure into
the dictionary through the graph Laplacian operator, which encodes
the connectivity. In order to ensure the atoms are localized in the
graph vertex domain, we impose the constraint that our dictionary
is a concatenation of subdictionaries that are polynomials of the
graph Laplacian [5]. We then learn the coefficients of the polynomial
kernels via numerical optimization. As such, our approach falls into
the category of parametric dictionary learning [2, Section IV.E].

II. BASIC DEFINITIONS ON GRAPHS

We consider a weighted and undirected graph G = (V,&, W)
where V, £ represent the vertex and edge set of the graph and
W the weights corresponding to each edge. We assume that the
graph is connected. The graph Laplacian operator is defined as
L =D—W, where D is the dia§onal dlegree matrix. Its normalized
form is defined as £ = D~ 2LD™2. Both operators are real
symmetric matrices and they have a complete set of orthonormal
eigenvectors with corresponding non-negative eigenvalues. We denote
the eigenvectors of the normalized Laplacian by x = [x1, X2, ---» XN]
and its eigenvalues by 0 = Ao < A1 < A2 < . < Ay = 2.

A graph signal y in the vertex domain is a real-valued function
defined on the vertices of the graph G, such that y(v) is the value
of the function at vertex v € V. In the graph setting, as is often
the case in classical settings, the spectral domain representation can
provide significant information about the characteristics of signals. It

has been shown that the eigenvectors of the Laplacian operators can
be used to perform harmonic analysis of signals that live on the graph,
and the corresponding eigenvalues carry a notion of frequency [1].
Throughout the paper, we use the normalized Laplacian eigenvectors
as the Fourier basis in order to avoid some computational issues that
arise when taking large powers of the unnormalized graph Laplacian.
In particular, for any function y defined on the vertices of the graph,
the graph Fourier transform g at frequency A is defined as

9 () = (W, xe) = Y y(n)xi (n).

Besides its use in harmonic analysis, the graph Fourier transform
is also useful in defining the translation of a signal on the graph.
The generalized translation operator can be defined as a generalized
convolution with a delta function centered at vertex n [1]:

N-1
Tng = VN(g*6,) = VN > §(A)x; (n)xe- 8))
£=0
The right-hand side of (1) allows us to interpret the generalized
translation as an operator acting on the kernel §(-), which is defined
directly in the graph spectral domain, and the localization of T}, g
around the center vertex n is controlled by the smoothness of the
kernel §(-). One can thus design atoms 77, ¢ that are localized around
n in the vertex domain by taking the kernel g(-) in (1) to be a smooth
polynomial function of degree K:
K
§(Ng) = Zakx;, £=0,..,N—1.)
k=0
In particular, the k' power of the Laplacian £ is exactly k-
hop localized on the graph topology [5]. Combining (1) and (2),
translating a polynomial kernel to each vertex in the graph yields a
set of N localized atoms, which are the columns of

K
Tg = VNg(L) = VNxg(Mx" = VN> apLh, 3)

k=0

where A is the diagonal matrix of the eigenvalues.

III. PARAMETRIC DICTIONARY LEARNING ON GRAPHS

Given a set of training signals on a weighted graph, our objective
is to learn a structured dictionary that sparsely represents similar
graph signals. In this section, we describe the dictionary structure
and learning algorithm, as well as computational issues related to the
use of the learned dictionary.

A. Dictionary Structure

We learn a structured graph dictionary D = [Dy, D2, ..., Ds] that
is a concatenation of a set of .S subdictionaries of the form

K K
Ds = gs(L£) =x <Z Oésk/\k> X! = Z asiLF. 4
k=0 k=0

Note that the atom given by column n of subdictionary D; is equal
to TlﬁTngs; i.e., the order K polynomial g.(-) translated to vertex
n. The polynomial structure of the kernel gs(-) ensures that the
resulting atom given by column n of subdictionary D; has its support
contained in a K-hop neighborhood of vertex n.

We also impose two constraints on the kernels {gs()},_; 5 g
First, we require that the kernels are non-negative and uniformly
bounded by a given constant c; ie., 0 < gs(A\) < ¢ for all X €
[0, Amax], or, equivalently,

0=Ds=<cl, Vs€{1,2,..,5}, 5)

where [is the N x N identity matrix; i.e., each subdictionary D; is
a positive semi-definite matrix whose maximum eigenvalue is upper
bounded by c.

Second, since the training signals usually contain frequency com-
ponents that are spread across the entire spectrum, the learned kernels
{95(-)}4—1 2. should also cover the spectrum. One way to ensure
this would be to impose a constraint that Zle |g5(N)|? is constant
for all A € [0, Amax], which, following a slight generalization of [5,
Theorem 5.6], also guarantees that the resulting dictionary D is a
tight frame. However, such a constraint would lead to a significantly
more difficult optimization problem for the learning phase discussed
in the next subsection. Therefore, we instead impose the constraint
c—e< Zle 7s(A\) < c+e forall A € [0, \max], Or equivalently

S
(=l 2 Dy =2 (c+el, (©)
s=1

where € is a small positive constant. To summarize, the dictio-
nary D is a parametric dictionary that depends on the parameters
{ask}em1 0. 5. k=1.2.. x> and the constraints (5) and (6) can be
viewed as constraints on these parameters.

B. Dictionary Learning Algorithm

Given a set of training signals Y = [y1,%2,...,ym] € RV*M,
all living on the graph G, we aim at learning a graph dictionary
D € RV*NS with the structure described in Section III-A that can
efficiently represent all of the signals in Y as linear combinations of
only a few of its atoms. Since D has the form (4), this is equivalent to
learning the parameters {@sk},_; 5 g, p—10 . x that characterize
the set of generating kernels, {gs(-)},_,, g We denote these
parameters in vector form as a = [a1; ...; s, where as is a column
vector with (K + 1) entries.

To learn the dictionary parameters, we solve the following opti-
mization problem:

argmin {IY = DXI% + ullol3}

aeR(K+1)S | x cRSN XM
subject to lzmllo < To, Vme{l,..,M},
0=<D,=<cVse{l,2..5} %)

s
(=T XY Dy =2 (c+e,

s=1

where z,,, corresponds to column m of the coefficient matrix X, and
T is the maximum sparsity level of the coefficients of each training
signal. Note that in the objective of (7), we penalize the norm of the
polynomial coefficients « in order to i) promote smoothness in the
learned polynomial kernels, and ii) improve the numerical stability
of the learning algorithm.

The optimization problem (7) is not convex, but it can be approx-
imately solved in a computationally efficient manner by alternating
between the sparse coding and dictionary update steps. In the first
step, we fix the dictionary D and solve

min|[Y = DX|[F subject to [@mllo < To Vm € {1,..., M},

using orthogonal matching pursuit (OMP). Note that other methods
for solving the sparse coding step such as matching pursuit (MP) or
iterative soft thresholding could be used as well. In the second step,
we fix the coefficients X and update the dictionary D by finding the

vector of parameters, «, that solves
argmin {||Y — DX||% + ullal3}
acR(E+1)S
subject to 0 <X Ds <cl, Vse{l1,2,..,5})
s
(c—e)I = ZDS < (c+e)l.
s=1

Note that « determines D and D according to (4). Problem (8) is
convex and can be written as a quadratic program.

C. Computational Efficiency of the Learned Dictionary

The structural properties of the proposed class of dictionaries lead
to compact representations and computationally efficient implementa-
tions, which we elaborate on briefly in this section. First, the number
of free parameters depends on the number S of subdictionaries and
the degree K of the polynomials. The total number of parameters is
(K +41)S, and since K and S are small in practice, the dictionary is
compact and easy to store. Second, contrary to the non-structured
dictionaries, the dictionary forward and adjoint operators can be
efficiently computed when the graph is sparse, as is usually the case
in practice. Recall from (4) that DTy = 3°% S°K a.wLF. The
computational cost of the iterative sparse matrix-vector multiplication
required to compute {L*y}r—12.. x is O(K|E|). Therefore, the
total computational cost to compute D7y is O(K|E| + NSK). We
further note that, by following a procedure similar to the one in [5,
Section 6.1], the term DDTy can also be computed in a fast way
by exploiting the fact that DDTy = Zle §52(L)y. This leads to
a polynomial of degree K " = 2K that can be efficiently computed.
Both operators DTy and DDy are important components of most
sparse coding techniques. Therefore, these efficient implementations
are very useful in numerous signal processing tasks, and comprise one
of the main advantages of learning structured parametric dictionaries.

IV. EXPERIMENTAL RESULTS

In the following experiments, we quantify the performance of the
proposed dictionary on both synthetic and real data.

A. Synthetic Examples

We generate a graph by randomly placing N = 80 vertices in the
unit square. We design the edge weights based on the thresholded

_ [dist(i,5)]2
Gaussian kernel function in such a way that W (i, j) = e 20

if the physical distance between vertices ¢ and j is less than or equal
to x, and zero otherwise. We fix 6 = 0.9 and x = 0.5.

To generate training and testing signals, we divide the spectrum
of the graph into four bands: [Ao : Aig],[(A20 : A29) U (A7
A79)], [As0 @ Aaol, and [Aso : Aeo]. We then generate a synthetic
dictionary of J = 320 atoms, each with a spectral representation
that is concentrated exclusively in one of the four bands. In particular,
each atom j is of the form

d; = hy(£)6n = xh3(A)x"6n, ©)

and is independently generated in the following way. We randomly
pick one of the four bands and we generate 20 uniformly random
coefficients that cover the diagonal entries of h;(A) corresponding
to the indices of the chosen band. The rest of the entries of h;(A)
are set to zero. The center vertex n in (9) is then chosen randomly
as well, so that the synthetic atoms {d;};=1,2,..,; are centered at
random areas in the graph. Note that the obtained atoms are not
guaranteed to be well localized in the graph since the discrete values
of h;(A) are chosen randomly and are not necessarily derived from a
smooth kernel. We generate a set of 1000 training signals by linearly

jrac Tl
0 4

&
0.2 0. 0.6 0.8 1
A

Fig. 1. Learned kernels {gs()}s_1 23,4 in the synthetic examples.

(©) 93(L£)d21

(d) ga(L£)d21

Fig. 2. Learned atoms centered on vertex n = 21, from each of the
subdictionaries.

combining (with random coefficients) 7y = 4 random atoms from
the dictionary.

Next, we use these training signals to learn a dictionary of
S = 4 subdictionaries using our graph polynomial dictionary learning
algorithm, with a polynomial degree of K = 20 and a sparsity level
of Ty = 4." The kernels bounds in (7) are chosen as ¢ = 1 and
€ = 0.01. The obtained kernels {gs(")},_, , 3, are shown in Fig. 1.
We observe that each learned kernel captures one of the four bands
defined in the synthetic dictionary, following a filter-like behavior.
Our algorithm leads to kernels that can be selective in the spectral
domain since they combine different parts of the spectrum (see e.g.,
g2(A)). In Fig. 2, we illustrate the atoms obtained in each of the four
subdictionaries and positioned at the same location. We can see that
the support of the atoms adapts to the graph topology. The atoms can
either be smooth around a particular vertex, as for example in Fig.
2(a), or highly localized, as in Fig. 2(d).

We test the approximation performance of the learned dictionary
on a set of 2000 testing signals, generated in the same way as
the training signals. We compare the approximation performance of
our algorithm for a polynomial degree of K = {5,10,20} to that
obtained with (i) graph-based transform methods such as the spectral
graph wavelet transform (SGWT) [5], (ii) purely numerical dictionary
learning methods such as K-SVD [6], and (iii) the graph-based
dictionary learning algorithm presented in [4]. The sparse coding

ITo solve (8), we use the sdpt3 solver in the yalmip optimization toolbox,
which is publicly available at http://users.isy.liu.se/johanl/yalmip/

step in the testing phase is performed using orthogonal matching
pursuit (OMP) in all cases. The average approximation error is set
t0 || Yiest — DX||%/|Yiest|, where |Yiest| is the size of the testing
set and is measured for a fixed sparsity level. Fig. 3(a) shows
that the approximation performance obtained with our algorithm is
consistently better than the one of SGWT, which demonstrates the
benefits of the learning process. The improvement is attributed to
the fact that the spectral graph wavelet kernels are designed a priori
to cover the whole spectrum, while with our dictionary learning
algorithm, we learn the shape of the kernels from the data. As
expected, the gap in the gain increases as we increase the polynomial
degree. On the other hand, we see that K-SVD, which is blind to the
graph structure, outperforms our algorithm in terms of approximation
performance. This is not surprising as the K-SVD algorithm has more
flexibility to adapt the learned dictionary to the set of signals at
hand, especially in the case when the number of the training signals
is relatively high. However, the K-SVD dictionary is highly non-
structured and quite complex to apply. These results illustrate the
tradeoff between the adaptability and the complexity of a dictionary.
Finally, the algorithm proposed in [4] is an intermediate step between
K-SVD and our algorithm. It learns a dictionary that consists of
subdictionaries of the form x s (A)x”, where g5 does not follow any
particular function model, but rather consists of some discrete values.
Thus, the obtained dictionary is better in terms of approximation, but
it does not benefit from the polynomial structure described in Section
III-C. In order to obtained an efficiently implementable dictionary, we
fit a polynomial function to the discrete values g learned with [4]. We
observe that our polynomial dictionary outperforms the polynomial
approximation of [4] in terms of approximation performance.

B. Social Network Graph Signals

We now provide experiments with signals from the real world that
are well localized in the graph. We consider the daily number of
distinct Flickr users that have taken photos at different geographical
locations around Trafalgar Square in London, between January 2010
and June 2012. Each vertex of the graph represents a geographical
area of 10 x 10 meters. The graph is computed by assigning an edge
between two locations when the distance between them is shorter than
30 meters, and the edge weight is set to be inversely proportional to
the distance. We threshold the weights in order to obtain a sparse
graph. The number of vertices of the graph is N = 245. We set
S =2 and K = 10. We have a total of 913 signals, and we use 700
of them for training and the rest for testing.

Fig. 3(b) compares the approximation performance of the poly-
nomial dictionary with the dictionaries of SGWT, K-SVD, and the
structured graph dictionary. We notice that the polynomial dictionary
again outperforms the SGWT. It can even achieve better performance
than K-SVD when sparsity increases. In particular, we observe
that K-SVD outperforms both graph structured algorithms for a
small sparsity level as it learns atoms of global support that can
smoothly approximate the whole signal. On the other hand, the
polynomial dictionary consists of localized atoms with a support
concentrated on the close neighborhood of a vertex, which implies
that only a few atoms may not be able to cover the whole graph.
However, as the sparsity level increases, the localization property
clearly becomes beneficial. Thus, in datasets that are characterized
by spatially localized events, the polynomial dictionary can capture
important points of interests and landmarks.

—— Siructured Graph Dictionary [4]

~ — — Polynomial approximation of [4], K=20
—6—KSVD [6]

—&—SGWT 5]

—+— Polynomial Dictionary K=5
—b— Polynomial Dictionary K=10
—&— Polynomial Dictionary K=20

Avarage approximation error

005

(@

—&— Polynomial Dictionary

—— Structured Graph Dictionary [4]
—©—KsVD [6]

— | —=—sawrg)

14} e

Avarage approximation error

8
Sparsity T,

(®)

Fig. 3. Comparison of the polynomial dictionary with SGWT [5], K-SVD
[6], the structured graph dictionary [4] in terms of approximation performance
in (a) the synthetic examples and (b) the Flickr dataset.

V. CONCLUSIONS

We have proposed a structured dictionary model and an algorithm
for learning the dictionary parameters for the approximation of sig-
nals on graphs. We incorporate the graph structure into the dictionary
by considering polynomials of the Laplacian operator. The learned
dictionary consists of localized atoms that capture the important
spectral and spatial components of the graph signals. Finally, its
polynomial structure leads to dictionaries that are efficient in terms
of storage and computational complexity, while at the same time are
well-adapted to the signals at hand.

ACKNOWLEDGEMENT

The authors would like to thank Xiaowen Dong for the fruitful
discussions and for providing the Flickr data.

REFERENCES

[1] D.I Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,
“The emerging field of signal processing on graphs: Extending high-
dimensional data analysis to networks and other irregular domains,” IEEE
Signal Process. Mag., vol. 30, no. 3, pp. 83-98, May 2013.

[2] R. Rubinstein, A. M. Bruckstein, and M. Elad, “Dictionaries for sparse
representation modeling,” Proc. of the IEEE, vol. 98, no. 6, pp. 1045
—1057, Apr. 2010.

[3] J. C. Bremer, R. R. Coifman, M. Maggioni, and A. D. Szlam, “Diffusion
wavelet packets,” Appl. Comput. Harmon. Anal., vol. 21, no. 1, pp. 95—
112, 2006.

[4] X. Zhang, X. Dong, and P. Frossard, “Learning of structured graph
dictionaries,” in Proc. IEEE Int. Conf. Acoust., Speech and Signal
Processing, Kyoto, Japan, Mar. 2012, pp. 3373 — 3376.

[5] D. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on
graphs via spectral graph theory,” Applied and Computational Harmonic
Analysis, vol. 30, no. 2, pp. 129-150, March 2010.

[6] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,” [EEE
Trans. Signal Process., vol. 54, no. 11, pp. 43114322, 2006.

