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Abstract—The connectivity structure of a network can be very the network. Holmeet. al. [11] have shown that greedy node
sensitive to removal of certain nodes in the network. In thigpaper, removals can be made more harmful by iteratively removing
we study the sensitivity of the largest component size t0 n@d ha node with the highest node degree. They also empirically

removals. We prove that minimizing the largest component gie ifv that bet b d nod i feect]
is equivalent to solving a matrix one-norm minimization problem verity that betweenness based node removal IS more ekgecliv

whose column vectors are orthogonal and sparse and they form than degree based node removal in terms of minimizing
basis of the null space of the associated graph Laplacian niat.  largest component size. In this paper, we propose a new
A greedy node removal algorithm is then proposed based on the network robustness measure that is directly related to the
matrix one-norm minimization. In comparison with other node Iargest Component size. When used to minimize the Iargest

centralities such as node degree and betweenness, experirta tsi d toerf thead
results on US power grid dataset validate the effectivenessf component Siz€, our proposed measure outperiorms theedegre

the proposed approach in terms of reduction of the largest and betweenness centrality.

component size with relatively few node removals. The proposed measure is based on the graph Laplacians
Index Terms—graph Laplacian, greedy node removal, network [12]. The graph. L_aplacian has peen WiFier used to charaeteri
robustness, spectral graph theory, topological vulneratity graph connectivity. We establish a link between the graph

Laplacian and the size of the largest component. Specifjcall
we show that minimizing largest component size is equitalen

. to finding a set of sparse orthogonal vectors that span the

even a few such removals can severely disrupt their operatigyjvalence is exact and it imposes no restrictive assomgti
[1]. The sensitivity of the size of the largest componentdd@ ¢ g yncorrelatedness, small world network structurdesicae
removals is one of the most important topological vulneigbi gegree distribution, etc. Based on the formulation, a spect
measures in network sciencel [2], as it is closed related dPaph cut based greedy node removal procedure is proposed
the functionality, robustness and fragilityl [3J+[6]. Déspits 15 jgentify the most vulnerable nodes.
wide range of interest, little is known on how one might most 14 jjlystrate our proposed method, we use United States
efficiently disrupt a network given a fixed number of nodgqyer grid topology. Comparing with strategies based orenod
removals and hoyv. to identify the most vulner.able nodes. degree and betweenness, our proposed graph Laplacian node
A phase transition occurs when the fraction of removedmoval approach leads to a selection of nodes whose removal
nodes exceeds certain critical value, and the largest COBIHO gignificantly increases the rate of reduction of the largest
vanishes into several small components. Under uncortelaigmponent size. This results in a useful measure of network

random graph assumptions, Cohetnal. [7] use degree dis- gensitivity that can be used to asses network vulneratidity
tributions to evaluate the critical value for this phas@siion ,5de removals.

based on node degree removals. However, it has been shown

in [8], [Q] that the uncorrelated graph assumption is a pdor fi
to some real world networks. Il. PROPERTIES OFGRAPH LAPLACIANS

Another commonly adopted node centrality for studying Consider an unweighted and undirected network containing
network connectivity is betweenness centralityl[10]. Tlee bpo self loops or multiple edges, the corresponding network

I. INTRODUCTION

tweenness of a nodeis defined as graph can be denoted by a simple grapk- (V, E) with node
B ost(v) 1 setV and edge seE = {(u,v) : u,v € V}, where|V| =n
ov) = ;;ét os @ and|E| = m are the number of nodes and edges in the graph,

respectively. The adjacency mattixof G is a binary symmet-
where oy, is the total number of shortest paths from nodgc n-by-n matrix, whereA;; = 1if (i,j) € E and otherwise
s to nodet and oy (v) is the number of those paths that4,; = 0. Let d; denote the number of edges incident to node
pass throughv. Roughly speaking, a node is regarded &s the degree matrixD = diagd,,ds,...,d,) is a diagonal
more important if it is bypassed by more shortest paths iatrix with its entryD;; = d;. The graph Laplacian matrik
_ _ of G is defined ad. = D— A, andL can be decomposed by the
This work has been partially supported by a Department of EBCaduate

Fellowship to the first author and by the Army Research Off&R@), grant outer product of am-by-m SignEd incidence matri¥3 such
number W911NF-09-1-0310. thatL = BBT. For anye = (v,w) € E,v < w, B, . = 1 and
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By, = —1, otherwiseB, . = 0. Therefore,L is a symmetric = %Z[AR]U + % Z[AR]ijSi + % Z[AR]USZ'SJ
and positive semidefinite (PSD) matrix. Similarly, the $&gs i\ i i

graph Laplacian matrix) is defined as)y = D + A [13], 1 5 1 1

where Q is PSD, symmetric and its incidence matrix is the ~ g Zdisi T Zdi‘si T3 Z[AR]USZ'SJ’
signless incidence matrix df. ! ! "I

Let \;(L) be thei-th largest eigenvalue af and1 denote _ 1 [sT(DR + Ag)s+ QdTS] _ 1 [STQRS + 2de}
the all one vector. Sincél = (D — A)1 =0, 1is always in 513 . 8
the null space of. and the smallest eigenvalue, (L) = 0. = gs’T@Rs’ < g(n + DA (Qr) 3)

Furthermore, the multiplicity of zero eigenvalues is eqtaal

the number of components (including the isolated nodes) ly the Rayleigh quotient theorern [15], whese = [s 1]%.
a simple graph[[14]. The nuclear norm @f is associated The upper bound is attainedsf//n + 1 is an eigenvector of
with the number of edges it as ||L|l. = Y1, (L) = AMi(Qr). u
2| E|. Therefore, the highest-degree-first node removal styateg

is in fact a greedy nucl_ear norm minimizat?on heyristic. Thg_ Largest component size

aforementioned properties of graph Laplacians will be uisef

in analyzing the network robustness to node removals. Let null(Z) denote the null space of and define the

sparsity of a vector to be the number of zero entries in the
1. NETWORK ROBUSTNESSMEASURE FORMULATION vector. Next we express the largest component size via graph

Let R ¢ V denote the set of removed nodes fraiwith ~ Laplacians.
|R| = q andGr = (VR_,ER) denote the remaining graph aftefrhaorem 2. IVEC| = [|X ||y = max; ||z;1, where z; is the
removing the nodes ik from GG. When a node is removed,, i1 column vector of binary matrix X. The columns of X

the edges attached to the node will be removed as well. The, orthogonal and they form the sparsest basis of null(L )
network vulnerability to node removals is evaluated in 'Emhmong binary vectors.

of the remaining largest component size after node rempvals

where we denote the size and the number of edges of the Proof: Letr be the rank ofL.. We will prove that there
largest component @k by |V4€| and| ELC|, respectively. In  €Xists ann x (n — r) binary matrix X = [z; @2...2n—]
general, the optimal node removal gethat minimizegV2¢| whose columngz;};" satisfy: 1) ||z |1 is the size of the

is not unique. Therefore, we propose a node removal approadh component ofGr; 2) they are orthogonal. Assun@g
that minimizes V4 €| and | E5C| simultaneously. Specifically, consists of K’ components. There exits a matrix permutation

we seek ank = R* that achieves (relabeling) such that
R* = min |EL°|, ) Lp 0 0 0
Rekq 0 L% 0 0
where F, = {R : R = argming, jni—, [VACI} is the Le=1 00 )
solution space containing the feasible node removal sets th 0 0 0 L¥

minimize the largest component size. In general, the coaaput ) _ . o _
tional complexity for solving this problem is of combinaair Associated with thei-th block matrix L7, we definex; as
order (). We use graph Laplacians to formulate the netwo®) 7 x 1 binary vectorz; in null(L) having the form

. L T P
metrics|V4C| and|ELC| and propose a greedy node removali = [0...0. 1...10...0]", where_ the Iocatlpns of the
approach to reduce computational complexity. nonzero entries correspond to the indexes of iltle block

matrix. It is obvious that||z;[: = >27_, =] equals the
A. Upper bound on the number of edges in the largest size of thei-th component and thdz,}?"" are mutually
component orthogonal. Furthermore, there exists no other binary imatr
For a given set of removed nodés let Ly denote the Which is sparser thai” with column span equal to ndlLz).
graph Laplacian matrix of5z and \;(Ly) denote thei-th If there eX|sted.another binary matnxthat were sparsmma
largest eigenvalue of.z. The following theorem gives an then it contradicts the fact the its column vectors charate

upper bound on the number of edgdsL®| in the largest the component ficzes @¥ . Therefore the largest component
component. size of G is [Vg©| = || X|l1 = max; ||z =

Theorem 1. |E5C| is upper bounded by (n + 1)\ (Qr),
where Q = [QR ‘i} d= Agland Qr = Dg + Ag is the

dt o]’
signless graph Laplacian matrix of Gg.

C. Greedy basis search algorithm for constructing X

It has been proven iiftheorem 2.10of [16] that a matrixX
is a sparsest basis for a finite dimensional linear subspgace i
Proof: Let Ar be the adjacency matrix @ ands be and only if it can be constructed by greedy basis search. This

ann x 1 identification vector such that; = 1 if i € VF“, result will allow us to solve for the solutio& in Theorem

otherwises; = —1. We have [2 of Sec.[II=B in polynomial time viaAlgorithm [ due to
1 1 sparsity and mutual orthogonality of columns_ih
LC| _ oz iy , , . o
[ER"1 = 9 Z [Arlij = ] Z[AR]U(l +5i)(1+3;) Note that singular value decomposition (SVD) or QR de-

JEVE© 6J composition methods can be used to find a matfiwhose



Algorithm 1 Sparsest basis search algorithm for Gujt) then minimizing the largest eigenvalue ©f;.

1: Obtain a linearly independent bagisfor null(Lg).

2: Compute the number of nonzero and distinct nonzero IVf GREEDY_NODEREMOVAL ALGORITHM )
entries for each column vectey in Y. It remains to specify a node removal strategy that achieves

3. Select the sparsest column vectoriof If there are more the minimum in [(5). We propose a node removal strategy to
than one such vectors then choose the vector with the mEgguce computational complexity, i.e., a greedy node reinov
distinct entries. algorithm based on spectral graph cut to successively remov

4: Decompose the chosen vector according to its nonzéR§ Mostvulnerable single node. In other words, we recelsiv
distinct entries. For each distinct entry, tebe the binary Solve theq = 1 version of () until the desired number of
vector such that its nonzero element is at the same locatfpdes have been removed.
as the chosen entry. I is orthogonal to the column Fjoorithm 2 Greedy node removal based on spectral cut
vectors inX, then adde to X. & Input. G and|R| =

5: Repeat ste3) and4) until rank(X') = rank(Y). - ‘nput: — 1

2. Output: R
3 R=10
4: fori=1toq do
column vectors are a basis of nullz). Since each column 5: Computes and V<! in the largest component.
vector ofy can be represented as the linear combination o: Solve F; = {v* : v* = arg,cyew || X1}
the column vectors of{ and there is exactly one nonzero 7:  if (|F,| = 1) then
entry in each row ofX, the number of distinct entries of 8 SetR = RUv"
is the number of active column vectors & that contribute  9: else ~
to ;. In addition, due to sparsity and mutual orthogonality 0f0: u* = argmin,er, A1 (Qr)
columns inX, the greedy basis search can be employed SetR=RUu"

selecting the sparsest column vector frdfmand decompose 12:  end if

the vector into several binary vectors and verify the mutuaB: end for

orthogonality property. The criterion in_[16] guarantebatt

this basis search approach terminates in a finite number offhe spectral cut is associated with the second smallest

steps since théz;}!'"," are of finite dimension and the resulteigenvector ofL (also known as the Fiedler vectar [14]). For

leads to the matrixX in Theorem[2 a connected networ&, let s be the identification vector such
For illustration, consider a network with four nodes, wherthats; = 1 if i-th node is in groud ands; = —1 if i-th node

there is only one edge between notleand node2. The is in group2. The cut size is the number of edges between

1 =100
graph Laplacian matrix id = {—01 5 88]. The matrix of these two groups, where
0 000 1 1
100 cut size= - Aii(1 —s;s;) = =s' Ls. 7
our interest isX = 6?8], and the matrix we obtain from 4 lz; all = sisg) =5 @
001 5
02 05 0 By relaxing s to be real valued and using the fact that

SVbisy = 8'2 :g'é _11//35 - Following the aforementioned L1 = 0, the graph partition problem is equivalent to finding

procedures or reconstructing’ from Y, the number of an eigenvector of. that is orthogonal td such thats” Ls is
nonzero entries fory; is 4, 4 and 2, and the number of Minimized [17]. This is an easily computable approximation
distinct nonzero entries is, 2 and 2, respectively. Therefore to the NP-hard graph partitioning problem. We have

we start fromy; and decompose it into two vectdis0 1 0]7
and [0 0 0 1]7. We add these two vectors t§ since they
are orthogonal to each other. Then we decompgsento wheres* is an eigenvector of the second smallest eigenvalue of
(001 1] and[1 10 0]". Since[0 0 1 1]" is not orthogonal 1, The partitioning vector i = sgn(s*), where sgfs;) = 1

to the vectors inX, we discard this vector. Finally, the vectolif s, >~ (0 and otherwise sgr;) = —1. Define the spectral cut

[1 10 0]T is added intoX by ckecking the orthogonality as the sef{(i,j) € E: §35; = —1, A;; = 1}, and denote

* : T
s argmins® Ls, (8)

property and we obtain the matriX of interest. Veut the set of nodes incident to the spectral cut, to be the set
To sum up, with the aid oTheorem[dandTheorem[Z the of candidate nodes for removal. The optimization[ih (5)hwit
node removal problem if2) can be reformulated as g = 1, is then restricted to the set of nodeslifi“!, which is a
B — min )\1(@3) (5) mu_ch smaller set than the_ e_ntirt_a §étof nodes in th(_a graph.
REF, ’ This spectral cut and minimization dfl(5) process is repkate
where q times resulting in a significant reduction in computational

complexity.Algorithm 2]summarizes the greedy node removal
F,={X:LrX =0, |[Rl=¢q, X = argn;(ip||X’||1}. (6) procedure.

In other words, finding the most disruptive node removal set V. PERFORMANCEEVALUATION
when removingg nodes from the network is equivalent to An empirical dataset collected from the western states’
solving the minimum matrix one-norm problem ox¥ and power subgrid in the United Statels [18] is used to evaluate



Observe that the number of candidate removal nodes is much
smaller than the network size, which makes the proposed
greedy node removal strategy effective for large-scale net

works and facilitates the assessment of network vulnétabil
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VI. CONCLUSION

Using spectral theory and graph Laplacians, we derive an
upper bound on the number of edges in the largest component
and we prove that the largest component size minimization
problem is equivalent to finding a set of the sparsest or-
thogonal basis for the null space of the associated graph
Laplacian matrix. This basis can be easily constructedgugin
greedy basis search algorithm with polynomial computation
complexity. Experiments on the US power grid dataset show
that the proposed greedy node removal algorithm outpegform
other approaches based on node degree and betweenness. Our
proposed procedure is scalable to large networks and can
be used to reveal the vulnerability of modern networks. The
method can naturally be applied to exploring the vulneiigbil
of other networks such as biological networks, social netgo
and communication networks.
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Fig. 1. Performance evaluation of greedy node removalschasdlifferent
node centralities in western states power grid of the Uniidtes. This
network contains 4941 nodes and 6594 edges. The proposedygspectral
cut method better reduces the largest component size inetfweork than do
methods based on minimizing degree or betweenness cntrali
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