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Abstract—The connectivity structure of a network can be very
sensitive to removal of certain nodes in the network. In thispaper,
we study the sensitivity of the largest component size to node
removals. We prove that minimizing the largest component size
is equivalent to solving a matrix one-norm minimization problem
whose column vectors are orthogonal and sparse and they forma
basis of the null space of the associated graph Laplacian matrix.
A greedy node removal algorithm is then proposed based on the
matrix one-norm minimization. In comparison with other node
centralities such as node degree and betweenness, experimental
results on US power grid dataset validate the effectivenessof
the proposed approach in terms of reduction of the largest
component size with relatively few node removals.

Index Terms—graph Laplacian, greedy node removal, network
robustness, spectral graph theory, topological vulnerability

I. I NTRODUCTION

Networks are vulnerable to selective node removals and
even a few such removals can severely disrupt their operation
[1]. The sensitivity of the size of the largest component to node
removals is one of the most important topological vulnerability
measures in network science [2], as it is closed related to
the functionality, robustness and fragility [3]–[6]. Despite its
wide range of interest, little is known on how one might most
efficiently disrupt a network given a fixed number of node
removals and how to identify the most vulnerable nodes.

A phase transition occurs when the fraction of removed
nodes exceeds certain critical value, and the largest component
vanishes into several small components. Under uncorrelated
random graph assumptions, Cohenet. al. [7] use degree dis-
tributions to evaluate the critical value for this phase transition
based on node degree removals. However, it has been shown
in [8], [9] that the uncorrelated graph assumption is a poor fit
to some real world networks.

Another commonly adopted node centrality for studying
network connectivity is betweenness centrality [10]. The be-
tweenness of a nodev is defined as

σ(v) =
∑

s6=v 6=t

σst(v)

σst
, (1)

where σst is the total number of shortest paths from node
s to node t and σst(v) is the number of those paths that
pass throughv. Roughly speaking, a node is regarded as
more important if it is bypassed by more shortest paths in
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the network. Holmeet. al. [11] have shown that greedy node
removals can be made more harmful by iteratively removing
the node with the highest node degree. They also empirically
verify that betweenness based node removal is more effective
than degree based node removal in terms of minimizing
largest component size. In this paper, we propose a new
network robustness measure that is directly related to the
largest component size. When used to minimize the largest
component size, our proposed measure outperforms the degree
and betweenness centrality.

The proposed measure is based on the graph Laplacians
[12]. The graph Laplacian has been widely used to characterize
graph connectivity. We establish a link between the graph
Laplacian and the size of the largest component. Specifically,
we show that minimizing largest component size is equivalent
to finding a set of sparse orthogonal vectors that span the
null space of the associated graph Laplacian matrix. The
equivalence is exact and it imposes no restrictive assumptions,
e.g. uncorrelatedness, small world network structure, scale-free
degree distribution, etc. Based on the formulation, a spectral
graph cut based greedy node removal procedure is proposed
to identify the most vulnerable nodes.

To illustrate our proposed method, we use United States
power grid topology. Comparing with strategies based on node
degree and betweenness, our proposed graph Laplacian node
removal approach leads to a selection of nodes whose removal
significantly increases the rate of reduction of the largest
component size. This results in a useful measure of network
sensitivity that can be used to asses network vulnerabilityto
node removals.

II. PROPERTIES OFGRAPH LAPLACIANS

Consider an unweighted and undirected network containing
no self loops or multiple edges, the corresponding network
graph can be denoted by a simple graphG = (V,E) with node
setV and edge setE = {(u, v) : u, v ∈ V }, where|V | = n
and|E| = m are the number of nodes and edges in the graph,
respectively. The adjacency matrixA of G is a binary symmet-
ric n-by-n matrix, whereAij = 1 if (i, j) ∈ E and otherwise
Aij = 0. Let di denote the number of edges incident to node
i, the degree matrixD = diag(d1, d2, . . . , dn) is a diagonal
matrix with its entryDii = di. The graph Laplacian matrixL
of G is defined asL = D−A, andL can be decomposed by the
outer product of ann-by-m signed incidence matrixB such
thatL = BBT . For anye = (v, w) ∈ E, v < w, Bv,e = 1 and
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Bw,e = −1, otherwiseBv,e = 0. Therefore,L is a symmetric
and positive semidefinite (PSD) matrix. Similarly, the signless
graph Laplacian matrixQ is defined asQ = D + A [13],
whereQ is PSD, symmetric and its incidence matrix is the
signless incidence matrix ofG.

Let λi(L) be thei-th largest eigenvalue ofL and1 denote
the all one vector. SinceL1 = (D − A)1 = 0, 1 is always in
the null space ofL and the smallest eigenvalueλn(L) = 0.
Furthermore, the multiplicity of zero eigenvalues is equalto
the number of components (including the isolated nodes) of
a simple graph [14]. The nuclear norm ofL is associated
with the number of edges inG as ‖L‖∗ =

∑n
i=1

λi(L) =
2|E|. Therefore, the highest-degree-first node removal strategy
is in fact a greedy nuclear norm minimization heuristic. The
aforementioned properties of graph Laplacians will be useful
in analyzing the network robustness to node removals.

III. N ETWORK ROBUSTNESSMEASURE FORMULATION

Let R ⊂ V denote the set of removed nodes fromG with
|R| = q andGR = (VR, ER) denote the remaining graph after
removing the nodes inR from G. When a node is removed,
the edges attached to the node will be removed as well. The
network vulnerability to node removals is evaluated in terms
of the remaining largest component size after node removals,
where we denote the size and the number of edges of the
largest component ofGR by |V LC

R | and|ELC
R |, respectively. In

general, the optimal node removal setR that minimizes|V LC
R |

is not unique. Therefore, we propose a node removal approach
that minimizes|V LC

R | and|ELC
R | simultaneously. Specifically,

we seek anR = R∗ that achieves

R∗ = min
R∈Fq

|ELC
R |, (2)

where Fq = {R : R = argminR′, |R′|=q |V LC
R′ |} is the

solution space containing the feasible node removal sets that
minimize the largest component size. In general, the computa-
tional complexity for solving this problem is of combinatorial
order

(
n
q

)
. We use graph Laplacians to formulate the network

metrics|V LC
R | and|ELC

R | and propose a greedy node removal
approach to reduce computational complexity.

A. Upper bound on the number of edges in the largest
component

For a given set of removed nodesR, let LR denote the
graph Laplacian matrix ofGR and λi(LR) denote thei-th
largest eigenvalue ofLR. The following theorem gives an
upper bound on the number of edges|ELC

R | in the largest
component.

Theorem 1. |ELC
R | is upper bounded by 1

8
(n + 1)λ1(Q̃R),

where Q̃R =
[
QR d

dT
0

]
, d = AR1 and QR = DR + AR is the

signless graph Laplacian matrix of GR.

Proof: Let AR be the adjacency matrix ofGR ands be
an n × 1 identification vector such thatsi = 1 if i ∈ V LC

R ,
otherwisesi = −1. We have

|ELC
R | = 1

2

∑

i,j∈V LC
R

[AR]ij =
1

8

∑

i,j

[AR]ij(1 + si)(1 + sj)

=
1

8

∑

i,j

[AR]ij +
1

4

∑

i,j

[AR]ijsi +
1

8

∑

i,j

[AR]ijsisj

=
1

8

∑

i

dis
2

i +
1

4

∑

i

disi +
1

8

∑

i,j

[AR]ijsisj

=
1

8

[
sT (DR +AR)s+ 2dT s

]
=

1

8

[
sTQRs+ 2dT s

]

=
1

8
s′

T
Q̃Rs

′ ≤ 1

8
(n+ 1)λ1(Q̃R) (3)

by the Rayleigh quotient theorem [15], wheres′ = [s 1]T .
The upper bound is attained ifs′/

√
n+ 1 is an eigenvector of

λ1(Q̃R).

B. Largest component size

Let null(L) denote the null space ofL and define the
sparsity of a vector to be the number of zero entries in the
vector. Next we express the largest component size via graph
Laplacians.

Theorem 2. |V LC
R | = ‖X‖1 = maxi ‖xi‖1, where xi is the

i-th column vector of binary matrix X . The columns of X
are orthogonal and they form the sparsest basis of null(LR)
among binary vectors.

Proof: Let r be the rank ofLR. We will prove that there
exists ann × (n − r) binary matrixX = [x1 x2 . . . xn−r]
whose columns{xi}n−r

i=1
satisfy: 1)‖xi‖1 is the size of the

i-th component ofGR; 2) they are orthogonal. AssumeGR

consists ofK components. There exits a matrix permutation
(relabeling) such that

LR =




L1

R 0 0 0
0 L2

R 0 0

0 0
. . . 0

0 0 0 LK
R


 . (4)

Associated with thei-th block matrix Li
R we definexi as

an n × 1 binary vector xi in null(LR) having the form
xi = [0 . . . 0 1 . . . 1 0 . . . 0]T , where the locations of the
nonzero entries correspond to the indexes of thei-th block
matrix. It is obvious that‖xi‖1 =

∑n
j=1

|xij | equals the
size of the i-th component and the{xi}n−r

i=1
are mutually

orthogonal. Furthermore, there exists no other binary matrix
which is sparser thanX with column span equal to null(LR).
If there existed another binary matrix that were sparser thanX ,
then it contradicts the fact the its column vectors characterize
the component sizes ofGR. Therefore the largest component
size ofGR is |V LC

R | = ‖X‖1 = maxi ‖xi‖1.

C. Greedy basis search algorithm for constructing X

It has been proven inTheorem 2.1of [16] that a matrixX
is a sparsest basis for a finite dimensional linear subspace if
and only if it can be constructed by greedy basis search. This
result will allow us to solve for the solutionX in Theorem
2 of Sec. III-B in polynomial time viaAlgorithm 1 due to
sparsity and mutual orthogonality of columns inX .

Note that singular value decomposition (SVD) or QR de-
composition methods can be used to find a matrixY whose



Algorithm 1 Sparsest basis search algorithm for null(LR)

1: Obtain a linearly independent basisY for null(LR).
2: Compute the number of nonzero and distinct nonzero

entries for each column vectoryi in Y .
3: Select the sparsest column vector ofY . If there are more

than one such vectors then choose the vector with the most
distinct entries.

4: Decompose the chosen vector according to its nonzero
distinct entries. For each distinct entry, lete be the binary
vector such that its nonzero element is at the same location
as the chosen entry. Ife is orthogonal to the column
vectors inX , then adde to X .

5: Repeat step3) and4) until rank(X) = rank(Y ).

column vectors are a basis of null(LR). Since each column
vector of y can be represented as the linear combination of
the column vectors ofX and there is exactly one nonzero
entry in each row ofX , the number of distinct entries ofyi
is the number of active column vectors inX that contribute
to yi. In addition, due to sparsity and mutual orthogonality of
columns inX , the greedy basis search can be employed by
selecting the sparsest column vector fromY and decompose
the vector into several binary vectors and verify the mutual
orthogonality property. The criterion in [16] guarantees that
this basis search approach terminates in a finite number of
steps since the{xi}n−r

i=1
are of finite dimension and the result

leads to the matrixX in Theorem 2.
For illustration, consider a network with four nodes, where

there is only one edge between node1 and node2. The

graph Laplacian matrix isL =

[
1 −1 0 0

−1 1 0 0

0 0 0 0

0 0 0 0

]
. The matrix of

our interest isX =

[
1 0 0

1 0 0

0 1 0
0 0 1

]
, and the matrix we obtain from

SVD isY =

[
0.5 0.5 0

0.5 0.5 0

0.5 −0.5 1/
√
2

0.5 −0.5 −1/
√
2

]
. Following the aforementioned

procedures for reconstructingX from Y , the number of
nonzero entries foryi is 4, 4 and 2, and the number of
distinct nonzero entries is1, 2 and2, respectively. Therefore
we start fromy3 and decompose it into two vectors[0 0 1 0]T

and [0 0 0 1]T . We add these two vectors toX since they
are orthogonal to each other. Then we decomposey2 into
[0 0 1 1]T and [1 1 0 0]T . Since[0 0 1 1]T is not orthogonal
to the vectors inX , we discard this vector. Finally, the vector
[1 1 0 0]T is added intoX by ckecking the orthogonality
property and we obtain the matrixX of interest.

To sum up, with the aid ofTheorem 1andTheorem 2, the
node removal problem in (2) can be reformulated as

R∗ = min
R∈Fq

λ1(Q̃R), (5)

where

Fq = {X : LRX = 0, |R| = q, X = argmin
X′

‖X ′‖1}. (6)

In other words, finding the most disruptive node removal set
when removingq nodes from the network is equivalent to
solving the minimum matrix one-norm problem onX and

then minimizing the largest eigenvalue ofQ̃R.

IV. GREEDY NODE REMOVAL ALGORITHM

It remains to specify a node removal strategy that achieves
the minimum in (5). We propose a node removal strategy to
reduce computational complexity, i.e., a greedy node removal
algorithm based on spectral graph cut to successively remove
the most vulnerable single node. In other words, we recursively
solve theq = 1 version of (5) until the desired number of
nodes have been removed.

Algorithm 2 Greedy node removal based on spectral cut

1: Input: G and |R| = q
2: Output: R
3: R = ∅
4: for i = 1 to q do
5: Computeŝ andV cut in the largest component.
6: SolveFq = {v∗ : v∗ = argv∈V cut ‖X‖1}
7: if (|Fq| = 1) then
8: SetR = R ∪ v∗

9: else
10: u∗ = argminu∈Fq

λ1(Q̃R)
11: SetR = R ∪ u∗

12: end if
13: end for

The spectral cut is associated with the second smallest
eigenvector ofL (also known as the Fiedler vector [14]). For
a connected networkG, let s be the identification vector such
thatsi = 1 if i-th node is in group1 andsi = −1 if i-th node
is in group2. The cut size is the number of edges between
these two groups, where

cut size=
1

4

∑

i,j

Aij(1− sisj) =
1

4
sTLs. (7)

By relaxing s to be real valued and using the fact that
L1 = 0, the graph partition problem is equivalent to finding
an eigenvector ofL that is orthogonal to1 such thatsTLs is
minimized [17]. This is an easily computable approximation
to the NP-hard graph partitioning problem. We have

s∗ = argmin
s⊥1

sTLs, (8)

wheres∗ is an eigenvector of the second smallest eigenvalue of
L. The partitioning vector iŝs = sgn(s∗), where sgn(si) = 1
if si > 0 and otherwise sgn(si) = −1. Define the spectral cut
as the set{(i, j) ∈ E : ŝiŝj = −1, Aij = 1}, and denote
V cut the set of nodes incident to the spectral cut, to be the set
of candidate nodes for removal. The optimization in (5), with
q = 1, is then restricted to the set of nodes inV cut, which is a
much smaller set than the entire setV of nodes in the graph.
This spectral cut and minimization of (5) process is repeated
q times resulting in a significant reduction in computational
complexity.Algorithm 2 summarizes the greedy node removal
procedure.

V. PERFORMANCEEVALUATION

An empirical dataset collected from the western states’
power subgrid in the United States [18] is used to evaluate
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Fig. 1. Performance evaluation of greedy node removals based on different
node centralities in western states power grid of the UnitedStates. This
network contains 4941 nodes and 6594 edges. The proposed greedy spectral
cut method better reduces the largest component size in the network than do
methods based on minimizing degree or betweenness centrality.
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Fig. 2. The number of candidate nodes for removalV cut determined by our
greedy spectral cut method. In the first five iterations of ourgreedy algorithm,
the average cardinality ofV cut is less than 1% of the total number of nodes
(4941) in the network. This proportion decreases to less than 5% of the nodes
asq increases.

the proposed greedy spectral method of node removal. In this
network, the nodes represent power stations and the edges
represent transmission lines or transformers. The spectral cut
based greedy algorithm is compared with node degree and
betweenness based greedy node removals proposed in [11].

Fig. 1 displays the node removal performances in US power
grid, and it is quite surprising that the largest component size
drastically reduces to half of its original size by simply remov-
ing 10 nodes from the network using the proposed spectral cut
method, whereas we need to remove 30 nodes to achieve the
same performance if one uses betweenness measure. Degree
based node removal is not effective in reducing the largest
component size, which suggests that although removing nodes
with the highest degree seems to be quite intuitive, the high-
degree nodes do not necessarily play a key role in topological
vulnerability.

In addition, despite the fact that betweenness is a widely
adopted measure for evaluating node centrality, it can not fully
identify the most vulnerable nodes whose removal maximally
reduces the largest component size. The number of candidate
nodes for removal in each iteration are depicted in Fig. 2.

Observe that the number of candidate removal nodes is much
smaller than the network size, which makes the proposed
greedy node removal strategy effective for large-scale net-
works and facilitates the assessment of network vulnerability.

VI. CONCLUSION

Using spectral theory and graph Laplacians, we derive an
upper bound on the number of edges in the largest component
and we prove that the largest component size minimization
problem is equivalent to finding a set of the sparsest or-
thogonal basis for the null space of the associated graph
Laplacian matrix. This basis can be easily constructed using a
greedy basis search algorithm with polynomial computational
complexity. Experiments on the US power grid dataset show
that the proposed greedy node removal algorithm outperforms
other approaches based on node degree and betweenness. Our
proposed procedure is scalable to large networks and can
be used to reveal the vulnerability of modern networks. The
method can naturally be applied to exploring the vulnerability
of other networks such as biological networks, social networks,
and communication networks.
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