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Abstract:
Two new optimization techniques based on projections onto convex space

(POCS) framework for solving convex and some non-convex optimization
problems are presented. The dimension of the minimization problem is lifted
by one and sets corresponding to the cost function are defined. If the cost
function is a convex function in RN the corresponding set is a convex set in
RN+1. The iterative optimization approach starts with an arbitrary initial
estimate in RN+1 and an orthogonal projection is performed onto one of
the sets in a sequential manner at each step of the optimization problem.
The method provides globally optimal solutions in total-variation, filtered
variation, l1, and entropic cost functions. It is also experimentally observed
that cost functions based on lp, p < 1 can be handled by using the supporting
hyperplane concept.

1 Introduction

In many inverse signal and image processing problems and compressing sens-
ing problems an optimization problem is solved to find a solution:

min
w∈C

f(w) (1)

where C is a set in RN and f(w) is the cost function. Some commonly
used cost functions are based on l1, l2, total-variation, filtered variation,
and entropic functions [1–5]. Bregman developed iterative methods based
on the so-called Bregman distance to solve convex optimization problems
which arise in signal and image processing [6]. In Bregman’s approach, it is
necessary to perform a D-projection (or Bregman projection) at each step of
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the algorithm an it may not be easy to compute the Bregman distance in
general [5, 7, 8].

In this article Bregman’s projections onto convex sets (POCS) frame-
work [9,10] is used to solve convex and some non-convex optimization prob-
lems instead of his Bregman distance approach. Bregman’s POCS method is
widely used for finding a common point of convex sets in many inverse signal
and image processing problems [10–33]. In the ordinary POCS approach the
goal is simply to find a vector which is in the intersection of convex sets. In
each step of the iterative algorithm an orthogonal projection is performed
onto one of the convex sets. Bregman showed that successive orthogonal
projections converge to a vector which is in the intersection of all the convex
sets. If the sets do not intersect iterates oscillate between members of the
sets [34–36]. Since there is no need to compute the Bregman distance in
standard POCS, it found applications in many practical problems.

In our approach the dimension of the minimization problem is lifted by
one and sets corresponding to the cost function are defined. This approach
is graphically illustrated in Figure 1. If the cost function is a convex function
in RN the corresponding set is a convex set in RN+1. As a result the convex
minimization problem is reduced to finding a specific member (the optimal
solution) of the set corresponding to the cost function. As in ordinary POCS
approach the new iterative optimization method starts with an arbitrary ini-
tial estimate in RN+1 and an orthogonal projection is performed onto one of
the sets. After this vector is calculated it is projected onto the other set. This
process is continued in a sequential manner at each step of the optimization
problem. The method provides globally optimal solutions in total-variation,
filtered variation, l1, and entropic function based cost functions because they
are convex cost functions. It is also experimentally observed that cost func-
tions based on lp, p < 1 can be handled by using the supporting hyperplane
concept.

The article is organized as follows. In Section 2, the convex minimization
method based on the POCS approach is introduced. In Section 3, another
convex minimization method based on supporting hyperplanes is studied.
Since it is very easy to perform an orthogonal projection onto a hyperplane
this method is computationally implementable for many cost functions with-
out solving any nonlinear equations. In Section 4, we present some examples
on non-convex minimization.
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2 Convex Minimization

Let us first consider a convex minimization problem

min
w∈RN

f(w) (2)

where f : RN → R is a convex function.
We increase the dimension by one to define the following sets in RN+1

corresponding to the cost function f(w) as follows:

Cf = {w = [wT y]T : y ≥ f(w)} (3)

which is the set of N + 1 dimensional vectors whose N + 1st component y is
greater than f(w). We use bold face letters for N dimensional vectors and
underlined bold face letters for N + 1 dimensional vectors, respectively.

The second set that is related with the cost function f(w) is the level set:

Cs = {w = [wT y]T : y ≤ α, w ∈ RN+1} (4)

where α is a real number. Here it is assumed that f(w) ≥ α for all f(w) ∈ R
such that the sets Cf and Cs do not intersect. They are both closed and
convex sets in RN+1. Sets Cf and Cs are graphically illustrated in Fig. 1 in
which α = 0.

The POCS based minimization algorithm starts with an arbitrary w0 =
[wT

0 y0]
T ∈ RN+1. We project w0 onto the set Cs to obtain the first iterate

w1 which will be,
w1 = [ wT

0 0 ]T (5)

where α = 0 is assumed as in Fig. 1. Then we project w1 onto the set Cf .
The new iterate w2 is determined by minimizing the distance between w1

and Cf , i.e.,

w2 = argmin
w∈Cs

‖w1 −w‖ (6)

Eq. 6 is the ordinary orthogonal projection operation onto the set Cf ∈ RN+1.
To solve the problem in Eq. 6 we do not need to compute the Bregman’s
so-called D-projection. After finding w2, we perform the next projection
onto the set Cs and obtain w3 etc. Eventually iterates oscillate between two
nearest vectors of the two sets Cs and Cf . As a result we obtain

lim
n→∞

w2n = [ w∗ f(w∗) ]T (7)
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Figure 1: Two convex sets Cf and Cs corresponding to the cost function f .
We sequentially project an initial vector w0 onto Cs and Cf to find the global
minimum which is located at w∗.

where w∗ is the N dimensional vector minimizing f(w). The proof of Equa-
tion (7) follows from Bregman’s POCS theorem [9,34]. It was generalized to
non-intersection case by Gubin et. al [12, 34], [35]. Since the two closed and
convex sets Cs and Cf are closest to each other at the optimal solution case,
iterates oscilate between the vectors [ w∗ f(w∗) ]T and [ w∗ 0 ]T in RN+1

as n tends to infinity. It is possible to increase the speed of convergence by
non-orthogonal projections [24].

If the cost function f is not convex and have more than one local minimum
then the corresponding set Cf is not convex in RN+1. In this case iterates
may converge to one of the local minima. This is graphically illustrated in
Fig. 2.
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Figure 2: Iterations start with an initial vector w0 and iterates converge to
a local minimum by the POCS algorithm.

3 Supporting Hyperplane Concept based POCS

Solution

It may not be easy to find the orthogonal projection onto the set Cf for
some cost functions f . In such cases it is possible to use supporting hyper-
planes of the convex set to find the minimum of f(w). The second optimiza-
tion algorithm is based on making successive orthogonal projections onto the
supporting hyperplanes of the set Cf instead of the actual set.

The set Cf can be expressed as the intersection of halfplanes whose bound-
aries are supporting hyperplanes as shown in Fig. 3. Let w and f(w) form
a vector [wTf(w)]T in RN+1 on the surface of y = f(w). Let the support-
ing hyperplane at this point be l(w). Let us also define the halfplane (or
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Figure 3: Intersection of supporting halfplanes Cf,w defines the set Cf =⋂
w∈R

Cf,w when the function f is convex.

halfspace) set as follows:

Cf,w = {y ≥ l(w)} (8)

Clearly, the set Cf can be expressed as the intersection of its supporting
halfspaces in RN+1:

Cf =
⋂

w∈RN

Cf,w (9)

Therefore, the POCS approach can be applied to the level set Cs and the
family of sets Cf,w, w ∈ RN to find the minimum of f(w). In this case,
the number of sets are infinite. This set theoretic scenario was studied by
Slavakis, Yukawa, Yamada and Theodoridis [13,19].

In the second optimization approach we perform orthogonal projections
onto supporting hyperplanes of the cost function instead of the actual set Cf

as shown in Fig. 4. Since making an orthogonal projection onto a hyperplane
is easy to compute, the optimization problem does not require the solution
of any nonlinear equations as long as it is possible to compute the surface
normal at f(w). Let the surface normal at [wT

t f(wt)]
T be vt ∈ RN+1. The
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Figure 4: Projection w1 of the vector wo onto a supporting hyperplane
.

supporting hyperplane l(wt) is given by

vT
t (̇w −wt) = 0 (10)

The orthogonal projection wp of an arbitary vector wo onto the hyperplane
l(wt) is obtained as follows

wp = wo + λ
vT
t (̇wo −wt)

||vt||2
vt (11)

where λ = 1. The parameter λ can be selected between 0 < λ < 2 as in the
normalized LMS algorithm [13]. The parameter λ 6= 1 case corresponds to
non-orthogonal projections. Eq. (11) is the key equation of the supporting
hyperplane based optimization approach. In Fig. 4 a graphical illustration
of the iterative optimization algorithm is shown. Iterations start with an
arbitrary wo ∈ RN+1. The vector wo is projected onto the set Cs and w1 is
obtained. The projected vector is

w1 = [wT
o 0]T (12)

where wo is an N dimensional vector containing the first N components of
the N + 1 dimensional vector wo. The value of the cost function f(wo) and
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Figure 5: Projections onto supporting hyperplanes of the set Cf lead to the
global minimum

.

its surface normal vo at wo are computed. This is the next iterate

w2 = [wT
o f(wo)]

T (13)

The corresponding supporting hyperplane l(w2) is characterized by the equa-
tion:

vT
o (̇w −wo) = 0 (14)
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The next iterate w3 is determined by projecting w1 onto the hyperplane
l(w2) as follows:

w3 = w1 + λ
vT
t (̇w1 −wt)

||vo||2
vo (15)

This computes the first iteration cycle. Next, we project w3 onto the
set Cs and w4 = [wT

3 0]T is obtained. The vector w3 is an N dimensional
vector containing the first N components of the N + 1 dimensional vector
w4. We obtain w5 = [wT

3 f(w3)]
T on the surface of the set Cf . At this

point, we verify if f(w3) is less than f(wo) or not. If yes, we continue the
iterations as described above. If not, we switch to another iteration strategy
as graphically shown in Fig. 6.

Let us assume that f(w′l) > f(wl−1) as shown in Fig. 6. In this case con-
secutive iterative projections are performed onto the supporting hyperplanes
l(w′l) and l(wl−1) until a vector [wT

l f(wl)]
T satisfying f(wl) > f(wl−1) is

obtained.
Projection onto a supporting hyperplane is easy to perform. However the

cost function may not have a well defined derivative at a given vector wud
and a well defined supporting hyperplane may not exist. In this case any
hyperplane l(wd) passing through wud and satisfying f(w) ≥ l(wd) can be
used in Eq. 15.

It is also possible to include other convex constraints into the optimization
problem:

min f(w) (16)

such that w ∈ C1, C2, . . . , CL

where C1, C2, . . . , CL are closed and convex sets representing constraints on
the solution of the inverse problem. However the main difficulty with this
approach is that non-intersecting multiple convex set scenario has not been
fully studied to the best of our knowledge. Successive orthogonal projections
onto non-intersecting convex sets may lead to limit cycles [12, 34]. This
remains as an interesting research problem. It is experimentally observed
that successive orthogonal projections onto Cf , Cs and another constraint
set leads to a limit cycle containing the optimal solution.

One possible way to handle the problem described in (17) is to enlarge one
or some of the sets so that they have a well defined non-empty intersection.
We successfully applied this strategy in FIR filter design [36]. For example,
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Figure 6: Projections onto two supporting hyperplanes l(w′l) and l(wl−1) to
obtain the next iterate satisfying f(wl) > f(wl−1).

it is trivial to enlarge the set Cs by slowly increasing the value of α in a
judicuous manner.

It is possible to develop iteration strategies based on non-orthogonal pro-
jections or linear combinations of projections to speed up the convergence to
the global minimum as discussed in [23,24,35].
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4 Minimization of Non-Convex Functions
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Figure 7: The function f(w) = |w − 2|0.5 + 1 is not convex. However
projections onto tangential hyperplanes may lead to the global minimum.

An important class of cost functions are based on lp, p < 1. It is ex-
perimentally observed that such functions can be minimized by using the
”supporting” hyperplane concept as shown in Fig. 4. Obviously, tangential
hyperplanes are no longer ”supporting” hyperplanes and the set Cs is not
a convex set. This is the ”inside out” version of the convex minimization
problem that is studied in Section 3 and the iterative scheme introduced in
Section 3 leads to the minimum of the function.

P. Combettes provided an excellent review of POCS theory and the re-
cently introduced proximal splitting method in [35,37]. The relation between
the proposed methods and the proximal splitting theory will be investigated
in the future.

Another interesting future research direction is the use of generalized
supporting hyperplane concept to minimize non-convex functions with many
local minima. The convex hull of the generalized supporting planes may form
a convex region in RN+1. As a result it may be possible to find the minimum
of the cost function by performing successive orthogonal projections onto
generalized supporting hyperplanes. This problem will be also studied in the
future.
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