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ABSTRACT linear equations by assuming sparsity in a known dictionary

Time delay estimation has long been an active area of reA-‘ common problem in CS is that the observed signals may

search. In this work, we show that compressive sensing WitﬁOt be sparsely representable in the dictionary. This prabl

. : . S also occurs in TDE as the delay parameter of the received
interpolation may be used to achieve good estimation precl- . .
waveforms is a continuous parameter.

sion Wh”e. lowering the sampling frequency. We propose an -, remedy such lack of sparsity, we show that interpola-
Interpolating Band-Excluded Orthogonal Matching Pursuit. ; . A
. : . : ion may be used in the CS framework to improve estimation
algorithm that uses one of two interpolation functions to es - . ) )
recision. In this work, we focus on extending previous

timate the time delay parameter. The numerical results shO\Rlork on internolation-based TDE and bridaing it with CS
that interpolation improves estimation precision and thal hereby, we gttain good estimation precisign 8vhile keepiﬁg
compressive sensing provides an elegant tradeoff that may | sam,pling frequency low. We use a redundant dictionary
lower the required sampling frequency while stil attagn of delayed waveforms as this improves the estimation. Such
desired estimation performance. : |
redundancy, however, introduces coherence, and so we use
Index Terms— Compressive sensing, parameter estimaa coherence-inhibiting greedy algorithm for signal recgve

tion, time delay estimation, interpolation. The coherence-inhibition is similar to the model-based CS
approach in[[B, 4,15]. We compare the performance of four
1. INTRODUCTION compressive delay estimators: 1) an unmodified, coherence-

inhibiting greedy algorithm that uses no interpolation and

Time Delay Estimation (TDE) of one or more known signal therefore operates on a discrete grid, 2) an algorithm that

waveforms from sampled data is of interest in several field&'Ses simple parabolic interpolation on the cross-coiclat

such as radar, sonar, wireless communications, audioclspeefuncuon'_ 3) an algorithm that uses polar interpolation djd

and medical signal processing. The classical problem is t81 @lgorithm that first reconstructs the full Nng'?“ saeapl

obtain good precision of the estimate while keeping the sanignal using/,-minimization as in classical CSJ[L] 2] and

pling frequency and computational complexity low. then estimates the delays using the MUSIC algorithm. For all
A popular method for TDE is to find the peak of the cross-four estimators, we investigate their performance in teofns

correlation function. As this must often be done on sample@Stimator precision with and without Gaussian noise added.
data, the cross-correlation function is sampled on a discre Furthermore, we briefly examine the computational complex-
grid. This corresponds to multiplying the received sampledt ©f the examined estimators. While we use a simple chirp
signal onto a dictionary of reference signals, each a ddlayesi9nal in our numerical experiments, the proposed approach
version of the known waveform. The problem then reduce&@Y also be extended to more complex systems, e.g., symbol
to finding the maximum nonzero components in the crossSYnchronization in wireless communication systems.
correlation vector. If a high estimation precision is dedir

this requires a high sampling rate, which may be costly to2. PROBLEM FORMULATION AND BACKGROUND

attain. Since the dimension of the sampled signal may often

be much higher than the number of delays to be estimated i€t the received time-domain analog signal be defined as

the signal, the cross-correlation vector may be assumedespa K

and it is possible to lower the sampling rate by employing fGa,1) = Zo‘i gt — 1) +n(t), Q)

compressive sensing (CS) [1, 2]. With CS, we seek to recover i=1

signals and parameters from an under-determined system wherea = {a1, as, - - - , ax } are the unknown signal ampli-
tudes; = {m, 72, -+ , 7k } are the unknown signal delays in
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of g(t), the required sampling rate to estimate the delays to applicable to specific types of waveformé). In contrast,
sufficient precision may be high. If we assume that only sour approach processes the signal in the digital domain, pro
few signal components are active, i.& is small, we may vides a generic acquisition framework compatible with arbi
use CS to achieve the desired precision at a lower samplirtgary waveforms;(¢), and does not require custom hardware
rate. With a CS receiver, the received signal has the forrfilters or periodicity. To compare our interpolation algbms
y = ®(f), where®(-) represents a CS sampling structurewith a framework similar to that ir_[11], but for discrete,mo
such as Random Demodulator [6] or Modulated Widebangberiodic sequences, we use an algorithm in the digital domai
Converter([7], which takes as input a bandlimited signahsuc that first reconstructs the Nyquist-sampled signal usirg th
as f(t) in (). These CS sampling structures are designedasis Pursuit (BP) algorithm [12] for noise-less experitsen
so the sampling operation in the analog domain is equivalerdr the Basis Pursuit Denoising (BPDN) algorithm [[12] for
to a matrix-vector operation in the discrete domain;= ®f,  noisy experiments. Then, we find the delay taphas ¥'f,
wheref € CY is the Nyquist sampled version @1 (3),c CM  wheref is the reconstructed signal. If all the delays are on the
is the received signal anll € RM >N s the discrete equiva- grid the delay tap vectoh, has onlyX active taps. However,
lent of ®(-) with N and M the number of Nyquist and mea- as is also seen for frequency sparse sigrialsas side lobes
surement samples, respectively. when the delay parameters are off the grid. A standard solu-
To enable reconstruction, CS requires a sparsifying diction to solving this problem for frequency estimation is szu
tionary® € CVN*N . In the case of TDE, the dictionary is a a high resolution algorithm, such as the Multiple Signalscla

circulant matrix, consisting of delayed waveforms: sification (MUSIC) algorithm[[113]. We therefore transform

the time delay estimation problem to a frequency estimation

U= Y1 - ty_1] problem by taking the inverse Fourier transformhodnd use
g[0] gIN—-1] - g[1] MUSIC to estimate the tap positions, which corresponds to

the delay estimates. We term this algorithm TDE MUSIC.

_| oo o) 70)] I
: 3. INTERPOLATION IN TIME DELAY ESTIMATION
g[N —1] g[N —=2] gl0]

Our contribution is bridging the work on CS and interpola-
where g — [g[O] g - g[N]]T is the Nyquist- tion to_improve estimator precision.in TDE while keeping th_e
sampled version of(¢) in (I). We use the ternatom to _sampl_mg frequency ar_1d computational comp_lexny Ipw. Thls
signify one column in this dictionary, so that arbitrary-sig S @chieved by proposing a new greedy algorithm with an in-
nals are composed of atoms from the dictionary. With thid€"Polation step. In each iteration of the algorithm, afiedi-
dictionary, the sampled cross-correlation function may bdnd the strongest correlating atom (i.e. the largest absolu
obtained ast[n] = |(y.4y)|. Since the delay parame- val_ue of R¢[n]), Wwe propose to use an interpolation function
ter is continuous, the received signal may not be perfecti{® IMProve the estimation precision:
representable by the sparsifying dictionary, and the pdak o 7o =T(y, ¥, in), (3)

the cross-correlation function then falls between its dachp . ) )
values. where7,, is the newnth estimate of the delay is the re-

Prior work on this problem includes|[8], which uses a gra_ceiveo_l signal,fIl _is the dictionary and,, is the index for_ the
dient descent approach to approximate solutions off the griat_om in the dictionary that features th_e strongest comﬂat
for a generic greedy algorithm. This approach is similar toVith the signal. There are many possible choices of interpo-
one of the two algorithms proposed [ [9], one using a ﬁrst_latlon_ functions. In this work we compare two interpolation
order Taylor expansion, the other a form of polar interpolafunctions: second order polynomial and polar.
tion. The authors show that polar interpolation outperform  Polynomial interpolations a common method to increase
Taylor expansion. In our work we extend upon the polar interth€ TDE precision for sampled dafa [14. 15] 16]. The sim-
polation approach. I ]4] 5], the authors use both a redundaR!€st and most often used polynomial interpolation is fifén
dictionary with coherence rejection and second order pplyn Parabola around the correlation peak. In some cases, isis po
mial interpolation to better estimate the solution. Simyjta Sible to improve the estimation by using different polynaii
in [10] the authors introduce algorithms that inhibit coher interpolation techniques for different problems, see,, ¢t
ent atoms in the recovery algorithms. Time delay estimatiofiéférences in [17]. In this work, we use the Direct Correlato
with CS has been treated before inl[11], where EstimatioStimator from([15] for parabolic interpolation:

S arrs v oo Irte oIS 5 (ot 18Ryl

is u iev i y i = —— = > >
the signal with a specially designed filter bank. Their algo- 2 Ryl(n + 1)A] = 2R [nA] + By [(n - 1)A]
rithm relies on periodic sequences of delayed signals agd spwherer; is the delay to estimateé\ is the spacing in time be-
cially tailored analog filters that ensure stable inversindis  tween samples of the discrete cross-correlation fundﬁpn

)



andn is the index of the largest absolute entryfi@. and is defined in Algorithral1. First, the best correlatingvato
Polar interpolationis proposed in[[9] and obtains im- indexi,, is found by generating a proxy for the sparse signal.

proved estimates of off-the-grid atoms. This is done forThis proxy is trimmed using a band exclusion function [10]:

shift-invariant systems, where it can be assumed that the

signal manifold of po_ssible delayed wav_eforms lies ona hy- By(S) = Upes By (k), (6)

persphere [9], which is also the case for time delay estonati ) ) ,

Such assumption is supported by the fact that the magnitude By (k) ={i | p(i, k) > n}, pi, k) = [($i,vr)],  (7)

| £l of a delayed signaf, is the same regardless of the value

of the parameter; hence, the magnitude becomes the radiusvherey(i, k) is the coherence between two atoms in the dic-

of the modeling hypersphere. tionary, B, (k) is then-coherence band of the indéx and
Instead of interpolating using the cross-correlation func B, (S) is then-coherence band of the index sgt In this

tion, polar interpolation is based on the received sigrsalit work, we set) = 0, as we assume that the signal waveforms

and three atoms from the dictionary; the strongest coingjat are well spaced so that signal components present in the re-

atom, ), and its two adjacent neighbours in the dictionary,ceived signal are orthogonal to each other. Therefore, the

¥p—1 andip,1. With these three vectors we may approxi- band-exclusion does not inhibit two pulses from interfgrin

mate a small part of the signal manifold’s hypersphere with &ut inhibits the algorithm from finding the same pulse again

circle arc. The interpolation is obtained as follows; deffme  due to a large remaining residugks The selected atom is

functionf; as the sampletth signal component; - g(t — ;)  then input to the interpolation functich(y, ¥, i,,), cf. (3),

in (@). Thenf; may be approximated as which finds an estimate of theth time delay,,. Using that
time delay estimate and the original parametric signal hode
¥ o we create a new atom for a signal dictiondy,which is used
£ T Pl N aurcos (lziz=nale to find the basis coefficients using linear least squares. Fi-
i RC A Y, |, c=|%i A , (4) : .
" - (lri—nAlo nally, a new residual is calculated andand S are updated.
P R When exiting the loop the signal is reconstructed. The stop-
1 rcos(d) —rsin(f) -1 ping criteria may be based on a noise floor estimate or, if the

A=]1 r 0
1 rcos(f) rsin(f)

5) sparsityK is known, the loop is set to ruR’ times.

. _ _ Algorithm 1 Interpolating Band-Excluded Orthogonal
wh(_arer = ||4;]|2 is the magnlt.ude of a signal waveform and Mmatching Pursuit Algorithm (IBOMP)
radius of the hypersphere, afids the angle between the vec- Input: Compressed signgl, interpolation functiorT(y, ¥, i),

tors ¢, and eithenp,_; or ¢,;. Notice thatr is identical dictionary® and measurement matrik
for all choices ofr, hence the hypersphere assumption. Inthis output: Reconstructed signaland delay estimates,

formula, A rotates the thre¢ vectors to form a new, general Initialize: yres=y, B=0,n = 1 andS™ =

basis for the circle arc and scales the vectors in that basis repeat

to estimate the received signal. Given a sighahd the atom in = argmax; |(yres Wi)|, i & Bo(S" ")

in the dictionary that correlates the strongest with theaig T = T(Yres, ¥, in) . .
1, we may solve[{¥) as a linear least squares problem with ~ Include San'ed version gf(t — 7,) as new atom iB
c as the unknown. From = {¢;, ¢, é3}, we may obtain an a=(¥B)'y

. _ . . A yes=y — ¥YBa
estimate ofr; by taking the inverse tangent &f/¢. nen+1, S" = 5" U {in}

until stop-criterion = True
4. INTERPOLATING BAND-EXCLUDED X = Ba
ORTHOGONAL MATCHING PURSUIT

We use a redundant, circulant dictionary which introduces

coherence between atoms. To remedy the coherence effect

we leverage the Band-Excluded Orthogonal Matching Pur-

suit (BOMP) algorithm[[10] instead of classical orthogonal 5. NUMERICAL SIMULATIONS

matching pursuit, as it inhibits atoms in the recoveredalign ) )

from being too closely spaced. In this work we compare: 1)I0 évaluate the proposed reconstruction algorithms, we hav
the original BOMP algorithii[10] and 2) Interpolating Band- Pérformed two numerical experiments. The documentation
Excluded Orthogonal Matching Pursuit (IBOMP), which uses@nd code for these experiments are made freely available at
interpolation to estimate time delays in between the sargpli http://www.sparsesampling.com/tde, following
grid. The interpolation is done using parabolic or polar in-the principle of Reproducible Researchi[18].

terpolation. IBOMP is an extension to the BOMP algorithm  For the numerical experiments, we lgft) in (1) be a
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Fig. 1. 7-MSE or variance versus subsampling ratioSee  rig 2 7-MSE or variance versus SNR in decibel for= 0.5.
Fig.[2 for legend.

. , mates the delays using the MUSIC algorithm. As expected
chirp signal defined as it does not attain the same estimation precision as the CS-
based algorithms, due to aliasing. As a note on the y-axis
and as validation for our implementation, notice that BOMP
- converges to approximately3 - 10~#(us)? which is to be
p(t) = {5(1 + cos(2n(t —T/2)/T)), te€(0,T) . (9) expected since the time delay between columns of the dictio-

0, otherwise nary ® is 1/50MHz = 0.02us. Therefore the average error
squared ig0.02/4)> = 2.5 - 10~5(us)2, which corresponds
well with the numerical results.

- eI2(fot 2F (=T/2)(E=T/2) _p(py, (8)

Q
=
Il
e
Q

where fy = 1MHz is the center frequenc f = 40MHz is

the sweeped frequency, affid = 1us is the duration of the ) . . .

chirp in time. The chirp is limited in time by a raised cosine For_ the second exptenment_ Wti mc_ludel add(;tnlle \V/"Vh't?

pulse and normalized to unit energy. We assume Well-spacect':,’l"leSSIan measurement Noise In e sigha modet. - We Hix
o 0.5 and vary the signal-to-noise ratio (SNR) frons to

pulses so that no two pulses overlap. Each signal is composé e . .
of K — 3 pulses, withi known to the algorithms 30 dB. The noise is generated by calculating the noise power

We perform Monte Carlo experiments and repeat each oS the desired SNR divided by the measurement power, which

periment1000 times to get an average result. In each experils found as the squareti-norm of the measurement vector.

ment, we generate a time signal by sampling the pulse funf_ig.lz shows that the five algorithms are affected by noise, bu
tion "; @) N = 500 times with a sampling frequency ¢f — as the SNR increases they converge to the same performance

50MHz. This sampling rate ensures that the correspondinS’S in the noiseless case for= 0.5 in Fig.[I.

bandwidth of the signal contains more thy of its energy.

The real and imaginary part of each are drawn from a uni- 6. COMPUTATIONAL COMPLEXITY

form distribution betweer-10 and10 and enforced to have a compare the computational complexity of the four estima-

mini_rpum gpsqll)ute_ valljue df. The g]e\,l?)l/ST’ aie drawn flr:om tors, we first look at TDE MUSIC. This algorithm consists
a uniform distribution etwge(man — ~ T =898us. For e parts: ar/; minimization problem, in which the solu-
the CS measurement matrix we choose a Random Demodul@s 0 the Newton system has complesxityN') [19], where

ix I MxN _ ’
tor matrix Le‘]’h‘I' EC{S_Lt?’ 1} IX - We Se\va - “IN'Whﬁre N is the signal length, and the MUSIC algorithm, which is
K € [0,1) is the subsampliing rate. € eva uat_et € PeTgominated by computing the Singular Value Decomposition
formance of the four estimators by computing the time dela SVD), has complexity oD(N?3) for a square matrix [20]
mean square_d error(MSE)_ between the frue and est|matedF0r the algorithms based on BOMP the most significa{nt term
value of the time delay. This corresponds to the sample varl 04 the amplitude coefficients,in Algorithm[l, where

ance of the estimators and is a measure of estimator precisiq,, pseudo-inverse is found by solving a linear least sguare
For the first experiment, we assume a noise-free sign;)LS) problem, which has cost[20];

We perform this experiment with a range of subsampling ra-

tios x. Figure[1l _shows_our re_suI'Fs._ All four es_tima_tors al- Costsuwithsvo ~ 2NK2 + 11K = 2NK? + 11K3. (10)

low for subsampling while maintaining good estimation pre-

cision. TDE MUSIC performs best for low, while the in-  This is for the last iteration of the BOMP algorithm, as tlsis i
terpolation algorithms perform best asncreases. The Polar the most costly when alk atoms are used in the LS problem.
IBOMP algorithm is the best performing interpolation algo- As we assumél < N, the termO(N K?2) dominates.

rithm. To compare the proposed CS algorithms with a method The interpolation in BOMP also adds some complexity.
that does not use CS, we also show an algorithm that directliyor the polar interpolation, it is possible to compute thodua
downsamples the signal by a factor 8/ M and then esti- and angle beforehand and create a dictionary of all possible



sets oftpp_1, Yy, Pp+1 forall p. This dictionary may be mul-
tiplied with the A matrix in (8) beforehand and the remaining
steps are then dominated by finding the LS solutiofitod4),
If the complex LS problem is solved using a complex SVD,
the total cost i$)(V) and derived as follows: For real-valued
matrices/vectors the cost is identical fo](10) whé&re= 3 is
the number of variables, i.e. Costiithsvp ~ 18N + 297.

As complex arithmetic can be reduced to real arithmetic, we

simply say the computational complexityG§ V).

For the parabolic interpolation, we estimate the dela
based on the cross correlation function evaluated in three
places. The BOMP algorithm has already found these three
values and the estimation complexity is therefore indepen-
dent of the problem size, i.eO(1).

Thus, it is clear that

the parabolic interpolation is less computationally dedian
ing than the polar interpolation and that the greedy algor#
are much less computationally demanding than TDE MUSIC.

7. CONCLUSION
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