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ABSTRACT

Time delay estimation has long been an active area of re-
search. In this work, we show that compressive sensing with
interpolation may be used to achieve good estimation preci-
sion while lowering the sampling frequency. We propose an
Interpolating Band-Excluded Orthogonal Matching Pursuit
algorithm that uses one of two interpolation functions to es-
timate the time delay parameter. The numerical results show
that interpolation improves estimation precision and that
compressive sensing provides an elegant tradeoff that may
lower the required sampling frequency while still attaining a
desired estimation performance.

Index Terms— Compressive sensing, parameter estima-
tion, time delay estimation, interpolation.

1. INTRODUCTION

Time Delay Estimation (TDE) of one or more known signal
waveforms from sampled data is of interest in several fields
such as radar, sonar, wireless communications, audio, speech
and medical signal processing. The classical problem is to
obtain good precision of the estimate while keeping the sam-
pling frequency and computational complexity low.

A popular method for TDE is to find the peak of the cross-
correlation function. As this must often be done on sampled
data, the cross-correlation function is sampled on a discrete
grid. This corresponds to multiplying the received sampled
signal onto a dictionary of reference signals, each a delayed
version of the known waveform. The problem then reduces
to finding the maximum nonzero components in the cross-
correlation vector. If a high estimation precision is desired,
this requires a high sampling rate, which may be costly to
attain. Since the dimension of the sampled signal may often
be much higher than the number of delays to be estimated in
the signal, the cross-correlation vector may be assumed sparse
and it is possible to lower the sampling rate by employing
compressive sensing (CS) [1, 2]. With CS, we seek to recover
signals and parameters from an under-determined system of
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linear equations by assuming sparsity in a known dictionary.
A common problem in CS is that the observed signals may
not be sparsely representable in the dictionary. This problem
also occurs in TDE as the delay parameter of the received
waveforms is a continuous parameter.

To remedy such lack of sparsity, we show that interpola-
tion may be used in the CS framework to improve estimation
precision. In this work, we focus on extending previous
work on interpolation-based TDE and bridging it with CS.
Thereby, we attain good estimation precision while keeping
the sampling frequency low. We use a redundant dictionary
of delayed waveforms as this improves the estimation. Such
redundancy, however, introduces coherence, and so we use
a coherence-inhibiting greedy algorithm for signal recovery.
The coherence-inhibition is similar to the model-based CS
approach in [3, 4, 5]. We compare the performance of four
compressive delay estimators: 1) an unmodified, coherence-
inhibiting greedy algorithm that uses no interpolation and
therefore operates on a discrete grid, 2) an algorithm that
uses simple parabolic interpolation on the cross-correlation
function, 3) an algorithm that uses polar interpolation and4)
an algorithm that first reconstructs the full Nyquist- sampled
signal usingℓ1-minimization as in classical CS [1, 2] and
then estimates the delays using the MUSIC algorithm. For all
four estimators, we investigate their performance in termsof
estimator precision with and without Gaussian noise added.
Furthermore, we briefly examine the computational complex-
ity of the examined estimators. While we use a simple chirp
signal in our numerical experiments, the proposed approach
may also be extended to more complex systems, e.g., symbol
synchronization in wireless communication systems.

2. PROBLEM FORMULATION AND BACKGROUND

Let the received time-domain analog signal be defined as

f(t;α, τ ) =

K
∑

i=1

αi · g(t− τi) + n(t), (1)

whereα = {α1, α2, · · · , αK} are the unknown signal ampli-
tudes,τ = {τ1, τ2, · · · , τK} are the unknown signal delays in
time, g(t) is a known signal waveform andn(t) is the noise.
The task of the estimation algorithm is then to estimateα and
τ from a sampled version of (1). Depending on the bandwidth
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of g(t), the required sampling rate to estimate the delays to a
sufficient precision may be high. If we assume that only a
few signal components are active, i.e.K is small, we may
use CS to achieve the desired precision at a lower sampling
rate. With a CS receiver, the received signal has the form
y = Φ(f), whereΦ(·) represents a CS sampling structure
such as Random Demodulator [6] or Modulated Wideband
Converter [7], which takes as input a bandlimited signal such
asf(t) in (1). These CS sampling structures are designed
so the sampling operation in the analog domain is equivalent
to a matrix-vector operation in the discrete domain,y = Φf ,
wheref ∈ CN is the Nyquist sampled version of (1),y ∈ CM

is the received signal andΦ ∈ R
M×N is the discrete equiva-

lent ofΦ(·) with N andM the number of Nyquist and mea-
surement samples, respectively.

To enable reconstruction, CS requires a sparsifying dic-
tionaryΨ ∈ CN×N . In the case of TDE, the dictionary is a
circulant matrix, consisting of delayed waveforms:

Ψ =
[

ψ0 ψ1 · · · ψN−1

]

=













g[0] g[N − 1] · · · g[1]

g[1] g[0]
. . . g[2]

...
...

. . .
...

g[N − 1] g[N − 2] · · · g[0]













, (2)

where g =
[

g[0] g[1] · · · g[N ]
]T

is the Nyquist-
sampled version ofg(t) in (1). We use the termatom to
signify one column in this dictionary, so that arbitrary sig-
nals are composed of atoms from the dictionary. With this
dictionary, the sampled cross-correlation function may be
obtained asR̂f [n] = |〈y,ψn〉|. Since the delay parame-
ter is continuous, the received signal may not be perfectly
representable by the sparsifying dictionary, and the peak of
the cross-correlation function then falls between its sampled
values.

Prior work on this problem includes [8], which uses a gra-
dient descent approach to approximate solutions off the grid
for a generic greedy algorithm. This approach is similar to
one of the two algorithms proposed in [9], one using a first-
order Taylor expansion, the other a form of polar interpola-
tion. The authors show that polar interpolation outperforms
Taylor expansion. In our work we extend upon the polar inter-
polation approach. In [4, 5], the authors use both a redundant
dictionary with coherence rejection and second order polyno-
mial interpolation to better estimate the solution. Similarly,
in [10] the authors introduce algorithms that inhibit coher-
ent atoms in the recovery algorithms. Time delay estimation
with CS has been treated before in [11], where Estimation
of Signal Parameters via Rotational Invariance Techniques
(ESPRIT) is used to retrieve the time delays after processing
the signal with a specially designed filter bank. Their algo-
rithm relies on periodic sequences of delayed signals and spe-
cially tailored analog filters that ensure stable inversionand is

applicable to specific types of waveformsg(t). In contrast,
our approach processes the signal in the digital domain, pro-
vides a generic acquisition framework compatible with arbi-
trary waveformsg(t), and does not require custom hardware
filters or periodicity. To compare our interpolation algorithms
with a framework similar to that in [11], but for discrete, non-
periodic sequences, we use an algorithm in the digital domain
that first reconstructs the Nyquist-sampled signal using the
Basis Pursuit (BP) algorithm [12] for noise-less experiments
or the Basis Pursuit Denoising (BPDN) algorithm [12] for
noisy experiments. Then, we find the delay taps asĥ = Ψ† f̂ ,
wherêf is the reconstructed signal. If all the delays are on the
grid the delay tap vector,̂h, has onlyK active taps. However,
as is also seen for frequency sparse signals,ĥ has side lobes
when the delay parameters are off the grid. A standard solu-
tion to solving this problem for frequency estimation is to use
a high resolution algorithm, such as the Multiple Signal Clas-
sification (MUSIC) algorithm [13]. We therefore transform
the time delay estimation problem to a frequency estimation
problem by taking the inverse Fourier transform ofĥ and use
MUSIC to estimate the tap positions, which corresponds to
the delay estimates. We term this algorithm TDE MUSIC.

3. INTERPOLATION IN TIME DELAY ESTIMATION

Our contribution is bridging the work on CS and interpola-
tion to improve estimator precision in TDE while keeping the
sampling frequency and computational complexity low. This
is achieved by proposing a new greedy algorithm with an in-
terpolation step. In each iteration of the algorithm, afterfind-
ing the strongest correlating atom (i.e. the largest absolute
value ofR̂f [n]), we propose to use an interpolation function
to improve the estimation precision:

τ̃n = T(y,Ψ, in), (3)

where τ̃n is the newnth estimate of the delay,y is the re-
ceived signal,Ψ is the dictionary andin is the index for the
atom in the dictionary that features the strongest correlation
with the signal. There are many possible choices of interpo-
lation functions. In this work we compare two interpolation
functions: second order polynomial and polar.

Polynomial interpolationis a common method to increase
the TDE precision for sampled data [14, 15, 16]. The sim-
plest and most often used polynomial interpolation is fitting a
parabola around the correlation peak. In some cases, it is pos-
sible to improve the estimation by using different polynomial
interpolation techniques for different problems, see, e.g., the
references in [17]. In this work, we use the Direct Correlator
estimator from [15] for parabolic interpolation:

τi = −
∆

2

R̂f [(n+ 1)∆]− R̂f [(n− 1)∆]

R̂f [(n+ 1)∆]− 2R̂f [n∆] + R̂f [(n− 1)∆]
+ n∆,

whereτi is the delay to estimate,∆ is the spacing in time be-
tween samples of the discrete cross-correlation functionR̂f ,



andn is the index of the largest absolute entry inR̂f .
Polar interpolation is proposed in [9] and obtains im-

proved estimates of off-the-grid atoms. This is done for
shift-invariant systems, where it can be assumed that the
signal manifold of possible delayed waveforms lies on a hy-
persphere [9], which is also the case for time delay estimation.
Such assumption is supported by the fact that the magnitude
‖f‖2 of a delayed signal,f , is the same regardless of the value
of the parameterτ ; hence, the magnitude becomes the radius
of the modeling hypersphere.

Instead of interpolating using the cross-correlation func-
tion, polar interpolation is based on the received signal itself
and three atoms from the dictionary; the strongest correlating
atom,ψp, and its two adjacent neighbours in the dictionary,
ψp−1 andψp+1. With these three vectors we may approxi-
mate a small part of the signal manifold’s hypersphere with a
circle arc. The interpolation is obtained as follows; definethe
functionfi as the sampledith signal componentαi · g(t− τi)
in (1). Thenfi may be approximated as

fi ≈ cTA





ψp−1

ψp

ψp+1



 , c =









αi

αir cos
(

|τi−n∆|θ
∆

)

αir sin
(

|τi−n∆|θ
∆

)









, (4)

A =





1 r cos(θ) −r sin(θ)
1 r 0
1 r cos(θ) r sin(θ)





−1

, (5)

wherer = ‖ψi‖2 is the magnitude of a signal waveform and
radius of the hypersphere, andθ is the angle between the vec-
torsψp and eitherψp−1 or ψp+1. Notice thatr is identical
for all choices ofτ , hence the hypersphere assumption. In this
formula,A rotates the threeψ vectors to form a new, general
basis for the circle arc andc scales the vectors in that basis
to estimate the received signal. Given a signalf and the atom
in the dictionary that correlates the strongest with the signal
ψp, we may solve (4) as a linear least squares problem with
c as the unknown. From̂c = {ĉ1, ĉ2, ĉ3}, we may obtain an
estimate ofτi by taking the inverse tangent ofĉ3/ĉ2.

4. INTERPOLATING BAND-EXCLUDED
ORTHOGONAL MATCHING PURSUIT

We use a redundant, circulant dictionary which introduces
coherence between atoms. To remedy the coherence effect
we leverage the Band-Excluded Orthogonal Matching Pur-
suit (BOMP) algorithm [10] instead of classical orthogonal
matching pursuit, as it inhibits atoms in the recovered signal
from being too closely spaced. In this work we compare: 1)
the original BOMP algorithm [10] and 2) Interpolating Band-
Excluded Orthogonal Matching Pursuit (IBOMP), which uses
interpolation to estimate time delays in between the sampling
grid. The interpolation is done using parabolic or polar in-
terpolation. IBOMP is an extension to the BOMP algorithm

and is defined in Algorithm 1. First, the best correlating atom
indexin is found by generating a proxy for the sparse signal.
This proxy is trimmed using a band exclusion function [10]:

Bη(S) = ∪k∈SBη(k), (6)

Bη(k) = {i | µ(i, k) > η}, µ(i, k) = |〈ψi,ψk〉|, (7)

whereµ(i, k) is the coherence between two atoms in the dic-
tionary,Bη(k) is theη-coherence band of the indexk, and
Bη(S) is the η-coherence band of the index setS. In this
work, we setη = 0, as we assume that the signal waveforms
are well spaced so that signal components present in the re-
ceived signal are orthogonal to each other. Therefore, the
band-exclusion does not inhibit two pulses from interfering,
but inhibits the algorithm from finding the same pulse again
due to a large remaining residualyres. The selected atom is
then input to the interpolation functionT(y,Ψ, in), cf. (3),
which finds an estimate of thenth time delay,̃τn. Using that
time delay estimate and the original parametric signal model,
we create a new atom for a signal dictionary,B, which is used
to find the basis coefficientsa using linear least squares. Fi-
nally, a new residual is calculated andn andS are updated.
When exiting the loop the signal is reconstructed. The stop-
ping criteria may be based on a noise floor estimate or, if the
sparsityK is known, the loop is set to runK times.

Algorithm 1 Interpolating Band-Excluded Orthogonal
Matching Pursuit Algorithm (IBOMP)

Input: Compressed signaly, interpolation functionT(y,Ψ, in),
dictionaryΦ and measurement matrixΨ
Output: Reconstructed signalx̃ and delay estimates̃τn
Initialize: yres = y, B = ∅, n = 1 andSn = ∅
repeat

in = argmaxi |〈yres,Ψφi〉|, i 6∈ B0(S
n−1)

τ̃n = T(yres,Ψ, in)
Include sampled version off(t − τ̃n) as new atom inB
a = (ΨB)†y
yres = y −ΨBa

n = n+ 1, Sn = Sn−1 ∪ {in}
until stop-criterion = True
x̃ = Ba

5. NUMERICAL SIMULATIONS

To evaluate the proposed reconstruction algorithms, we have
performed two numerical experiments. The documentation
and code for these experiments are made freely available at
http://www.sparsesampling.com/tde, following
the principle of Reproducible Research [18].

For the numerical experiments, we letg(t) in (1) be a

http://www.sparsesampling.com/tde


0.1 0.2 0.3 0.4 0.5

10−6

10−4

10−2

100

κ

τ
-M

S
E

[µ
s2

]

Fig. 1. τ -MSE or variance versus subsampling ratioκ. See
Fig. 2 for legend.

chirp signal defined as

g(t) =
1

√

Eg
· ej2π(f0+

∆f
2T

(t−T/2))(t−T/2) · p(t), (8)

p(t) =

{

T
2 (1 + cos(2π(t− T/2)/T )), t ∈ (0, T )

0, otherwise
, (9)

wheref0 = 1MHz is the center frequency,∆f = 40MHz is
the sweeped frequency, andT = 1µs is the duration of the
chirp in time. The chirp is limited in time by a raised cosine
pulse and normalized to unit energy. We assume well-spaced
pulses so that no two pulses overlap. Each signal is composed
of K = 3 pulses, withK known to the algorithms.

We perform Monte Carlo experiments and repeat each ex-
periment1000 times to get an average result. In each experi-
ment, we generate a time signal by sampling the pulse func-
tion in (1)N = 500 times with a sampling frequency offs =
50MHz. This sampling rate ensures that the corresponding
bandwidth of the signal contains more than99% of its energy.
The real and imaginary part of eachαi are drawn from a uni-
form distribution between−10 and10 and enforced to have a
minimum absolute value of1. The delays,τ , are drawn from
a uniform distribution between0 andN−1

fs
−T = 8.98µs. For

the CS measurement matrix we choose a Random Demodula-
tor matrix [6],Ψ ∈ {−1, 0, 1}M×N . We setM = κN , where
κ ∈ [0, 1) is the CS subsampling rate. We evaluate the per-
formance of the four estimators by computing the time delay
mean squared error (τ -MSE) between the true and estimated
value of the time delay. This corresponds to the sample vari-
ance of the estimators and is a measure of estimator precision.

For the first experiment, we assume a noise-free signal.
We perform this experiment with a range of subsampling ra-
tios κ. Figure 1 shows our results. All four estimators al-
low for subsampling while maintaining good estimation pre-
cision. TDE MUSIC performs best for lowκ, while the in-
terpolation algorithms perform best asκ increases. The Polar
IBOMP algorithm is the best performing interpolation algo-
rithm. To compare the proposed CS algorithms with a method
that does not use CS, we also show an algorithm that directly
downsamples the signal by a factor ofN/M and then esti-

−5 0 5 10 15 20 25 30
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TDE MUSIC
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Fig. 2. τ -MSE or variance versus SNR in decibel forκ = 0.5.

mates the delays using the MUSIC algorithm. As expected
it does not attain the same estimation precision as the CS-
based algorithms, due to aliasing. As a note on the y-axis
and as validation for our implementation, notice that BOMP
converges to approximately0.3 · 10−4(µs)2 which is to be
expected since the time delay between columns of the dictio-
naryΦ is 1/50MHz = 0.02µs. Therefore the average error
squared is(0.02/4)2 = 2.5 · 10−5(µs)2, which corresponds
well with the numerical results.

For the second experiment we include additive white
Gaussian measurement noise in the signal model. We fix
κ = 0.5 and vary the signal-to-noise ratio (SNR) from−5 to
30 dB. The noise is generated by calculating the noise power
as the desired SNR divided by the measurement power, which
is found as the squaredℓ2-norm of the measurement vector.
Fig. 2 shows that the five algorithms are affected by noise, but
as the SNR increases they converge to the same performance
as in the noiseless case forκ = 0.5 in Fig. 1.

6. COMPUTATIONAL COMPLEXITY

To compare the computational complexity of the four estima-
tors, we first look at TDE MUSIC. This algorithm consists
of two parts: anℓ1 minimization problem, in which the solu-
tion to the Newton system has complexityO(N3) [19], where
N is the signal length, and the MUSIC algorithm, which is
dominated by computing the Singular Value Decomposition
(SVD), has complexity ofO(N3) for a square matrix [20].
For the algorithms based on BOMP the most significant term
is to find the amplitude coefficients,a in Algorithm 1, where
the pseudo-inverse is found by solving a linear least squares
(LS) problem, which has cost [20]:

CostLS with SVD ∼ 2NK2 + 11K3 = 2NK2 + 11K3. (10)

This is for the last iteration of the BOMP algorithm, as this is
the most costly when allK atoms are used in the LS problem.
As we assumeK ≪ N , the termO(NK2) dominates.

The interpolation in BOMP also adds some complexity.
For the polar interpolation, it is possible to compute the radius
and angle beforehand and create a dictionary of all possible



sets ofψp−1,ψp,ψp+1 for all p. This dictionary may be mul-
tiplied with theA matrix in (5) beforehand and the remaining
steps are then dominated by finding the LS solution to (4),ĉ.
If the complex LS problem is solved using a complex SVD,
the total cost isO(N) and derived as follows: For real-valued
matrices/vectors the cost is identical to (10) whereK = 3 is
the number of variables, i.e. CostLS with SVD ∼ 18N + 297.
As complex arithmetic can be reduced to real arithmetic, we
simply say the computational complexity isO(N).

For the parabolic interpolation, we estimate the delay
based on the cross correlation function evaluated in three
places. The BOMP algorithm has already found these three
values and the estimation complexity is therefore indepen-
dent of the problem size, i.e.O(1). Thus, it is clear that
the parabolic interpolation is less computationally demand-
ing than the polar interpolation and that the greedy algorithms
are much less computationally demanding than TDE MUSIC.

7. CONCLUSION

We have compared four time delay estimators and shown that
all four methods are compatible with CS. Out of the four,
TDE MUSIC performs the best for low values ofκ, while
IBOMP with polar interpolation obtains the best performance
with higher values ofκ. We also show that the interpolating
greedy algorithms are less computationally demanding than
TDE MUSIC.

8. REFERENCES

[1] E. J. Candès et al., “Stable signal recovery from incom-
plete and inaccurate measurements,”Comm. Pure Appl.
Math., vol. 59, no. 8, pp. 1207–1223, 2006.

[2] D. L. Donoho, “Compressed sensing,”IEEE Trans. Inf.
Theory, vol. 52, no. 4, pp. 1289–1306, Apr. 2006.

[3] R.G. Baraniuk et al., “Model-based compressive sens-
ing,” IEEE Trans. Inf. Theory, vol. 56, no. 4, pp. 1982–
2001, Apr. 2010.

[4] M. F. Duarte, “Localization and bearing estimation via
structured sparsity models,” inIEEE Statistical Signal
Processing Workshop (SSP), 2012.

[5] M. F. Duarte and R. G. Baraniuk, “Spectral compressive
sensing,” Appl. Comput. Harmon. Anal., Accepted for
publication.

[6] J. A. Tropp et al., “Beyond Nyquist: Efficient sampling
of sparse bandlimited signals,”IEEE Trans. Inf. Theory,
vol. 56, no. 1, pp. 520–544, Jan. 2010.

[7] M. Mishali and Y.C. Eldar, “From theory to practice:
Sub-Nyquist sampling of sparse wideband analog sig-
nals,” IEEE J. Sel. Topics Signal Process., vol. 4, no. 2,
pp. 375–391, Apr. 2010.

[8] L. Jacques and C. De Vleeschouwer, “A geometrical
study of matching pursuit parametrization,”IEEE Trans.
Signal Process., vol. 56, no. 7, pp. 2835–2848, July
2008.

[9] C. Ekanadham et al., “Recovery of sparse translation-
invariant signals with continuous basis pursuit,”IEEE
Trans. Signal Process., vol. 59, no. 10, pp. 4735–4744,
Oct. 2011.

[10] A. Fannjiang and W. Liao, “Coherence pattern-guided
compressive sensing with unresolved grids,”SIAM J.
Img. Sci., vol. 5, no. 1, pp. 179–202, Feb. 2012.

[11] K. Gedalyahu and Y.C. Eldar, “Time delay estima-
tion: Compressed sensing over an infinite union of sub-
spaces,” inIEEE International Conference on Acoustics
Speech and Signal Processing (ICASSP), Mar. 2010, pp.
3902–3905.

[12] S. S. Chen et al., “Atomic decomposition by basis pur-
suit,” SIAM J. Sci. Comput., vol. 20, pp. 33–61, 1998.

[13] P. Stoica and R. L. Moses,Introduction to spectral anal-
ysis, Prentice Hall, Upper Saddle River, NJ, 1997.

[14] R. Boucher and J. Hassab, “Analysis of discrete imple-
mentation of generalized cross correlator,”IEEE Trans.
Acoust., Speech, Signal Process., vol. 29, no. 3, pp. 609–
611, June 1981.

[15] G. Jacovitti and G. Scarano, “Discrete time techniques
for time delay estimation,”IEEE Trans. Signal Process.,
vol. 41, no. 2, pp. 525–533, Feb. 1993.

[16] D. Aiordachioaie and V. Nicolau, “On time delay esti-
mation by evaluation of three time domain functions,”
in 3rd International Symposium on Electrical and Elec-
tronics Engineering (ISEEE), Sept. 2010, pp. 281–286.

[17] F. Viola and W.F. Walker, “A spline-based algorithm for
continuous time-delay estimation using sampled data,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol.
52, no. 1, pp. 80–93, Jan. 2005.

[18] P. Vandewalle et al., “Reproducible research in signal
processing [What, why, and how],”IEEE Signal Pro-
cess. Mag., vol. 26, no. 3, pp. 37–47, May 2009.

[19] Y. Nesterov,Introductory Lectures on Convex Optimiza-
tion: A Basic Course, Kluwer Academic Publishers,
2004.

[20] L. N. Trefethen and D. Bau,Numerical Linear Algebra,
Society for Industrial and Applied Mathematics, 1997.


	1  Introduction
	2  Problem Formulation and Background
	3  Interpolation in Time Delay Estimation
	4  Interpolating Band-Excluded Orthogonal Matching Pursuit
	5  Numerical Simulations
	6  Computational Complexity
	7  Conclusion
	8  References

