Dictionary Learning via Projected Maximal
Exploration

Boris Mailhé, Mark D. Plumbley
Queen Mary University of London
School of Electronic Engineering and Computer Science
Centre for Digital Music
Mile End Road, London E1 4NS, United Kingdom
firstname.name @eecs.qmul.ac.uk

Abstract—This work presents a geometrical analysis of the
Large Step Gradient Descent (LGD) dictionary learning algo-
rithm. LGD updates the atoms of the dictionary using a gradient
step with a step size equal to twice the optimal step size.

We show that the large step gradient descent can be understood
as a maximal exploration step where one goes as far away as
possible without increasing the the error. We also show that the
LGD iteration is monotonic when the algorithm used for the
sparse approximation step is close enough to orthogonal.

Index Terms—Dictionary learning, sparse representations,
global optimization, projected gradient descent

I. DICTIONARY LEARNING

We consider the dictionary learning problem of minimizing
the cost function:
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with ¢ an atom (or column) of @ and ||x,||, the number
of non-zero coefficients in the n** column of the sparse
coefficients X. Common algorithms such as MOD [2] or
K-SVD [3] solve this problem by alternating between the
optimization of X (sparse approximation) and of ® (dictionary
update). For the LGD algorithm, the dictionary update step is
performed using a projected gradient descent iteration for each
atom with a step size equal to twice the optimal step [1]. In this
work we provide guarantees on the monotonicity of the LGD
iteration and some insight on the reason why it outperforms
MOD and K-SVD.

II. LGD

Numerical simulations showed that when the support of the
sparse decomposition is known, a simple fixed step gradient
descent is more likely to retrieve the best dictionary than either
an optimal step gradient, MOD or K-SVD. Since the optimal
step size for one iteration does not yield the best performance
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over the whole algorithm, LGD uses a step size that is twice
the optimal one for each atom ¢,, instead:
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with R = s — ®X the residual and x’ the i*"* row of X.

IIT. RESULTS

When updating one atom only, one iteration of optimal
step size gradient descent descent finds the global minimum
of the cost function f, and the level sets of that function
are hyperspheres. In that case, the points gogf) and 9051”0‘5)
are diametrically opposed on the same level set. Instead of
decreasing the error as much as possible, the LGD gradient
step computes the point that is the furthest away from the
starting point, under the constraint that the error does not
increase. This explains why LGD is better at exploring the
space than the optimal step size descent, but it does not explain
why the error decreases.

It is in fact the renormalization step that decreases the error.

One can prove that if H<p$f+0'5)H > 1, then f(cpgfﬂ)) <
2

f (cpgf )). If the algorithm used for the sparse decomposition
is either an orthogonal algorithm or a thresholding algorithm,
then that condition is always satisfied.

LGD is a deterministic, monotonic, parameter-free algo-
rithm that performs global optimization by iterating a maximal
exploration step and a projection step that reduces the error
although it is not its primary goal. In our experiments, it
succeeds at finding the best dictionary in 80% of the tries
whereas the K-SVD success rate is only 18%.
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