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Abstract

In this paper, we investigate threshold effects associated with swapping of signal and noise subspaces

in estimating signal parameters from compressed noisy data. The term threshold effect refers to a

sharp departure of mean-squared error from the Cramér-Rao bound when the signal-to-noise ratio falls

below a threshold SNR. In many cases, the threshold effect is caused by a subspace swap event,

when the measured data (or its sample covariance) is better approximated by a subset of components

of an orthogonal subspace than by the components of a signal subspace. We derive analytical lower

bounds on the probability of a subspace swap in compressively measured noisy data. These bounds

guide our understanding of threshold effects and performance breakdown for parameter estimation using

compression. As a case study, we investigate threshold effects in maximum likelihood (ML) estimation

of directions of arrival of two closely-spaced sources using co-prime subsampling. Our results show the
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impact of compression on threshold SNR. A rule of thumb is that every doubling of compression ratio

brings a penalty in threshold SNR of 3 dB.

I. INTRODUCTION

The performance of many high resolution parameter estimation methods, including subspace and maxi-

mum likelihood methods, may suffer from performance breakdown, where the mean squared error (MSE)

departs sharply from the Cramér-Rao bound at low signal-to-noise ratio (SNR). Performance breakdown

may happen when either the sample size or SNR falls below a certain threshold [1]. The main reason

for this threshold effect is that in low SNR or sample size regimes, parameter estimation methods lose

their capability to resolve signal and noise subspaces. As a result of this, one or more components in

the orthogonal (noise) subspace better approximate the data than at least one component of the signal

subspace, which in turn leads to a large error in parameter estimation [2]. This phenomenon is called a

subspace swap.

In this paper, we address the effect of compression on the probability of a subspace swap. In other

words, we ask what effect compression has on the threshold SNR at which performance breaks down.

To answer this question, we derive a lower bound on the probability of a subspace swap in parameter

estimation from compressed noisy measurements. We consider two measurement models. In the first-

order model, the parameters to be estimated modulate the mean of a complex multivariate normal set of

measurements. In the second-order model, the parameters modulate the covariance of complex multivariate

measurements. For these models, we derive analytical lower bounds on the probability of a subspace swap

in compressively measured noisy data. These bounds guide our understanding of threshold effects and

performance breakdown for parameter estimation using compression. As a case study, we investigate

threshold effects in the maximum likelihood estimation of directions of arrival of two closely-spaced

sources, using co-prime subsampling of a uniform line array. Co-prime sensor array processing was

introduced recently by Vaidyanathan and Pal [3]-[5] as a sparse alternative to uniform line arrays. The

concept was extended to sampling in multiple dimensions in subsequent papers by the same authors.

In one dimension, the idea is to employ two uniform line arrays with spacings of m1 and m2 in units

of half-wavelength, where m1 and m2 are co-prime. Our results show the impact of compression on

threshold SNR, and can be used as a tool to predict the threshold SNR for different compression regimes

in maximum likelihood estimation. Our simulation results indicate that compression brings a cost of

about 10log10C dB in threshold SNR, where C is the compression ratio.
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Co-prime sampling is just one type of sampling to which our results apply. Our probability bounds are

tail probabilities of F -distributions, and they apply to any deterministic linear compression.

Other studies have also addressed the performance breakdown regions of high resolution parameter

estimation methods. In [1], approximation of the probability of a subspace swap in the Singular Value

Decomposition (SVD) is investigated. In [2] lower bounds on the probability of a subspace swap are

derived for the problem of modal analysis. In [6] a lower bound on the probability of a subspace swap

is derived by considering the separation of the estimates of signal and noise eigenvalues. In [7], the

authors propose a method to reduce the subspace leakage for the direction of arrival (DOA) estimation

problem using root-MUSIC algorithm [8]. In [9]-[11], perturbation analysis of the SVD is carried out

to study the performance of subspace based methods for parameter estimation, when subspace leakage

happens between signal and noise subspaces. Performance breakdown of maximum likelihood has been

studied in [12]-[16] by perturbation analysis using an asymptotic assumption on the number of snapshots.

More perturbation analysis may be found in the papers by Vaccaro et al. [17]-[19]. In [20], performance

breakdown regions have been studied in the DOA estimation problem using asymptotic assumptions on

the number of antennas and number of samples. It is shown that while a subspace swap is the main

source of performance breakdown in maximum likelihood, earlier breakdown of MUSIC is due to the

loss of resolution in separating closely-spaced sources.

II. MEASUREMENT MODEL

In the following subsections, we consider two models for the random measurement vector y ∈ Cn. In the

first-order model, the parameters to be estimated nonlinearly modulate the mean of a complex multivariate

normal vector, and in the second-order model the parameters nonlinearly modulate the covariance of a

complex multivariate normal vector.

A. Parameterized Mean Case

Let y ∈ Cn be a complex measurement vector in a signal plus noise model y = x(θ) + n. Here, we

assume that n is a proper complex white Gaussian noise with covariance σ2I and x(θ) is parameterized

by θ ∈ Cp, p ≤ n. We assume that the parameters are nonlinearly embedded in x(θ) as x(θ) = K(θ)α,

where the columns of K(θ) = [k(θ1) k(θ2) · · · k(θp)] define the signal subspace, and α ∈ Cp is a

deterministic vector associated with the mode weights. Therefore, y is distributed as CN n(K(θ)α, σ2I),
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and the parameters θ ∈ Cp to be estimated nonlinearly modulate the mean of a complex multivariate

normal vector. Assume we compress the measurement vector y by a unitary compression matrix Ψ =

(ΦΦH)−1/2Φ, where Φ ∈ Cm×n, p ≤ m < n. Then, we obtain w = Ψy which is distributed as

CNm(z(θ), σ
2I), where z(θ) = Ψx(θ). We form the data matrix W = [w1 w2 · · · wM ], where wi’s

are independent realizations of w. To specify a basis for the signal subspace and the orthogonal subspace

in our problem, we define H(θ) = ΨK(θ) = [h(θ1) h(θ2) · · · h(θp)], with h(θi) = Ψk(θi). The

singular value decomposition of Hm×p (p ≤ m) is

H = UΣVH (1)

where

U ∈ Cm×m : UUH = UHU = I

V ∈ Cp×p : VVH = VHV = I

Σ ∈ Cm×p : Σ =

Σp

0


Σp = diag(σ1, σ2, ..., σp), σ1 ≥ σ2 ≥ ... ≥ σp. (2)

Now we can define the basis vectors from U = [u1,u2, ...,up|up+1, ...,um] = [Up|U0], where 〈Up〉

and 〈U0〉 represent signal and orthogonal subspaces, respectively. The columns of Up and U0 can be

considered as basis vectors for the signal and orthogonal subspaces, respectively.

B. Parameterized Covariance Case

Assume in the signal plus noise model y = x + n, the signal component x is of the form x = K(θ)α,

where the columns of K(θ) = [k(θ1) k(θ2) · · · k(θp)] are the modes and α ∈ Cp is the vector

associated with the random mode weights. We assume α is distributed as CN p(0,Rαα). Therefore,

Rxx(θ) = K(θ)RααKH(θ) is parameterized by θ ∈ Cp. We assume n is a proper complex white

Gaussian noise with covariance σ2I, and x and n are independent. Therefore, y is distributed as

CN n(0,Ryy(θ)), where Ryy(θ) = K(θ)RααKH(θ) + σ2I. Such a data model arises in many ap-

plications such as direction of arrival and spectrum estimation.

Assume we compress the measurement vector y by a unitary compression matrix Ψ = (ΦΦH)−1/2Φ,

where Φ ∈ Cm×n(m < n). Then, we obtain w = Ψy which is distributed as

w ∼ CNm(0,Rww) (3)
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where Rww = ΨK(θ)RααKH(θ)ΨH+σ2I. We form the data matrix W = [w1 w2 · · · wM ], where

wi’s are independent realizations of w. Each of these i.i.d. realizations consists of an i.i.d. realization of

yi, compressed by a common compressor Ψ for all i = 1, 2, . . . ,M . We may define the signal covariance

matrix after compression as

Rzz = ΨK(θ)RααKH(θ)ΨH

= H(θ)RααHH(θ), (4)

where H(θ) = [h(θ1) h(θ2) · · · h(θp)], and h(θi) = Ψk(θi). Now, we can write the singular value

decomposition of Rzz and Rww as

Rzz = UΛUH

Rww = U(Λ + σ2I)UH (5)

where U and Λ are defined as

U ∈ Cm×m : UUH = UHU = I

Λ ∈ Cm×m : Λ =

Λp 0

0 0


Λp = diag(λ1, λ2, ..., λp), λ1 ≥ λ2 ≥ ... ≥ λp. (6)

Assuming Rzz has rank p, the unitary matrix U can be written as U = [u1,u2, ...,up|up+1, ...,um] =

[Up|U0]. Here 〈Up〉 represents the signal subspace and 〈U0〉 represents the orthogonal subspace which

completes Cm×m, assuming p ≤ m < n. Figure 1 gives a geometrical representation of (6).

Fig. 1: Signal and noise subspaces.
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III. BOUND ON THE PROBABILITY OF A SUBSPACE SWAP AFTER COMPRESSION

To bound the probability of a subspace swap for the compressed measurements W, we define the

following events:

• E is the event that one or more modes of the orthogonal subspace resolve more energy in W than

one or more modes of the noise-free signal subspace. Therefore, E may be written as

E = ∪pq=1E(q), (7)

where E(q) is the following subset of the subspace swap event E,

min
A∈Ip,q

tr(WHPHAW) < max
B∈C(n−p)×q

tr(WHPU0BW), (8)

and Ip,q is the set of all p×q slices of the identity matrix Ip. Here, the columns of H are the modes

defined in Section II, and A selects q of the columns of H.

• F is the event that the average energy resolved in the orthogonal subspace 〈U0〉 is greater than

the average energy resolved in the noise-free signal subspace 〈Up〉 (or equivalently 〈H〉). Then, the

following bounds establish that F is a subset of E(1), which is in turn a subset of the swap event

E:

min
1≤i≤p

tr(WHPhi
W) ≤ 1

p
tr(WHPUp

W)

<
1

m− p
tr(WHPU0

w)

≤ max
p+1≤i≤m

tr(WHPui
W)

≤ max
b∈C(n−p)×1

tr(WHPU0bW). (9)

• G is the event that the energy resolved in the apriori minimum mode hmin of the noise-free signal

subspace 〈H〉 (or equivalently 〈Up〉) is smaller than the average energy resolved in the orthogonal

subspace 〈U0〉. For the parameterized mean measurement model, we define hmin as

hmin = argmin
h∈{h(θ1),h(θ2),...,h(θp)}

|hHz(θ)|2, (10)

and for the parameterized covariance measurement model as

hmin = argmin
h∈{h(θ1),h(θ2),...,h(θp)}

|hHRzz(θ)h|2. (11)
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Then, the following bounds establish that G is a subset of E(1), which is in turn a subset of the

swap event E:

min
1≤i≤p

tr(WHPhi
W) ≤ tr(WHPhmin

W)

<
1

m− p
tr(WHPU0

w)

≤ max
p+1≤i≤m

tr(WHPui
W)

≤ max
b∈C(n−p)×1

tr(WHPU0bW). (12)

Since events F and G are subsets of event E, their probabilities of occurrence give lower bounds on

the probability of a subspace swap, Pss , P (E). We use these events to derive lower bounds on the

probability of a subspace swap for the two data models given in Section II.

A. Parameterized Mean Case

For the parameterized mean measurement model discussed in Section II-A, we start with event F and

define

TF =
1

m− p
PU0

− 1

p
PUp

(13)

where PUp
= UpU

H
p is the orthogonal projection onto the signal subspace and PU0

= U0U
H
0 is the

orthogonal projection onto the orthogonal (noise) subspace. According to the definition of event F we

can lower bound the probability of a subspace swap Pss as

Pss ≥ P (tr
[
WHTFW

]
> 0) (14)

Therefore, we have

Pss ≥ P (tr
[
WHTFW

]
> 0)

= P (
tr
[
WHUpU

H
p W

]
/2p

tr
[
WHU0UH

0 W
]
/2(m− p)

< 1)

= P (

∑M
i=1 ‖UH

p wi‖22/2p∑M
i=1 ‖UH

0 wi‖22/2(m− p)
< 1). (15)

Here, the UH
p wi are independent and identically distributed as

UH
p wi ∼ CN p(U

H
p z(θ), σ2I) ∀1 ≤ i ≤M. (16)
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Therefore, ‖UH
p wi‖22/σ2 ∼ χ2

2p(‖z(θ)‖22/σ2), which is the distribution of a complex noncentral chi-

squared random variable with 2p degrees of freedom and noncentrality parameter ‖z(θ)‖22/σ2. Also,

since 〈Up〉 and 〈U0〉 are orthogonal, we can conclude that in (15), each ‖UH
0 wi‖22/σ2 is independent

of ‖UH
p wi‖22/σ2 and is distributed as χ2

2(m−p). Hence, the term ‖UH
p w‖22/2p

‖UH
0 w‖22/2(m−p)

is the ratio of two

independent normalized chi-squared random variables and is distributed as F2pM,2(m−p)M (‖z(θ)‖22/σ2),

which is a noncentral F distribution with 2pM and 2(m − p)M degrees of freedom and noncentrality

parameter ‖z(θ)‖22/σ2. Thus, the probability of a subspace swap after compression is lower bounded by

the probability that a F2pM,2(m−p)M (‖z(θ)‖22/σ2) distributed random variable is less than 1. When there

is no compression, this lower bound turns into the probability that a F2pM,2(n−p)M (‖x(θ)‖22/σ2) random

variable is less than 1.

For event G, we define

TG =
1

m− p
PU0

−Phmin
. (17)

Here, we define ρmin = hmin

‖hmin‖2 . Therefore Phmin
= ρminρ

H
min, and we have

Pss ≥ P (tr
[
WHTGW

]
> 0)

= P (
tr
[
WHρminρ

H
minW

]
/2

tr
[
WHU0UH

0 W
]
/2(m− p)

< 1)

= P (

∑M
i=1 ‖ρHminwi‖22/2∑M

i=1 ‖UH
0 wi‖22/2(m− p)

< 1). (18)

Here, we have

ρHminwi ∼ CN (ρHminz(θ), σ
2I) ∀1 ≤ i ≤M. (19)

Therefore, ‖ρHminwi‖22/σ2 ∼ χ2
2(|ρHminz(θ)|2/σ2) which is the distribution of a complex noncentral chi-

squared random variable with 2 degrees of freedom and noncentrality parameter |ρHminz(θ)|2/σ2. Thus,

with the same type of arguments as for event F , we can conclude that the term
∑M

i=1 ‖ρH
minwi‖22/2∑M

i=1 ‖UH
0 wi‖22/2(m−p)

is

distributed as F2M,2(m−p)M (|ρHminz(θ)|2/σ2), which is a noncentral F distribution with 2M and 2(m−

p)M degrees of freedom and noncentrality parameter |ρHminz(θ)|2/σ2. When there is no compression,

this turns into the probability that a F2M,2(n−p)M (|κHminx(θ)|2/σ2) random variable is less than 1. Here,

κmin = kmin

‖kmin‖2 , and kmin is the apriori minimum mode of the signal subspace before compression.

B. Parameterized Covariance Case

For the parameterized covariance measurement model discussed in Section II-B, we start with event

F . In this case, the columns of the measurement matrix W are i.i.d. random vectors distributed as
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CN (0,Rww), and similar to the mean case we have

Pss ≥ P (tr
[
WHTFW

]
> 0)

= P (
tr
[
WHUpU

H
p W

]
/2p

tr
[
WHU0UH

0 W
]
/2(m− p)

< 1)

= P (

∑M
i=1 ‖UH

p wi‖22/2p∑M
i=1 ‖UH

0 wi‖22/2(m− p)
< 1). (20)

Here, the UH
p wi are i.i.d. and distributed as

UH
p wi ∼ CN p(0,Λp + σ2Ip) ∀1 ≤ i ≤M. (21)

Therefore we can write

‖UH
p wi‖22 =

p∑
i=1

(λi + σ2)ρi, (22)

where ρi’s are i.i.d. random variables, each distributed as χ2
2. Therefore,

M∑
i=1

‖UH
p wi‖22 =

p∑
i=1

(λi + σ2)ξi, (23)

where ξi’s are i.i.d. random variables, each distributed as χ2
2M . Also, we can write

∑M
i=1 ‖UH

0 wi‖22 = σ2ν,

where ν is distributed as χ2
2M(m−p) and is independent of the ξi’s. Therefore, we have

Pss ≥ P (
∑M

i=1 ‖UH
p wi‖22/2p∑M

i=1 ‖UH
0 wi‖22/2(m− p)

< 1)

= P (

∑p
i=1(1 + λi/σ

2)ξi/2Mp

ν/2M(m− p)
< 1). (24)

Here, the term
∑p

i=1(1+λi/σ2)ξi/2Mp
ν/2M(m−p) is distributed as GF

[
(1+ λ1

σ2 ), . . . , (1+
λp

σ2 ); 2Mp; 2M(m−p)
]
, which

is the distribution of a generalized F random variable [21]. Thus, the probability of a subspace swap

in this case is lower bounded by the probability that a GF
[
(1 + λ1

σ2 ), . . . , (1 + λp

σ2 ); 2M ; 2M(m − p)
]

random variable is less than 1. Without compression, this turns into the probability that a GF
[
(1 +

λ̃1

σ2 ), . . . , (1 + λ̃p

σ2 ); 2Mp; 2M(m − p)
]

random variable is less than 1. Here λ̃i’s are the eigenvalues of

the signal covariance matrix Rxx before compression.
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We can also derive the probability of the event G for the parameterized covariance measurement model.

In this case we have

Pss ≥ P (tr
[
WHTGW

]
> 0)

= P (

∑M
i=1 ‖ρHminwi‖22/2∑M

i=1 ‖UH
0 wi‖22/2(m− p)

< 1), (25)

where ρmin = hmin

‖hmin‖2 , and hmin is the apriori minimum mode of the signal subspace given by (11).

Here, ρHminwi is distributed as

ρHminwi ∼ CN (0, τ) ∀1 ≤ i ≤M, (26)

where τ = ρHminRwwρmin. Therefore,

M∑
i=1

‖ρHminwi‖22/τ ∼ χ2
2M , (27)

and we have

Pss ≥ P (
∑M

i=1 ‖ρHminwi‖22/2∑M
i=1 ‖UH

0 wi‖22/2(m− p)
< 1)

= P (ϑ <
σ2

τ
), (28)

where ϑ is distributed as F2M,2M(m−p), which is a central F random variable with 2M and 2M(m− p)

degrees of freedom. Without compression, this turns into the probability that a F2M,2M(n−p) random

variable is less than σ2

τ̃ , where τ̃ = κHminRyyκmin, κmin = kmin

‖kmin‖2 , and kmin is the apriori minimum

mode of the signal subspace before compression.

Remark 1: In Sections (III-A) and (III-B), we have derived lower bounds on the probability of a subspace

swap for the case that Ψ = (ΦΦH)−1/2Φ is deterministic, as in standard or co-prime subsamplings. In

the case that Ψ is random, these probability bounds would have to be integrated over the distribution of

Ψ to give lower bounds on marginal probabilities of a subspace swap. For example, for random Ψ and

for the subevent F we have

Pss =

∫
P (E|Ψ)P (Ψ)dΨ ≥

∫
P (F |Ψ)P (Ψ)dΨ (29)

where P (F |Ψ) is given in Sections (III-A) and (III-B) for the parameterized mean and parameterized

covariance measurement models, respectively. For the class of random compression matrices that have

density functions of the form g(ΦΦH), that is, the distribution of Φ is right orthogonally invariant, Ψ is

uniformly distributed on the Stiefel manifold Vm(Cn) [22]. The compression matrix Φ whose elements

are i.i.d. standard normal random variables is one such matrix.
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IV. SIMULATION RESULTS

In this section, we present numerical examples to show the impact of compression on threshold effects

for estimating directions of arrival using a sensor array. We consider a dense uniform line array with n

elements at half-wavelength inter-element spacings. We compress this array to m dimensions using co-

prime subsampling. In co-prime compression, we uniformly subsample the dense array once by a factor

m1 and once by a factor m2, where m1 and m2 are co-prime. We then interleave these two subarrays

to form the co-prime array of m1 + 2m2 − 1 elements. We note that although we are compressing the

array by a factor n/m for the co-prime array, the dense and the compressed arrays still have the same

total aperture. The geometry of the dense and co-prime arrays are shown in Figure 2. We consider two

point sources at far field at electrical angles θ1 = 0 and θ2 = π/n. We set the amplitudes of these

sources α1 = α2 = 1. The Rayleigh limit of the dense array in electrical angle is 2π/n. Therefore, in

our examples the two sources are separated by half the Rayleigh limit of the dense array. We present the

results for the parameterized mean and parameterized covariance cases.

(a)

(b)

(c)

Fig. 2: Geometry of the dense array (a), and co-prime subarrays (b), (c). At m1 = 11 and m2 = 9,

(2m2 − 1)m1λ/2 = 187λ/2.
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A. Parameterized Mean Case

In this case, the Monte Carlo simulation consists of 200 independent realizations of the measurement

vector y for a dense array of 188 elements, each for a single snapshot (M = 1). Then we compress

these measurements to simulate the data for the co-prime compressed array of 28 elements with m1 = 11

and m2 = 9. The compression ratio is n
m ≈ 6.7. Figure 3 shows the MSE for the maximum likelihood

estimator of the source at θ1 in the presence of the interfering source at θ2. The CRB corresponding to

the 188-element dense array is also shown in this figure as a reference for performance analysis. Figure

3 also shows approximations to the MSE (in starred solid lines) obtained using the method of intervals

(introduced in [23] and used in [2]). At each SNR, the approximate MSE σ2T is computed as

σ2T = Pssσ
2
0 + (1− Pss)σ2CR. (30)

Here, Pss is the probability of the subspace swap as a function of SNR, which we approximate using

the lower bound in (14); σ2CR is the value of the CRB as a function of SNR, and σ20 is the variance of

the error given the occurrence of a subspace swap. The justification for using this formula is that when

a subspace swap does not occur, MSE almost follows the CRB . However, given the occurrence of the

subspace swap (and in the absence of any prior knowledge) the error in estimating the electrical angle θ1

may be taken to be uniformly distributed between (−π/2, π/2) and the error variance is σ20 = π2/12.

Figure 3 shows that performance loss, measured by onset of threshold effect is approximately 10log10n/m.

Our approximations on MSE also predict the same SNR difference in the onset of the performance

breakdown. Figure 4 shows our bounds on the probability of a subspace swap for the dense and co-prime

arrays which are obtained using event F in Section III. The ML curves of Figure 3 would approach the

CRB at high SNR were it not for the quantization of our ML simulation code.

B. Parameterized Covariance Case

We conduct the same set of Monte Carlo simulations for the stochastic data model. Here we draw

M = 200 independent snapshots for a dense array of 36 elements over 200 independent realizations, and

compress them to simulate the data for the co-prime array of 12 elements with m1 = 5 and m2 = 4. The

compression ratio is n
m = 3. Figure 5 shows the results for the MSE of the maximum likelihood estimator

of the source at θ1 = 0 in the presence of the interfering source at θ2 = π/36. Our approximations for

the MSE using the method of intervals in (30) and the Cramér-Rao bound are also shown for each
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Fig. 3: Parameterized mean case. Dense 188 element array and 28 element co-prime array. MSE bounds

and MSE for ML estimation of θ1 = 0 in the presence of an interfering source at θ2 = π/188; 200 trials.
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Fig. 4: Parameterized mean case. Analytical lower bounds (event F ) for the probability of subspace swap

for estimation of the angle of a source at θ1 = 0 in the presence of an interfering source at θ2 = π/188

using 188 element dense array and 28 element co-prime array.
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array. Figure 5 shows that performance loss, measured by onset of threshold effect is approximately

10log10n/m. Our bounds on the probability of a subspace swap using event G in Section III are shown

in Figure 6 for the dense and co-prime arrays.
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Fig. 5: Parameterized covariance case. Dense 36 element array and 12 element co-prime array. MSE

bounds and MSE for ML estimation of θ1 = 0 in the presence of an interfering source at θ2 = π/36;

200 snapshots and 200 trials.

V. CONCLUSION

We have addressed the effect of compression on the probability of a subspace swap. A subspace swap is

known to be the main source of performance breakdown in maximum likelihood parameter estimation,

wherein one or more modes of a noise subspace better approximate a measurement than one or more

modes of a signal subspace. We have derived an analytical bound on this probability for two measurement

models. In the first-order model, the parameters modulate the mean of a set of complex i.i.d. multivariate

normal measurements. In the second-order model, the parameters to be estimated modulate a covariance

matrix. Our lower bounds take the form of tail probabilities of F -distributions. They may be used to

predict the threshold SNR. At a compression ratio of C, our numerical experiments show that the threshold

SNR increases by about 10log10C dB when estimating a broadside source DOA in interference located

at half the Rayleigh limit of the pre-compressed array.
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Fig. 6: Parameterized covariance case. Analytical lower bounds (event G) for the probability of a subspace

swap using co-prime compression for the estimation of the angle of a source at θ1 = 0 in the presence

of an interfering source at θ2 = π/36 using 36 element dense array and 12 element co-prime array.
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