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Abstract—Device-free or non-cooperative localization uses the
changes in signal strength measured on links in a wireless
network to estimate a person’s position in the network area.
Existing methods provide an instantaneous coordinate estimate
via radio tomographic imaging or location fingerprinting. In this
paper, we explore the problem of, after a person has exited the
area of the network, how can we estimate their path through the
area? We present two methods which use recent line crossings
detected by the network’s links to estimate the person’s path
through the area. We assume that the person took a linear path
and estimate the path’s parameters. One method formulates path
estimation as a line stabbing problem, and another method is a
linear regression formulation. Through simulation we show that
the line stabbing approach is more robust to false detections, but
in the absence of false detections, the linear regression method
provides superior performance.

I. INTRODUCTION

Current research in device-free localization can provide
instantaneous or real-time coordinate estimates of a person
inside the deployment area of a wireless network. The per-
son carries no wireless device to assist in the localization.
Technologies such as radio tomographic imaging (RTI) can
achieve remarkable localization accuracy [3], [6]. However,
the accuracy comes at the requirement of a high density of
radio sensing nodes.

In this paper, we explore the estimation of the person’s path
or trajectory through the deployment area after the person
has travelled through. We may want to know the direction
and velocity of their path, and be willing to wait until the
person has crossed through in order to make the estimate. In
cases when the node (and thus link) density is low, a person
may cross links only occasionally, and thus instantaneous point
estimates may have significantly higher error than the after-
the-fact path estimate.

We propose two path estimators which receive which link
lines were detected as crossed and at what times, and output
the estimates of the parameters of a linear path. We approx-
imate the person’s path as straight based on the observation
that people tend to walk in piecewise straight paths. The first
method formulates path estimation as a line stabbing problem,
and the second method is a linear regression formulation.

Inaccuracies that arise as a result of detecting link line
crossings are the major hurdles affecting the performance of
our proposed methods. Link line crossing detection methods

will ultimately miss crossing events and will report false
crossings. The solutions we propose track a person’s path in
spite of these errors. We analyze the performance of the two
methods through simulation.

The paper is organized as follows. We introduce our link
line detection model, and the line stabbing and linear regres-
sion algorithms in Section II. We then present a simulation
framework and provide and discuss results in Section III. We
conclude in Section IV.

II. METHODOLOGY

In this paper, we consider a wireless network with N
wireless devices, or nodes. The coordinate of the ith node
is given as zi = (xi, yi) in a Cartesian plane. In this work
we consider only 2D localization. The link k = (i, j) is a
communication link between transmitter i and receiver j. We
refer to the link line segment as sk, whose endpoints are zi
and zj; and to the link line which contains both zi and zj. Link
line k is also given as the equation aky = bkx + ck. In this
paper, we assume a single person is walking, with position
p[n] at time index n. Time index n corresponds to time nTs,
where Ts is a sampling period.

We assume that link line crossing detection is performed
using measurements of the radio channel. For example, the
channel measurement might be the RSS. When a person passes
near a link line segment, he tends to affect the received signal
strength (RSS) measured on the link, in a manner that is
detectable [2], [5], [6]. We assume a detector as in [2], [5], [6]
is applied to the channel measurements at each time index.

A. Link Line Crossing Detection Model

Link crossing detection methods are prone to both false
alarms and missed detections [6], but our experimental expe-
rience tells us that the further a person is from a link line
segment, the less likely that link will detect a crossing [4].
Currently, no statistical model for link line crossing detection
performance has been reported in the literature. In this work,
we use a simple model to describe the probability of a
link’s channel measurement being “perturbed” by a person’s
presence at a particular location, and that perturbation then
causing the link to be detected as “crossed”. We denote Pk[n]
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as the probability that link k = (i, j) is detected as perturbed
at time index n,

Pk[n] = P0e
− 1
δ (‖zi−p[n]‖+‖zj−p[n]‖−‖zi−zj‖) (1)

where P0 is the probability a perturbation event is detected
when a person is blocking the link line segment, and δ is the
decay constant. A smaller δ value models links that experience
changes in RSS solely when p[n] is very near the link, while
larger δ values model links that experience significant changes
in RSS even when p[n] is relatively far away.

Link line crossing algorithms consider a link line crossed
only when detected as perturbed consecutively for longer
than Tc seconds, or nc = bTcTs c samples [5]. If the case
arises that a link detects more than one perturbation, the
system detects a crossing and records the median of the
perturbation events as the crossing time. After the person
crosses through the wireless network, the system generates
a vector Qstate = [q1, q2, . . . , qL]

T where L is the number of
links and qk is 0 when link k is not detected as crossed and
1 when it is detected as crossed. The system also generates
Ttime = [t1, t2, . . . , tL]

T where tk is the time in seconds when
link k is detected as crossed. We use Qstate and Ttime in the
linear regression and line stabbing algorithms to estimate the
person’s path as described in the following subsections.

B. Line Stabbing Estimation

In computational geometry, given a set of line segments,
the line stabbing problem is to define the set of lines y =
mx+b that intersect (or stab) all the line segments [1]. In our
case, the line segments are the link line segments {sk}k, and
we wish to estimate a line which corresponds to the straight
path of a person passing through a wireless network. The key
challenge in our problem is that the system may record false
link crossings or miss link crossings.

To solve this problem, we use the principle of point-line
duality. A point with coordinates (a, b) is transformed to a
line l∗ = ax + (−b) and a line l′ = ax + b is transformed
to a point with coordinates (a,−b). A line segment, which
is defined by two endpoints p1 and p2 is transformed into a
dual-wedge, where the boundaries of the dual-wedge are the
lines l∗1 and l∗2 and the region between the boundaries are the
infinite number of lines that pass through the intersection of l∗1
and l∗2 . Overlapping dual-wedges form a stabbing region such
that any point pstab within the region transforms into a line
lstab that stabs the set of line segments that correspond to the
overlapping dual-wedges.

In this work, the L links in the network are represented as
line segments sk, where k corresponds to the kth link. The line
segment sk is transformed into its dual-wedge wk. For speed of
processing, we use a discretized grid of points, denoted by the
matrix Mk, to define wk: the grid point Mk(a, b) is assigned
the value 1 if (a, b) is inside wk and 0 if (a, b) is outside
wk. The grid points for all Mk are bounded horizontally by
[amin, amax] and vertically by [bmin, bmax]. An example of
a discrete dual-wedge is shown in Fig. 1. We combine all L
matrices in a database C, where the 1st and 2nd dimensions are
the grid points and the 3rd dimension is the kth matrix, Mk. If
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Fig. 1: An example matrix Mk containing the dual-wedge
wk. Blue o’s are where Mk(a, b) = 0 and red x’s are where
Mk(a, b) = 1. The black lines are the dual of the endpoints
of line segment sk.

we were to examine C(0.3, 0.6), we would see a 1×L binary
vector, C(0.3, 0.6) = [c1, c2, . . . , cL]. If ck = 1, then the point
(0.3, 0.6) is inside wk, and is outside wk if ck = 0. Applying
duality to point (0.3, 0.6), the line l∗ = 0.3x+(−0.6) stabs all
line segments sk whose corresponding ck value is 1. Suppose
that the link crossing detection system could perfectly detect
link crossings. Then we could define a set of lines that stab the
crossed links by finding all points in C(a, b) where Qstate =
C(a, b). But since the link crossing detection system misses
and falsely detects link line crossings, we are left to find all
points in C(a, b) such that the difference in values in C(a, b)
and Qstate are minimized. We define the stabbing region to
be the set of points (a, b) such that the Hamming distance
between C(a, b) and Qstate is minimized.

arg min
(a,b)

{d(Qstate, C(a, b))} (2)

where d(Qstate, C(a, b)) = |{i : qi − ci 6= 0}|, i.e., the num-
ber of disagreements between the two vectors. In many cases,
performing (2) yields multiple points (a, b) that define the
stabbing region. We require one point, pstab, whose dual is
an estimate of the path traveled by the person. In this paper,
we choose the centroid of points produced by (2) to be pstab,
whose dual is lest. Estimating pstab with a maximum liklihood
or Bayesian estimator, is left to future work.

C. Linear Regression Estimation

In addition to the line stabbing adaptation, we also use
ordinary least squares to estimate the initial position and
trajectory of a person walking through the network using
link crossing information in Qstate and the detected time of
crossing in Ttime. The path the person travels is parameterized
such that when he crosses link k at time tk, his coordinate
(x, y) is defined by

x = tkvx + px

y = tkvy + py
(3)
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where the unknown parameters p[0] = [px, py]
T are the

coordinates of the person at t = 0 and [vx, vy]
T are the rate of

change of the x and y coordinates, respectively. For all links
k for which qk = 1, we combine the line equation of all links
detected as crossed, their recorded crossing time, and (3) to
form a matrix equation

a1t1 −b1t1 a1 −b1
a2t2 −b2t2 a2 −b2

...
...

...
...

aRtR −bRtR aR −bR


︸ ︷︷ ︸

α


vy
vx
py
px


︸ ︷︷ ︸
θ

=


c1
c2
...
cR


︸ ︷︷ ︸
β

. (4)

The value R must be ≥ 4 and is the number of links detected
as crossed. Given that the link crossing detection and timing
system are imperfect, we minimize the error in θ by using an
ordinary least squares estimation:

θ̂ = (αTα)−1(αTβ). (5)

The line that estimates the path the person took in the network
is defined as lest = (v̂y/̂vx)x− (v̂y/̂vx)p̂x + p̂y .

D. Quantifying Estimation Accuracy

In this section, we describe how we quantify the accuracy of
the line estimate lest obtained from the algorithm in Section
II-B or II-C. While many quantification methods exist, we
calculate accuracy as the root-mean-square error (RMSE) of
a discretized line segment that passes through the area. We
calculate the bottom-left-most and top-right-most intersection
points between that of the true path and the network as well
as the estimated path and the network. These coordinates are
denoted as zpathll , zpathur , and zestll , zestur . We choose P evenly
distributed points along the lines connecting the coordinates
of zpath and zest and save both set of points in the P × 2
matrices Dpath and Dest. We calculate the RMSE as,

RMSE =

√
1

P
‖Dpath −Dest‖F , (6)

where ‖ · ‖F indicates the Frobenius norm.

III. RESULTS

In this section, we describe our simulation framework, and
then use it to show the accuracy of the line stabbing and linear
regression methods.

A. Simulation Framework

In simulation, 30 nodes are placed inside of an 276 m2

area as shown in Fig. 2. A link k = (i, j) is formed between
the nodes only when ‖zi − zj‖ < dmax, where dmax is the
connectivity distance. We use dmax = 10m in this simulation.
The endpoints of the true path for each simulation are normally
distributed N(0, 1) around the points (0,−5) and (30, 10).
We also adjust P0 and δ in (1) for each trial to simulate
scenarios where the detection rate (i.e., the ratio of accurately
detected link line crossings to the total number of true link line
crossings) and false alarm rate (i.e., the ratio of the number
of false alarms to the product of the number of samples taken
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Fig. 2: Node coordinates in the simulation network. Endpoints
of the true path are normally distributed around the lower and
upper (x).
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Fig. 3: Mean false alarm rate as a function of P0 and δ.

by the wireless network and the number of links) are high
and low (see Figures 3 and 4). For each trial, we record the
false alarm rate, the detection rate, and the RMSE with the
associated value of P0 and δ. In this work, anywhere from
sixty to seventy link lines are crossed for each trial.

B. Line Stabbing Performance

Fig. 5 shows the relationship between P0 and δ and
RMSEavg. For P0 ≥ 0.75, RMSEavg is ≈0.8 m for small δ
and increases to >2.0 m for large δ. We note the unexpected
influence of the parameter P0 — for almost all values of δ,
the lower the value of P0, the lower the RMSEavg . This
unexpected behavior is due to the false alarm rate vs. P0 and
δ, as seen in Fig. 3. Lower values of P0 result in lower false
alarm rates over all δ. Although the detection rate is higher
for larger P0 (see Fig. 4), RMSEavg increases for larger P0

because of the higher false alarm rate.

C. Regression Performance

In Fig. 6, we show the RMSEavg of all simulations with
the given P0 and δ value. We observe that the RMSEavg has
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Fig. 4: Mean detection rate as a function of P0 and δ.
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Fig. 5: Average RMSE for the line stabbing algorithm as a
function of P0 and δ.

a minimum of ≈0.5 meters when δ is small for all values of
P0. As δ increases, RMSEavg also increases until it peaks at
≈2.5 meters when δ = 2 meters for P0 ≥ 0.75. This trend
can be attributed to the average false alarm rate at each value
of δ, as observed in Fig. 3. For all values of P0, the false
alarm rate increases as δ increases. A higher false alarm rate
tends to increase RMSEavg until it reaches a maximum. It
should also be noted that although the system achieves a high
detection rate for large δ (see Fig. 4), the RMSEavg does not
reduce significantly.

D. Performance Comparison

We draw a few conclusions about the different performance
of the line stabbing and linear regression algorithms. Using
the linear regression algorithm, RMSEavg maxes out at ≈2.5
meters whereas the RMSEavg in the adapted line stabbing
algorithm would eventually exceed 2.5 meters for δ > 4 meters
(as observed in Figures 5 and 6). However, if 0.1 < δ < 4, the
adapted line stabbing algorithm will provide a more accurate
best line estimate (regardless of the the detection rate). In
other words, the line stabbing approach is more robust to false
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Fig. 6: Average RMSE for the regression algorithm as a
function of P0 and δ.

alarms; but in the absence of false alarms, the linear regression
algorithm provides the better accuracy. Note that low δ implies
that links are only perturbed when a person is very close to
the line between the transmitter and receiver.

IV. CONCLUSION

In this paper, we present algorithms for device-free tracking
using a wireless network. We study the algorithms via simula-
tion using a simple probability of link line crossing detection
model. Simulations show it is possible to track the straight
path of a person passing through a wireless network despite the
presence of false and missed line crossing detections. When
there are few false alarms, we can accurately estimate the
track of the person to within a RMSE of 0.8 meters using the
adapted line stabbing algorithm and 0.5 meters using the linear
regression algorithm. However, the line stabbing algorithm is
more robust to a high false alarm rate compared to the linear
regression approach.
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