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Abstract—Two-part reconstruction is a framework for signal  coefficients and some of the nonzero coefficients.irAfter
recovery in compressed sensing (CS), in which the advantagef part 1, only a modest number of coefficients are unknown,
two different algorithms are combined. Our framework allows 54 the unknown coefficients are solved in Part 2. where a
to accelerate th(_e reconstl_ruction p_rocedure without_comprmising dense measurement matrix is used. Part 2 first u’ dates the
the reconstruction quality. To illustrate the efficacy of ou ; : p ;
two-part approach, we extend the author's previous Sudocogs COmponents in the measurements and measurement matrix that
algorithm and make it robust to measurement noise. In a 1- are related to the coefficients recovered in Part 1. Thezefor
bit CS setting, promising numerical results indicate that ar  part 2 only needs a modest number of measurements and it
algorithm offers both a reduction in run-time and improvement  555jies matrix inversion to solve the remaining recongionc
in reconstruction quality. o . :

Index Terms—compressed sensing, fast algorithms, two-part prol?lem. A_ varlatlo_n of the Sudocodes algorlthm IS group
reconstruction. testing basis pursuit CS (GBCS) [10], which applies a CS
reconstruction algorithm, Basis Pursuit, in Part 2. Sudeso
and GBCS are both fast. However, they can only be applied
to the noiseless case, which is impractical in many real life

In the compressed sensing (CS) signal acquisition pargdigipplications. Nonetheless, the idea of two-part recoottn
sparse signalg™ € R containing only KX < N nonzero motivates a more practical framework, which performs fast
coefficients can be reconstructed from measuremert®?  reconstruction in the presence of noise. Unlike Sudocaales,
with K < M < N [1,2]. The measurement system is oftemore straightforward approach to two-part reconstructsn
modeled as a linear matrix-vector multiplicatign = ®z; to perform support recovery in Part 1 [11], but exact support
measurement noise can also be suppoued,®z + z. While  recovery is ambitious, especially when the measuremests ar
reconstruction quality is an important criterion for desigy noisy.
reconstruction algorithms, the run-time is also of greatoeon Contributions: First, we propose a two-part framework for
in practical applications. reconstruction of sparse signals (Section II-A). The paepof

Prior art: There is a vast literature on CS signal reconstrucur framework is to accelerate the reconstruction proeedur
tion algorithms; many existing algorithms can be classifiagithout compromising the reconstruction quality. Our stra
as combinatorial or geometric. The combinatorial approaélgy is to let Part 1 perform a simple algorithm to provide
uses sparse and often binary measurement matrices [3d], partial reconstruction and let Part 2 complete the residual
features fast recovery but requires a suboptimal number retonstruction problem. Second, to illustrate the efficaty
measurements. Sparse binary measurement matrices baseouetwo-part approach, we extend the Sudocodes algorithm [9
expander graphs have been shown to have good propertind make it robust to measurement noise (Section II-B); we
for compressed sensing reconstruction problems [5]. Tle geall this algorithm Noisy-Sudocodes. Third, we apply Neisy
metric appoach uses dense measurement matrices thay sagsidocodes to 1-bit CS, by using a modified 1-bit quantizer in
the Restricted Isometry Property (RIP) [2]. Examples of theart 1 and Binary Iterative Hard Thresholding (BIHT) [12] in
geometric approach include CoSaMP [6] and IHT [7]. ThPart 2 (Section 1I-C). Promising numerical results (Sectit)
advantages of the geometric approach are that it requiradicate that our algorithm offers both a reduction in rime
a small number of measurements and offers resiliency dad improvement in reconstruction quality.
measurement noise at the expense of greater run-time [8].

The Sudocodes algorithm [9] provides a new scheme for
lossless reconstruction of sparse signals in the case wh@rdramework
measurements are noiseless. The algorithm has two parts. IWe discuss our two-part reconstruction framework, which
Part 1, the Sudocodes algorithm [9] uses a sparse bin@yillustrated in Figure 1. Part 1 will apply a simple and
random matrix with L ones in each row to acquire thefast algorithm. This algorithm will quickly provide a low
measurements. Therefore, only summation operations arequality reconstruction in the sense that for some portiothef
needed for the acquisition of each measurement. With theseefficients, it may not be able to perform sufficiently aatar
measurements, Part 1 can efficiently recover most of the zeeconstruction. The index set of the coefficients that are no

I. INTRODUCTION

II. TWO-PART RECONSTRUCTION
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accurately reconstructed in Part 1 will then be sent to Parti#cause it is a simple low quality algorithm. The index Bet

On the one hand, in order to reduce the run-time, we watdn now be defined as:

the portion left for Part 2 to be as small as possible, because

the algorithm in Part 2 is in general more complex and slower

than the algorithm in Part 1. On the other hand, we dorefine (z)r £ {x(i) € x: i € T}. Let (®)r denote the sub-

want to sacrifice too much accuracy. The trade-off betweétatrix formed by combining columns @ at column indices

reconstruction quality and run-time can be adjusted agogrd 7. We define2..(j) as the support (indices of nonzeros) of

to the specifics of the application at hand. the jth row of ®;, andQ2.(i) as the support of théh column
Similar to the original Sudocodes algorithm [9], Part 2 wilbf ®1, wherej € {1,...,M;} andi € {1,...,N}.

only deal with the coefficients that are left over from Part 1. The Noisy-Sudocodes algorithm proceeds as follows:

Part 2 will first remove the redundant coefficientsrinvhose ~ Part 1: The measurement matrik, has independent and

indices are not in the index set sent by Part 1, and also remdg@ntically distributed (i.i.d.) Bernoulli entries. Theemsure-

the corresponding columns from the measurement matrix. THENt vectory, is acquired via (1), and each (j) is the

measurements are then updated by subtracting the cofgribusummation of a subset of coefficients ofthat depend on

of the removed coefficients to the original measurement3:(j). If there is no measurement noise, as in the Sudocodes

Because the problem size is greatly reduced in Part 2, fgorithm [9], then for a real-valued input, a zero mea-

algorithm applied in Part 2 can put emphasis on reconstmictisurement can only be the summation of zero coefficients.

quality rather than run-time. A potential drawback of ouotw In other words, ify,(j) is zero, then(z)q, ;) = 0. But
in the presence of noise, a measurement is (very) unlikely

T = {i: z(i) is not recovered in Part}1
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to be precisely zero. Moreover, a small-valued measurement
could have measured a combination of multiple large-valued
coefficients, though with small probability. However, it

is unlikely that a large-valued coefficient could appear in
multiple small-valued measurements fifis small, thenp™
decreases quickly as increases).

Our numerical experiments suggest that if the measurement
matrix is sparse enough, then it is sufficiently accurate to
identify a coefficient to be zero when it is involved in three
or more small-valued measurements. To utilize this nuraéric
observation, let be a small positive constant that depends on
the noise level. Define an index set that contains the indices

reconstruction

of small-valued measurements as:
S&{j: ) <ej€{l, ... M}} 3
Fig. 1. Block diagram for two-part reconstruction. U lnG)l <eg €L, Mi}} (3)

part framework is that in order for Part 1 to identify mostVe identifyz(i),i € {1,..., N'} to be zero if|X2.(i) N S| > 3,
of the coefficients correctly, it might be necessary to use where|-| denotes cardinality. For those coefficients that cannot

increased number of measurements. Therefore. our tWo_d%\q,tidentified in this zero-identification procedure, theiced

framework is mostly applicable when fast reconstruction R€ recorded i and sent to Part 2. .
crucial whereas measurements are relatively cheap. Part 2: Solve the remaining reconstruction problem by
utilizing a high quality CS reconstruction algorithm. The

B. Noisy-Sudocodes distribution of the measurement matrik, depends on the
To illustrate how two-part reconstruction can combine th@lgorithm applied in Part 2 (for example, if CoSaMP [6] is

advantages of two algorithms, we describe a Noisy-Sudacodsed in Part 2, then a Gaussi@a is appropriate). Initially,

algorithm, which extends the original Sudocodes algorifdn the measurement vectgs is acquired via (2). After receiving

by making it robust to measurement noise, while retainireg td” from Part 1, Part 2 first updatasand ®,:

high-speed processing of the original algorithm. 7= ()7
We begin with some notations. Let be the real-valued - ’

input signal and letz(i) represent theith element ofz. Py = (P2)r.

Denote the measurement matrices in Part 1 and Part 2 Qyie that we only identify zero coefficients in Part 1. The
©; € RM>Y and @y € RM:*Y, respectively. Let; andza  zerg coefficients do not contribute i, thus y» need not
represent additive measurement noise; the noisy measot@Mmge ypdated. The high quality CS reconstruction algorithm in
in the two parts are given by: Part 2 takeg, ®», andys», and computes,, the reconstructed

y1 = P11 + 21, (1) signal. . _ "
We complete the reconstruction by assigning the coeffisient
Y2 = Loz + 25. @ in 7, at indicesT to the elements in the final reconstructed

The reconstructed signal obtained from Part 1 is denoted $ignalz,

71. Note that not all the coefficients are recovered in Part 1, (T)r = Ta.



C. Application to 1-bit compressed sensing zero mean, and is normalized such thdtz||s = 1. Let M;

In 1-bit CS [13], the CS measurements are quantized to?id M> be the number of measurements for Parts 1 and 2
bit per measurement. The problem model for noiseless a®fd Sudo+BIHT. ThenM = M, + M, is the number of

noisy 1-bit CS is formulated as measurements for direct BIHT. We perform the trials for mea-
_ surement raté/ /N within the rangg0, 2]. In our simulation,
y = sign(®z), (4)  we let M; = ¢, K log,(N/K), which for sufficiently large

y = sign®z + ), 5) © (determined numerically) allows Part 1 to identify more

than 90% of the zero coefficients. The measurement matrix

where z is measurement noise. Note that the measuremefits ¢ RM >V js jid. Bernoulli with Bernoulli parameter
acquired in both noiseless and noisy 1-bit CS include quan—= $2, wherec, (determined numerically) is a constant. Note
tization noise. The quantization noise explains why the SNiRat the nonzero entries of the Bernoulli matrix are scalgd b
achieved in the noiseless 1-bit CS setting, which is sho in order to have the same input SNR as in direct BIHT.
in Figure 2, is finite, whereas unquantized noiseless meas\l,:f?; e RM2xN s jid. Gaussian withgs(i,j) ~ N(0,1),
ments yield perfect reconstruction [1, 2]. ie{l,..., M}, je{l,...,N}.

Because the amplitude information of the measurements-q, girect BIHT, the measurement matrix ¢ RM*N s
is lost (_jue to the quantization de;cnbed by (4) or (), it is 4. Gaussian withp (i, j) ~ N(0,1), i € {1,...,M},j €
convenient to assume that the 1-bit CS framework imposeg g N1

unit energy constraint on the reconstructed signal. Finally, the additive measurement noisewhich we use in
In Part 1 of Noisy-Sudocodes discussed in Subsection ll-fe oigy setting, is i.i.d. Gaussian. It has zero mean and it
we only need to know ify;(j) is greater or less thaa. variance i510*2-5j

Therefore, 1 bit is sufficient to quantize each measurementy icajess settingThe measurement vector for Part 1
without losing any information needed for the reconstcti of Sudo+BIHT is acquired by (6) withe _ 0, and the

in Part 1. For example, we can quantizej) as: measurement vectors for Part 2 of Sudo+BIHT and, for

0, if [y1(j)| <e direct BIHT are acquired by (4). In the noiseless setting, if
(i) = { T j - (6) any elemeni (j) only measures zero coefficients, ther;)
Lo if |y(j)| > € will be strictly zero. Therefore, we modify Part 1 of Noisy-

We note that this modified 1-bit quantizer (6) is only usegudocodes by identifying (i) to be zero if it is measured at
in Part 1, whereas in Part 2 we utilize a standard 1-4fast once in the zero measurements, i@.(i) N S| > 1.

quantizer (4, 5). Note that in this case, Part 1 will not introduce any error.

Then utilizingy; as the measurements, (3) can be rewritte~
as: 50 . . .

SE{7mG) =05 €{1,...Mi}}. ol ettt

This discussion implies that Noisy-Sudocodes can be egténc S P o :
to a 1-bit CS setting by utilizing a 1-bit CS algorithm in P2art i ™ o P

A possible 1-bit CS algorithm that can be utilized is @ 20} A& oo :;‘::&J'BBIEJ ““““
BIHT [12]. BIHT achieves better reconstruction performanc 0 : : -
than the previous 1-bit CS algorithms in the noiseless 0 05 N&N 15 2

bit CS setting. We show by numerical results in Section |
that combining Noisy-Sudocodes with BIHT in a two-par 150

setting (Sudo+BIHT) achieves better reconstruction dyali 8 —e— direct BIHT : :
and reduction in run-time than directly using BIHT (direc & 100p {2 Sudo#BIHT}. oo T
BIHT). £
L sof-
I11. NUMERICAL RESULTS 2

In this section, we present simulation results that compe o o5 1 s >
Sudo+BIHT and direct BIHT in terms of SNR and run-time M/N
SNR is defined as

SNR(dB)A 10 1Og10(||£CH§/||£C . EHg) Fig._2. Reconstruction performance from 1-bit measureminthe noiseless
- ’ setting.

wherez is the input signal and is the reconstructed signal;

run-time is measured in seconds on a Dell OPTIPLEX 901de simulation results for the SNR and run-time are shown in
running an Intel(R) Cord" i7-3770 with 16GB RAM. Figure 2. We iterate over BIHT until the consistency propert
We simulate both noiseless, in which BIHT-is utilized IS satisfied or the number of iterations reaches 100. We aotic

and noisy 1-bit CS settings, in which BIHZ- is utilized.
y 9 1We say that the consistency property of BIHT [13] is satisffeabplying

The input signalz is Qf_ length N - 103900’ Conta_'nmg _ the measurement and quantization system (4) and (5) to tenstucted
K = 50 nonzero coefficients, which are i.i.d. Gaussian witkignalZ yields the same measurementss the original measurements.



that Sudo+BIHT achieves slightly higher SNR than direatirect BIHT, Sudo+BIHT yields better consistency and thus
BIHT except in the low measurement ratd/(N) region, provides better reconstruction quality. With more iteva,
where the SNR for both Sudo+BIHT and direct BIHT ighe SNR for both Sudo+BIHT and direct BIHT improves. The
modest. Owing to the generally low reconstruction qualitgNR curve of direct BIHT tends to get closer to Sudo+BIHT
in the low measurement rate region, it is more interesting &s the number of iterations increases, because for SuddtBIH
compare performance in the higher measurement rate regithre error introduced in Part 1 cannot be corrected by Part
It is demonstrated in Figure 2 that &5/ N increases, the SNR 2. We notice that the run-time for Sudo+BIHT with 130
for both algorithms increases similarly. However, the tinme BIHT iterations is half of that for direct BIHT with 30 BIHT
for Sudo+BIHT grows slower than direct BIHT. iterations, while the SNR increased by roughly 5 dB. In other
Noisy setting: The measurement vectay; for Part 1 words, problem size reduction due to zero identification in
of Sudo+BIHT is acquired by (6) wite > 0, and the Part 1 allows BIHT in Part 2 to run more iterations to improve
measurement vectors for Part 2 of Sudo+BIkJ, and direct reconstruction quality with reasonable run-time.

BIHT, y, are acquired by (5). The resulting SNR is shown in IV. CONCLUSION

We discussed a two-part framework for fast reconstruction
of sparse signals, in which Part 1 quickly reduces the proble
size by reconstructing the “easy” part, leaving a “difficult

problem of smaller size for Part 2. The zero-identification
algorithm in Noisy-Sudocodes is well suited for Part 1 of
our two-part framework, because it is fast. Part 1 of Noisy-
Sudocodes quickly identifies most of the zero coefficients
) without introducing much error. Therefore, a high fidelity
EZ:’ ‘ : : : algorithm in Part 2 is able to complete the reconstruction
B A0 BT 130] ] e_fficienFIy due to the redu_ction in problem §ize. The prongsi
4, ; © | —a—direct BIHT 130 simulation results of Noisy-Sudocodes with BIHT in Part 2
Sy~ e~ SUdo+BIHT 80 | 1] (Sudo+BIHT) implies that Noisy-Sudocodes could be promis-
! : | —e—direct BIHT 80 ing for algorithm design in 1-bit CS reconstruction probem
ob L. ... |-8e-Sudo+BIHT 30 |.]
s § - | —=— direct BIHT 30 REFERENCES
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