
1

Group Symmetry and non-Gaussian Covariance
Estimation

Ilya Soloveychik and Ami Wiesel

Selim and Rachel Benin School of Computer Science and Engineering, Hebrew University of Jerusalem, Israel

ilya.soloveychik@mail.huji.ac.il, amiw@cs.huji.ac.il

Abstract—We consider robust covariance estimation with
group symmetry constraints. Non-Gaussian covariance estima-
tion, e.g., Tyler scatter estimator and Multivariate Generalized
Gaussian distribution methods, usually involve non-convex min-
imization problems. Recently, it was shown that the underlying
principle behind their success is an extended form of convexity
over the geodesics in the manifold of positive definite matrices.
A modern approach to improve estimation accuracy is to exploit
prior knowledge via additional constraints, e.g., restricting the
attention to specific classes of covariances which adhere to prior
symmetry structures. In this paper, we prove that such group
symmetry constraints are also geodesically convex and can
therefore be incorporated into various non-Gaussian covariance
estimators. Practical examples of such sets include: circulant,
persymmetric and complex/quaternion proper structures. We
provide a simple numerical technique for finding maximum
likelihood estimates under such constraints, and demonstrate
their performance advantage using synthetic experiments.

Index Terms—geodesic convexity, non-Gaussian covariance
estimation.

I. INTRODUCTION

Covariance estimation is a fundamental problem in the
field of statistical signal processing. Many algorithms for
detection and estimation rely on accurate covariance ma-
trix estimation [1], [2]. Roughly speaking, the problem is
tractable as long as the global maximum likelihood solution
can be efficiently found (or approximated). Thus, it is
important to understand whether the associated negative-log-
likelihood minimization problem is convex. Following this
line of thought, we combine two ideas. First, there is an
increasing interest in covariance estimation in non-Gaussian
distributions which are typically non-convex but have been
shown to be geodesically convex [6], [8]. Second, many
problems adhere to known symmetry constraints which can
be exploited in the estimation. Recently, [9] addressed such
structures in the Gaussian setting. In this paper, we will
consider them in non-Gaussian covariance estimation using
the theory of geodesic convexity.

In many applications, the assumption of normal data is
not realistic [3], [12]. In such scenarios, improved per-
formance may be obtained by resorting to more general
distributions, such as Generalized Gaussian and Elliptical
distributions [20], [21]. The associated Maximum Likelihood
optimization usually do not lead to closed form solutions
and iterative algorithms are required [6], [12]. One of the
most prominent robust methods is the Tyler’s method for
covariance matrix estimation in scaled Gaussian models,
which has been successfully applied to different practical

applications ranging from array processing to sensor net-
works [10]. It has been extended to other settings involving
regularization and incomplete data [3] - [7]. Recently, it was
shown that the underlying principle behind these successful
non-convex optimizations is the geodesic convexity [13],
[18]. This principle provides more insight on the analysis
and design of robust covariance estimation methods, and
paves the road to numerous extensions based on g-convexity,
e.g., regularization [6] and their combination with Kronecker
structures [13].

Over the last years, many works have been developed in
the area of estimating covariance matrices possessing some
additional knowledge such as sparsity or structure [22]. Our
work is motivated by [9] which considered group symmetry
structures. In particular, [9] addressed symmetry constraints
in random fields of physical phenomena, Bayesian mod-
els and cyclostationary processes. In addition, it is well
known that circulant matrices are invariant to shifts [17],
[19]. Symmetric persymmetric (bisymmetric) matrices are
invariant under the exchange-operator [15], [16]. Proper
complex normal distributions are defined via their invariance
to rotations with respect to the real and imaginary axis [14].
Proper quaternion distributions follow invariances with re-
spect to isoclinic rotations [11], [23]. All of these properties
have been successfully exploited in covariance estimation
in the multivariate Gaussian distribution. Many of them
have also been considered in non-Gaussian distributions
via problem-specific fixed point iterations and algorithm-
dependent existence, uniqueness and convergence proofs.

The main result in this paper is that the set of positive def-
inite matrices which are invariant under a conjugation action
of a subgroup of orthogonal transformations is g-convex on
their respective manifold. Together with the g-convexity of
various non-Gaussian negative-log-likelihoods, this implies
that the global constrained maximum likelihood solution
can be efficiently found using standard descent algorithms.
This provides a unified framework for robust covariance
estimation with group symmetry constraints. Unlike previous
approaches, our results are not specific to any distribution,
symmetry set or even numerical algorithm. As a byproduct,
we provide a few results on specific symmetry groups
and reformulate proper complex and quaternion structures
using a finite number of rotation-invariant constraints. For
completeness, we also propose a simple numerical method
for solving these problems, although we emphasize that
other descent algorithms can be used instead. Finally, we
demonstrate the performance advantage of our framework
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via synthetic simulations in a non-Gaussian proper quater-
nion environment.

The paper is organized in the following form. First, we
give an outline of g-convexity and matrix group symme-
try. Then the main result is formulated and examples of
symmetry matrix classes are given. Finally, we provide a
computational algorithm and numerical results.

II. GEODESIC CONVEXITY

Geodesic convexity is a generalization of the notion of
convexity in linear spaces. We therefore begin with a brief
review on g-convexity on the manifold P(p) of positive
definite matrices p × p. More details are available in [18],
[7]. With each Q0,Q1 ∈ P(p) we associate the following
geodesic

Qt = Q
1
2
0

(
Q
− 1

2
0 Q1Q

− 1
2

0

)t
Q

1
2
0 , t ∈ [0, 1]. (1)

Definition 1. A set N ∈ P(p) is g-convex if for any
Q0,Q1 ∈ N the geodesic Qt lies in N .

Definition 2. Given a g-convex subset N ⊂ P(p), we say
that a function f is g-convex on N if for any two points
Q0,Q1 ∈ N , f(Qt) ≤ tf(Q0) + (1− t)f(Q1),∀t ∈ [0, 1].

The advantage of g-convexity stems from the following
result [7]

Proposition 1. Any local minimum of a g-convex function
over a g-convex set is a global minimum.

Finding local minimum is usually easy and hence g-
convexity guarantees that a global solution can also be
efficiently found.

Recently, it was shown that the negative-log-likelihoods
of many popular non-Gaussian distributions are g-convex.
Two examples are:
• Tyler’s [6]

L ({xi}ni=1;Q) =
p

n

n∑
i=1

log(xTi Q
−1xi) + log|Q|, (2)

• Mutlivariate Generalized Gaussian Distribution [8]

L ({xi}ni=1;Q) =
1

n

n∑
i=1

(xTi Q
−1xi)

β + log|Q|, (3)

where β is the shape parameter.
Together with Proposition 1 above, [6], [8] proved that

simple descent algorithm converge to the global estimate in
these distributions. In the next section, we will show that
this is also true when using symmetry invariance constraints
which are also g-convex.

III. MATRIX GROUP SYMMETRY

In order to improve the accuracy of covariance estimators
it is common to add constraints based on prior knowledge.
Of course, this priors can only be exploited if the constraints
are convex and the associated optimization can be efficiently
solved. Recently, [9] proposed the use of group symmetry
constraints which are indeed convex (actually linear) and can
be incorporated into a Gaussian setting. The main result in
this paper is that such sets are also g-convex and can also
be utilized in non-Gaussian settings.

Let K be a set1 of orthogonal matrices. Following [9],
we formally assume that this set is actually a multiplicative
group. Associated with K, we define the fixed-point subset
F ⊂ P(p) of matrices that are invariant with respect to the
conjugation by each element of K:

F(K) = {Q ∈ P(p)|Q = ŁQŁT ,∀Ł ∈ K}. (4)

Theorem 1. The set F(K) in (4) is g-convex.
Proof: First note that Q = ŁQŁT is equivalent to

QŁ = ŁQ. Now, assume Q0,Q1 ∈ F(K). Let us show
that the geogesic (1) lies in F(K). Choose Ł ∈ K, ŁQ0 =
Q0Ł,ŁQ1 = Q1Ł. Let M be a diagonalizable matrix and f
a smooth function, then we can think of f(M) as of f acting
on the eigenvalues of M in the orthonormal eigenbasis of
M. For any diagonalizable matrix M it commutes with
P iff f(M) commutes with P for any smooth function f ,
also if two matrices M1 and M2 commute with P, then
their product M1M2 commutes with P. This implies that

Q
− 1

2
0 Q1Q

− 1
2

0 commutes with Ł, thus
(
Q
− 1

2
0 Q1Q

− 1
2

0

)t
also

commutes with Ł and the whole Qt commutes with Ł. Thus
the geodesic (1) lies in F(K) and the set F(K) is g-convex.

IV. EXAMPLES AND APPLICATIONS

In this section we provide examples of group symmetry
constraints which appear in real world covariance estimation
problems.

A. Circulant

A common class of symmetry constrained covariances is
the set of positive definite circulant matrices:

C =


c0 c1 c2 . . . cn−1
cn−1 c0 c1 . . . cn−2

...
...

...
. . .

...
c1 c2 c3 . . . c0

 .

Such matrices are typically used as an approximation to
Toeplitz structured matrices which are associated with signal
processing in stationary environments [17], [19]. It is easy
to see that the set of circulant matrices can be expressed
as F(K) with K being the cyclic group of order n which
acts on the rows of the matrix by shifts. Thus, an immediate
corollary of Theorem 1 it that the set of circulant matrices
is g-convex.

B. Persymmetric

Another class of symmetry constrained covariances is the
set of positive definite persymmetric matrices, i.e., matrices
which are symmetric in the northeast-to-southwest diagonal
PJn = JnP

T , where J is the exchange n × n matrix
containing ones only on the northeast-to-southwest diago-
nal. Since we deal with symmetric matrices the constraint

1Here we treat the case of finite K, but the result can be easily generalized
to the infinite case.
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becomes PJn = JnP and the matrix form is:

P =


p11 p12 . . . p1n
p12 p22 . . . p1n−1

...
...

. . .
...

p1n−1 p2n−1 . . . p12
p1n p1n−1 . . . p11

 .

Such matrices are commonly encountered in radar systems
using a symmetrically spaced linear array with constant pulse
repetition interval [16]. This structure information could be
exploited to improve detection performance [15], [16]. This
set can be expressed as F(K) with K consisting of In and
Jn. Thus, an immediate corollary of Theorem 1 it that the
set of persymmetric matrices is also g-convex.

Recently, [16] extended the Tyler’s covariance estimator
to the case of persymmetric matrices, proposed and analyzed
the asymptotic behaviour of the fixed point estimator. Theo-
rem 1 generalizes this result to other g-convex optimizations,
independent of the algorithm that finds the local minimum.

C. Proper Complex

An important class of matrices is known as proper com-
plex, or circularly symmetric covariance matrices. In most
radar and communication problems it is typical to work with
complex valued random variables which are invariant to ro-
tations. A p-dimensional complex vector can be expressed as
a 2p-dimensional real valued vector. Due to the symmetries,
the associated 2p× 2p covariances belong to F(K) with K
being an infinite set of rotations of the form [14]

Łθ =
(

cos θ sin θ
− sin θ cos θ

)
⊗ Ip, (5)

which must hold for any θ. This result already shows that
the set is g-convex. However, in order to efficiently exploit
it, we also need a finite characterization.

Proposition 2. The set of proper complex 2p×2p covariance
matrices is equivalent to F(K) with K consisting of Ł0 = I2p
and Ł1 =

(
0 1
−1 0

)
⊗ Ip.

Proof: This is a particular case of the Proposition 3
below.

Thus, g-convex maximum likelihood problems with
proper complex constraints can be globally and efficiently
solved. As special cases this includes proper complex ver-
sions of Tyler’s estimator and MGGD solutions. We note that
this result is not surprising. Recently, most of these complex
multivariate settings have been analyzed [24], [25]. However,
previous approaches were highly specific, and relied on
defining new complex distributions. Our framework allows a
unified treatment based on the real valued distributions with
a single additional g-convex constraint.

D. Proper quaternion

Another modern class of covariance matrices is known as
proper quaternion [11]. Quaternions are a generalization of
complex numbers and is a 4-dimensional vector space over
reals, so that a length p quaternion vector can be dealt with
as a length 4p real vector. Typical applications are complex
electromagnetic signals with two polarizations [23], [26].

Similarly to the complex case, here too it is common to
consider proper distributions, which are invariant to specific
quaternion rotations. A 4p×4p proper quaternion covariance
belongs to F(K) with K being an infinite set of rotations of
the form

Łθαβγ =

[
cos(θ) α sin(θ) β sin(θ) γ sin(θ)
−α sin(θ) cos(θ) −γ sin(θ) β sin(θ)
−β sin(θ) γ sin(θ) cos(θ) −α sin(θ)
−γ sin(θ) −β sin(θ) α sin(θ) cos(θ)

]
⊗ Ip, (6)

which must hold for θ, α, β, γ satisfying α2 + β2 + γ2 = 1.
The next result characterizes this set using a finite number
of constraints.

Proposition 3. The set of proper quaternion 4p × 4p co-
variance matrices is equivalent to F(K) with K consisting
of Ł0 = I4p, Ł1 = R1 ⊗ Ip, Ł2 = R2 ⊗ Ip, Ł3 = R3 ⊗ Ip,
Ł4 = −Ł0, Ł5 = −Ł1, Ł6 = −Ł2 and Ł7 = −Ł3, where

R1 =

(
0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

)
,R2 =

(
0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

)
,R3 =

(
0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

)
.

(7)

Proof: The matrices Łi for i = 0, . . . , 7 are particular
cases of (6), so the necessity is obvious. Assume now that Q
is invariant under Łi conjugation, meaning that Q commutes
with them: QŁi = ŁiQ and we are given some matrix R of
the form (6). Take the equalities QŁi = ŁiQ, i = 0, 1, 2, 3,
multiply them by cos(θ), α sin(θ), β sin(θ), γ sin(θ) corre-
spondingly and add them up to get: QR = RQ.

In other words, the set of proper quaternion covariance
matrices is g-convex. Thus, we can easily extend the g-
convex estimates of Tyler and MGGD to the quaternion case,
and guarantee that any descent algorithm will converge to
the global solution.

V. MINIMIZATION ALGORITHM

In this section, we address the numerical optimization of
the above minimizations. Various numerical techniques can
be used to find local minimas. Since the problems are g-
convex these local minimas will also be the global solution.
The negative-log-likelihoods in (2)-(3) have the form [8]:

Ł(Q) =
1

n

n∑
i=1

ρ(sTi Q
−1s) + log|Q|. (8)

For simplicity, we consider the classical iterative reweighed
scheme:

Qk+1 =
1

n

n∑
i=1

u(sTi Q
−1si)sis

T
i , (9)

where u(x) = ρ′(x).
Following [9], we note that adding the g-convex con-

straints in the form of symmetry is equivalent to repli-
cating the sample measurements. Given n p-dimensional
measurements {si}ni=1 the symmetrization is equivalent to
generating synthetically |K| new measurements from each
one, thus getting |K|n samples {Łsi}ni=1,Ł∈K instead of n.
This generalizes the iterative scheme as follows:

Qk+1 =
1

|K|n
∑
Ł∈K

n∑
i=1

u((Łsi)TQ−1(Łsi))(Łsi)(Łsi)T .

(10)
A simple minimization majorization argument can be used
to show that this iteration leads to a descent method, see for
example [6].
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VI. NUMERICAL RESULTS

For numerical simulations, we chose Tyler’s scatter esti-
mate in proper quaternion distributions. We have generated a
proper real covariance matrix Q0 and generated elliptically
distributed 10-dimensional quaternion random vectors as
si =

√
τv, where τ ∼ χ2 and v is zero-mean normally

distributed with covariance matrix Q0. We choose ρ(x) =
plog(x) to get the Tyler’s covariance estimator [10].

We compare four different covariance estimators:

• Sample Covariance

QSC =
1

n

n∑
i=1

sis
T
i , (11)

• Proper Sample Covariance

QPSC =
1

|K|n
∑
Ł∈K

n∑
i=1

ŁsisTi ŁT , (12)

• Tyler Covariance Estimator Iteration

Qk+1 =
p

n

n∑
i=1

sis
T
i

sTi Q
−1
k si

. (13)

• Tyler Proper Covariance Estimator Iteration

Qk+1 =
p

|K|n
∑
Ł∈K

n∑
i=1

ŁsisTi ŁT

sTi ŁTQ−1k Lsi

=
p

|K|n
∑
Ł∈K

n∑
i=1

(Łsi)(Łsi)T

(Łsi)TQ−1k (Łsi)
.

(14)

We repeat the computations for 100 times for the four
estimators with 150 − 600 samples. In order to make the
results consistent we divide all the matrices by their traces.
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