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Abstract—In a cognitive radio (CR) system, cooperative spec-
trum sensing (CSS) is the key to improving sensing performance
in deep fading channels. In CSS networks, signals received at the
secondary users (SUs) are sent to a fusion center to make a final
decision of the spectrum occupancy. In this process, the presence
of malicious users sending false sensing samples can severely
degrade the performance of the CSS network. In this paper, with
the compressive sensing (CS) technique being implemented at
each SU, we build a CSS network with double sparsity property. A
new malicious user detection scheme is proposed by utilizing the
adaptive outlier pursuit (AOP) based low-rank matrix completion
in the CSS network. In the proposed scheme, the malicious users
are removed in the process of signal recovery at the fusion center.
The numerical analysis of the proposed scheme is carried out and
compared with an existing malicious user detection algorithm.

Keywords: cognitive radio, cooperative spectrum sensing, ma-
licious users, compressive sensing, low-rank matrix completion.

I. INTRODUCTION

One of the most challenging tasks in cognitive radio (CR) is
to perform spectrum sensing to identify the potential spectral
holes to be accessed by secondary users (SUs). In spectrum
sensing, the detection performance may be significantly de-
graded by multipath fading, shadowing, etc [1]. Cooperative
spectrum sensing (CSS) is proposed to solve this problem by
taking advantage of the spatial diversity among collaborative
SUs [2]. However, malicious users in CSS networks sending
dishonest samples can also severely degrade the detection
performance.

Normally, there are three types of malicious users. One
is that the SUs may send high values to the fusion center
when there is no primary users (PUs). This will decrease
the vacant bandwidth available for SUs in the CSS network.
Malicious users may also send low values when PUs exist in
the spectrum. This may cause serious interference to the PUs.
The third type of malicious users will send random values
for sensing malfunctioning. This may increase the false alarm
probability or decrease the detection probability [3]. These
malicious user scenarios have posed significant challenges in
the CSS networks, especially the last type one. Therefore, they
should be removed before making the final decision.

A number of algorithms have been proposed to mitigate the
influence of malicious users. In [4], a simple outlier detection
mechanism was firstly implemented to identify the malicious
users which produce false extreme values in CSS networks.

A robust outlier detection utilizing outlier factors and user
spatial information was proposed to identify the ”Always Yes”
malicious users in [3]. In addition, an outlier detection scheme
based on Dixon’s test was proposed to detect the presence of
malicious users which may randomly send true or false value
of received energy to confuse the other SUs in [5]. In these
proposed algorithms, the malicious users were considered to
send very high values, low values or random values with
either very high or very low. Furthermore, malicious users that
give random false values slightly above or below threshold
was proposed in [6]. However, in reality, a malicious user
sending random false values in a bounded range is extremely
challenging to detect.

During malicious user detection, the sampling rate should
be at least twice of the signals’ bandwidth at each SU.
However, for wideband signals, it is difficult to achieve such
a high sampling rate due to hardware limitations. In order to
reduce the cost of data acquisition, the concept of compressive
sensing (CS) is proposed by utilizing the sparsity property
of the signals [7]. In CSS networks, the CS technique can
be implemented at each SU [8]. Therefore, each SU only
needs to collect the compressed samples at a sub-Nyquist
rate. When these compressed measurements are sent out, an
incomplete matrix can be generated at the fusion center, and
the incomplete matrix can be recovered by matrix completion.
As malicious users exits in the CSS network, some of the
compressed samples are corrupted. If those corrupted samples
are used to perform the matrix completion, the recovery would
be not exact. So it is essential to remove those corrupted
measurements before matrix recovery.

For matrix completion, an adaptive outlier pursuit (AOP)
algorithm was proposed in [9] to deal with the sparse random-
valued noise in the incomplete matrix. It has been success-
fully applied in image reconstruction corrupted by impulse
noise [10]. We notice that the samples corrupted by malicious
users are sparsely distributed in these incomplete measure-
ments, and the values corrupted by malicious users are limited
in a range. Therefore, the AOP algorithm is applied to remove
the samples corrupted by malicious users. And the matrix com-
pletion is performed at the fusion center simultaneously in this
paper. Meanwhile, we define the CSS network with a double
sparsity property, in which malicious users send random false
values in a bounded range. The proposed scheme is analyzed
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numerically and compared with an existing malicious user
detection algorithm.

II. COOPERATIVE SPECTRUM SENSING SYSTEM MODEL

In a CSS network, J SUs are implemented spatially to sense
the occupancy of spectrum of interest. It is assumed that the
wide bandwidth of the whole spectrum of interest is B, and it
is divided into I sub-channels. M out of the I sub-channels are
occupied by the PUs. As shown in Fig. 1, each SU monitors
the whole spectrum of interest. In order to reduce the sampling
rate, each SU only sends P (P < I) samples by implementing
the CS technique. Malicious users are considered to exist in
this CSS network, and these malicious users send random
values ranging from the smallest value to largest value of all
the received samples to the fusion center.
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Fig. 1: System model for centralized CSS network.

It is assumed that sf ∈ CI×1 is the unknown transmitted
spectrum of PUs, and all cooperating SUs stay silent. rj refers
to spectral states received at the jth SU (SUj):

rj = Hjsf (1)

where Hj ∈ CI×I is the diagonal channel fading matrix for
SUj , and the ith element in the matrix is the fading coefficient
on the ith channel of SUj .

The received time domain signals at SUj are obtained by
doing the inverse DFT to rj , which can be expressed as:

rjt = F−1rj (2)

where F−1 is the inverse DFT coefficients.
Then the compressed samples can be obtained by:

xjt = ΦjF
−1rj = Ajrj (3)

where Φj ∈ CP×I is the random compression matrix collect-
ing compressed P linear projections from rjt. Here we can
see that Aj = ΦjF

−1 is independent with the channel state
information (CSI) since it only contains the local information
(Φj and F−1). The measurements matrix X received at the
fusion center is given by:

X = AR =

J∑
j=1

Ajrj (4)

If malicious users exist in the CSS network, the measure-
ments from the malicious users are corrupted. As a result, the
measurements matrix generated at the fusion center in CSS
network can be expressed as:

XC =

{
X X ∈ O
ZC X ∈ Ω\O (5)

where Ω is the domain where X is defined, and O is the
set in which X is not corrupted. ZC is the received samples
when X is corrupted by malicious users. Here, ZC is randomly
taken from [XS , XL], where XS and XL are the smallest and
largest values of the compressed samples, respectively. Those
corrupted samples are sparsely and randomly distributed in the
compressed samples received at the fusion center.

These compressed samples should be recovered at the fusion
center before the final decision is made. The recovered matrix
R (I × J) at the fusion center is as:

r1,1 r1,2 ... r1,J−1 r1,J

r2,1 r2,2 · · · r2,J−1 r2,J

...
...

. . .
...

...
rI−1,1 rI−1,2 · · · rI−1,J−1 rI−1,J

rI,1 rI,2 · · · rI,J−1 rI,J


IxJ

(6)

where the ith row of the recovered matrix represents the dif-
ferent spectrum states sensed by different SUs at ith channel ,
and the jth column refers to the spectrum states for different
sub-channels sensed by SUj . At the fusion center, the key
is to reconstructing the original signals from the compressed
measurements before making the final decision. In the matrix
recovery process, the samples generated from the malicious
users should be removed from the compressed samples.

III. LOW-RANK MATRIX COMPLETION BASED MALICIOUS
USER DETECTION

A. Low-rank Matrix Completion

By utilizing the CS technique at each SU in the CSS
network, only P out of I samples are sent to the fusion center
at each SU. Then the matrix generated at the fusion center is
incomplete. The rank order of R equals to the number of active
PUs in the CSS network, which is usually low due to the low
utilization of the spectrum [11]. As the signals at each SU are
sparse, this sparsity property can be transferred into the low
rank property of the matrix at fusion center. We define this
as the double sparsity property. This double sparsity property
makes it possible to recover the original signals from the
incomplete matrix by utilizing AOP based matrix completion
algorithm proposed in [9].

In the AOP based matrix completion algorithm for CSS
networks, the reconstruction problem at fusion center can be
formulated as:



min
U,W,Λ

1
2

∑
(i,j)∈O

C2
ijΛij((UW )ij −Rij)

2
+ λ2

2

∑
(i,j)/∈Õ

(UW )2
ij

s.t.
∑

(i,j)∈O

(1− Λij) ≤ K, Λij ∈ {0, 1}

(7)
where U ∈ RI×m, W ∈ Rm×J and m is predicted rank
bound. The number of corrupted samples in the compressed
measurements is defined to be k, and Cij refers to the
confidence coefficient, which is set to be 1. Λij is a binary
matrix denotes the uncorrupted samples as (8). Õ is a subspace
of O with all indexes Λij = 1. τ is the kth largest term in
(UW )2

ij , and λ is the weighted parameter set to be 10−8.

Λij =

{
1, if (i, j) ∈ O, ((UW)ij − Rij)

2
< τ

0, otherwise
(8)

B. Sensing Decisions

Once the recovered R̂ is obtained from (7), the fusion center
can make a final decision on the spectrum occupancy based
on the energy detection. The ith channel is determined as
occupied if the average energy of that channel is higher than
the empirical threshold

(
µ
2

)2
, where µ = ‖sf‖1

/
‖sf‖0 is the

average absolute value of all the M nonzero elements in sf [8].
A final binary decision d̂ on the spectrum state is determined
as:

d̂ [i] =

 1

J

J∑
j=1

|rij |2 ≥
(µ

2

)2

 , ∀i (9)

IV. NUMERICAL ANALYSIS

In the simulation process, we assume that each sub-channel
is only occupied by an active PU, and an active PU completely
locates in one sub-channel. The rank order of R is set to be
r = M = ‖sf‖0, which reflects the spectral sparsity order. The
fading coefficients follows the uniformly distributed and the
malicious users ratio is defined as the percentage of samples
corrupted by malicious user among all the compressed samples
received at fusion center.

As aforementioned, Kaligineedi et al. present a secure
cooperative sensing techniques (SCST) for the CSS networks
in [4] to deal with malicious users. Li et al. have shown
the performance comparison of their algorithms with that of
SCST under different malicious ratios in [12]. We compare
the performance of our proposed algorithm with that of SCST
by varying the malicious user ratio, network scale, rank order
and compression ratio.

In the simulation, the number of SU in the CSS network is
set to I = 50 and the whole spectrum of interest is divided
into J = 50 sub-channels. The compression ratio is set to
P/I = 0.6 and the the number of active PUs in the spectrum
of interest is 1. Fig. 2 shows that our AOP based malicious
user detection scheme can achieve almost 100% detection
accuracy when the malicious user ratio is no higher than 40%.
When the malicious user ratio gets further higher, the detection

probability of our proposed scheme decreases dramatically
and the performance is not as good as SCST. It shows that
the detection performance of our proposed scheme drops to
0 when the malicious user ratio is increased to be 60%. This
is because that those samples corrupted by malicious users
would be removed from the samples used to recover the
original signals at the fusion center. When the malicious user
ratio reaches 60%, most of the compressed samples would
be removed, the number of samples can be used to recover
the original matrix is too small. However, the probability of
false alarm of our proposed scheme is much lower than the
SCST. We can observe that the false alarm probability of our
proposed scheme keeps close 0 when malicious user ratio is
no higher than 60%, while that of SCST increases greatly with
increasing malicious user ratio. Meanwhile, it is noticed that
the sampling rate is reduced by 40% as the CS techniques are
implemented at each SU. So the energy consumption at each
SU is greatly reduced in our proposed scheme.
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Fig. 2: Detection performance comparison between SCST and
our proposed scheme.

Fig. 3 illustrates the impact of the networks scale on
the detection performance of our proposed scheme. In this
scenario, the number of SUs are set to be 50, 200 and 500. The
number of active PUs are set to be 1 and the compression ratio
is fixed to be 0.6. It can be seen that the detection performance
increases with larger network size, since more information
about the spectrum states is sent to the fusion center for final
decision making when the network scale becomes larger. With
increasing number of SUs, the cooperative gains of the CSS
network are improved.

Fig. 4 shows the detection performance of our proposed
scheme with differen rank orders, where the threshold at 0dB
is as the one set in (9). In this scenario, the network scale is
set to be 500 and the rank order is set to be 1, 5, 10. The
malicious user ratio is fixed to be 0.6 and the compression
ratio is 1 to simplify the scenario. We can see that the detection
performance gets worse with increasing rank order. This can
be understood as the less active PUs, the easier to be detected.

Fig. 5 shows the detection performance with different com-
pression ratios ranging from 0.4, 0.5, 0.6, 0.8, 1. The threshold
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Fig. 3: Detection performance comparison under different
network scales.
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Fig. 4: Detection probability under different rank orders.

setting is the same as that in Fig. 4. In this scenario, the number
of SUs in the CSS network and the number of sub-channels
are both set to be 500 with rank order r = 5. The malicious
user ratio is fixed to be 0.6. We can see that the probability
of detection increases with increasing compression ratio. This
is because that it is easier to recover the original signals with
increasing number of observations. It is also noticed that when
the compression ratio reaches 0.6 or above, the improvement
of detection becomes smaller. So we choose compression ratio
as 0.6 in order to minimize the sampling rate at each SU. This
is the reason why compression ratio is set to be 0.6 in Fig. 2
and Fig. 3.

V. CONCLUSION

The existence of malicious users, which send false samples
to the fusion center, may lead to false decision about the
spectrum occupancy in CSS networks. In this paper, a CSS net-
work scenario with double sparsity property was established
to tackle malicious users which send random false values in
a bounded range. In our malicious user detection method, the
low-rank matrix completion based AOP algorithm was utilized
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Fig. 5: Detection probability under different compression
ratios.

to remove the corrupted samples and perform the signals
recovery at the fusion center simultaneously. Numerical results
showed that the proposed malicious user detection algorithm
outperformed the existing STSC method.

REFERENCES

[1] I. F. Akyildiz, B. F. Lo, and R. Balakrishnan, “Cooperative spectrum
sensing in cognitive radio networks: A survey,” Physical Communica-
tion, vol. 4, no. 1, pp. 40–62, Mar. 2011.

[2] A. Ghasemi and E. Sousa, “Collaborative spectrum sensing for oppor-
tunistic access in fading environments,” in DySPAN 2005. 2005 First
IEEE International Symposium on New Frontiers in Dynamic Spectrum
Access Networks, 2005., Nov. 2005, pp. 131 –136.

[3] P. Kaligineedi, M. Khabbazian, and V. K. Bhargava, “Malicious user
detection in a cognitive radio cooperative sensing system,” Wireless
Communications, IEEE Transactions on, vol. 9, no. 8, pp. 2488–2497,
Jun. 2010.

[4] P. Kaligineedi, M. Khabbazian, and V. Bhargava, “Secure cooperative
sensing techniques for cognitive radio systems,” in Communications,
2008. ICC ’08, May 2008, pp. 3406–3410.

[5] S. Kalamkar, A. Banerjee, and A. Roychowdhury, “Malicious user
suppression for cooperative spectrum sensing in cognitive radio networks
using dixon’s outlier detection method,” in 2012 National Conference
on Communications (NCC), Feb. 2012, pp. 1–5.

[6] T. Sakaguchi and T. Ohtsuki, “Cooperative spectrum sensing techniques
using decision comparison for cognitive radio systems including mali-
cious nodes,” in 2010 International Symposium on Communications and
Information Technologies (ISCIT). IEEE, Oct. 2010, pp. 464–469.

[7] D. Donoho, “Compressed sensing,” Information Theory, IEEE Transac-
tions on, vol. 52, no. 4, pp. 1289 –1306, Apr. 2006.

[8] Y. Wang, Z. Tian, and C. Feng, “Collecting detection diversity and
complexity gains in cooperative spectrum sensing,” IEEE Transactions
on Wireless Communications, vol. 11, no. 8, pp. 2876 –2883, Aug. 2012.

[9] M. Yan, Y. Yang, and S. Osher, “Exact low-rank matrix completion
from sparsely corrupted entries via adaptive outlier pursuit,” Journal of
Scientific Computing, pp. 433–449, Jan. 2013.

[10] M. Yan, “Restoration of images corrupted by impulse noise and mixed
gaussian impulse noise using blind inpainting,” SIAM Journal on Imag-
ing Sciences, pp. 1227–1245, 2013.

[11] J. Meng, W. Yin, H. Li, E. Hossain, and Z. Han, “Collaborative spectrum
sensing from sparse observations in cognitive radio networks,” IEEE
Journal on Selected Areas in Communications, vol. 29, no. 2, pp. 327–
337, Jan. 2011.

[12] H. Li, X. Cheng, K. Li, C. Hu, N. Zhang, and W. Xue, “Robust
collaborative spectrum sensing schemes for cognitive radio networks,”
IEEE Transactions on Parallel and Distributed Systems, Mar. 2013.




