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An Enhanced Multiway Sorting Network
Based on n-Sorters

Feng Shi, Zhiyuan Yan, and Meghanad Wagh

Abstract—Merging-based sorting networks are an important family of sorting networks. Most merge sorting networks are based on
2-way or multi-way merging algorithms using 2-sorters as basic building blocks. An alternative is to use n-sorters, instead of 2-sorters,
as the basic building blocks so as to greatly reduce the number of sorters as well as the latency. Based on a modified Leighton’s
columnsort algorithm, an n-way merging algorithm, referred to as SS-Mk, that uses n-sorters as basic building blocks was proposed.
In this work, we first propose a new multiway merging algorithm with n-sorters as basic building blocks that merges n sorted lists of
m values each in 1 + ⌈m/2⌉ stages (n ≤ m). Based on our merging algorithm, we also propose a sorting algorithm, which requires
O(N log2 N) basic sorters to sort N inputs. While the asymptotic complexity (in terms of the required number of sorters) of our sorting
algorithm is the same as the SS-Mk, for wide ranges of N , our algorithm requires fewer sorters than the SS-Mk. Finally, we consider
a binary sorting network, where the basic sorter is implemented in threshold logic and scales linearly with the number of inputs, and
compare the complexity in terms of the required number of gates. For wide ranges of N , our algorithm requires fewer gates than the
SS-Mk.

Index Terms—Multiway, sorting, merging

✦

1 INTRODUCTION

SOrting is one important operation in data processing,
and hence its efficiency greatly affects the overall

performance of a wide variety of applications [1], [2].
Sorting networks can achieve high throughput rates
by performing operations simultaneously. These parallel
sorting networks have attracted attention of researchers
due to increasing hardware speed and decreasing hard-
ware cost. One of the most popular sorting algorithm is
called merge-sort algorithm, which performs the sorting
in two steps [2]. First, it divides the input list (a sequence
of values) into multiple sublists (a smaller sequence
of values) and sorts each sublist simultaneously. Then,
the sorted sublists are merged as a single sorted list.
The sorting process of sublists can then be decomposed
recursively into the sorting and merging of even smaller
sublists, which are then merged as a single sorted list.
Hence, the merging operation is the key procedure for
the decomposition-based sorting approach. One popular
2-way merging algorithm called odd-even merging [2]
merges two sorted lists (odd and even lists) into one
sorted list. In [3], a modulo merge sorting was intro-
duced as a generalization of the odd-even merge by
dividing the two sorted input lists into multiple sublists
with a modulo not limited to 2. Another popular 2-
way merging algorithm is bitonic merging algorithm
[4]. Two sorted lists are first arranged as a bitonic list,
which is then converted to obtain a sorted list. These
2-way merging algorithms employ 2-way merge pro-
cedure recursively and have a capability of sorting N
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values in O(log2 N) stages [2]. In [5], a sorting network,
named AKS sorting network, with O(logN) stages was
proposed. However, there is a very large constant in the
depth expression, which makes it impractical. Recently, a
modular design of high-throughput low-latency sorting
units are proposed in [6]. However, the basic building
block in these 2-way merging algorithm is a 2-sorter,
which is simply a 2×2 switching element or comparator
as shown in Fig. 1(a).

Instead of using 2-sorters, n-sorters can be used as ba-
sic building blocks. This was first proposed as a general-
ization of the Batcher’s odd-even merging algorithm [7].
It was also motivated by the use of n-sorters, which sort
n (n ≥ 2) values in unit time [8], [9]. Since large sorters
are used as basic building blocks, the number of sorters
as well as the latency is expected to be reduced greatly.
An n-way merging algorithm was first proposed by Lee
and Batcher [7], where n is not restricted to 2. A version
of the bitonic n-way merging algorithm was proposed
by Nakatani et al. [10], [11]. However, the combining
operation in the n-way merging algorithms still use 2-
sorters as basic building blocks. Leighton proposed an
algorithm for sorting r lists of c values each, represented
as an r×c matrix [12]. This algorithm is a generalization
of the odd-even merge-sort and named columnsort, since
it merges all sorted columns to obtain a single sorted
list in row order. In the original columnsort, no specific
operation was provided for sorting columns and no re-
cursive construction of sorting network was provided. In
[8], a modified columnsort algorithm was proposed with
sorting networks constructed from n-sorters (n ≥ 2) [13].
However, a 2-way merge is still used for the merging
process. In [14], an n-way merging algorithm, named
SS-Mk, based on the modified columnsort was proposed
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with n-sorters as basic building blocks, where n is prime.
For n sorted lists of m values each, the idea is to sort the
m × n values first in each row and then in slope lines
with decreasing slope rates. An improved version of the
SS-Mk merge sort, called ISS-Mk, was provided in [15],
where n can be any integer. We compare our sorting
scheme with the SS-Mk but not the ISS-Mk, because for
our interested ranges of N , the ISS-Mk requires larger
latency due to a large constant.

In this work, we propose an n-way merging algorithm,
which generalizes the odd-even merge by using n-sorters
as basic building blocks, where n (≥ 2) is prime. Based
on this merging algorithm, we also propose a sorting

algorithm. For N = np input values, p + ⌈n/2⌉ × p(p−1)
2

stages are needed. The complexity of the sorting network
is evaluated by the total number of n-sorters. The closed-
form expression for the number of sorters is also derived.

Instead of 2-sorters, n-sorters (n > 2) are used as
basic blocks in this work. This is because larger sorters
have some efficient implementation. For example, for
binary sorting in threshold logic, the area of an n-sorter
scales linearly with the number of inputs n, while the
latency stays as a constant. Hence, a smaller number of
sorters and latency of the whole sorting network can be
achieved. However, we cannot use arbitrary large sorters
as basic blocks, since larger sorters are more complex
and difficult to be implemented. Hence, the benefit of
using a larger block diminishes with increasing n. We
assume that the size of basic sorter n ≤ 20 and 10
when evaluating the number of sorters and latency. Our
algorithm works for any upper bound on n, and one
can plug any upper bound on n into our algorithm.
Asymptotically, the number of sorters required by our
sorting algorithm is on the same order of O(N log2 N)
as the SS-Mk [14] for sorting N inputs. Our sorting
algorithm requires fewer sorters than the SS-Mk in [14]
in wide ranges of N . For instance, for n ≤ 20, when
N ≤ 1.46× 104, our algorithm requires up to 46% fewer
sorters than the SS-Mk. When 1.46×104 < N ≤ 1.3×105,
our algorithm has fewer sorters for some segments of
N ’s. When N > 1.3 × 105, our algorithm needs more
sorters.

The work in this paper is different from previous
works [7], [14], [15] in the following aspects:

• While the multiway merge [7] uses 2-sorters in the
combining network, our proposed n-way merging
algorithm uses n-sorters as basic building blocks. By
using larger sorters (n > 2), the number of sorters
as well as the latency would be reduced greatly.

• The merge-based sorting algorithms in [14], [15]
are based on the modified columnsort [13], which
merges sorted columns as a single sorted list in row
order. Our n-way merge sorting algorithm is a direct
generalization of the multiway merge sorting in [7].

• We analyze the performance of our approach by
deriving the closed-form expressions of the latency
and the number of sorters. We also derive the

closed-form expression of the number of sorters for
the SS-Mk [14], since it was not provided in [14].
Then we present extensive comparisons between the
latency and the number of sorters required by our
approach and the SS-Mk [14].

• Finally, we show an implementation of a binary
sorting network in threshold logic. With an imple-
mentation of a large sorter in threshold logic, we
compare the performance of sorting networks in
terms of the number of gates.

The rest of the paper is organized as following. In
Sec. 2, we briefly review the background of sorting
networks. In Sec. 3, we propose a multiway merging
algorithm with n-sorters as basic blocks. In Sec. 4, we
introduce a multiway sorting algorithm based on the
proposed merging algorithm, and show extensive results
for the comparison of our sorting algorithm and previ-
ous works. In Sec. 5, we focus on a binary sorting net-
work, where basic sorters are implemented by threshold
logic and have complexity linear with the input size, and
measure the complexity in terms of number of gates.
Finally Sec. 6 presents the conclusion of this work.

2 BACKGROUND

A sorting network is a feedforward network, which
gives a sorted list for unsorted inputs. It is composed
of two items: switching elements (or comparators) and
wires. The depth of a comparator is defined to be the
longest length from the inputs of the sorting network
to that comparator’s outputs. The latency of the sorting
network is the maximum depth of all comparators. The
network is oblivious in the sense that the time and loca-
tion of input and output are fixed ahead of time and not
dependent on the values [2]. We use the Knuth diagram
in [1] for easy representation of the sorting networks,
where switching elements are denoted by connections on
a a set of wires. The inputs enter at one side and sorted
values are output at the other side, and what remains
is how to arrange the switching elements. The sorting
network is measured in two aspects, latency (number of
stages) and complexity (number of sorters). The basic
building block used by the odd-even merge [2] is a 2-
by-2 comparator (compare-exchange element). It receives
two inputs and outputs the minimum and maximum in
an ordered way. The symbol for a 2-sorter is shown in
Fig. 1(a), where xi and yi for i = 1, 2 are input and
output, respectively. Similarly, an n-sorter is a device
sorting n values in unit time. The symbol for an n-sorter
is shown in Fig. 1(b), where xi and yi for i = 1, 2, · · · , n
are input and output, respectively, and the output sat-
isfies y1 ≤ y2 ≤ · · · ≤ yn. In this work, we denote the
sorted values y1 ≤ y2 ≤ · · · ≤ yn by 〈y1, y2, · · · , yn〉 and
use n-sorters as basic blocks for sorting.

Merging-based sorting networks are an important
family of sorting networks, where the merging operation
is the key. There are two classes of merging algorithms,
the odd-even merging [2] and the bitonic merging [4].
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Fig. 1. (a) 2-sorter (y1 ≤ y2); (b) n-sorter (y1 ≤ y2 ≤ · · · ≤
yn).

Fig. 2. The odd-even merge of two sorted lists of 4 values
each using 2-sorters.

The former is an efficient sorting technique based on the
divide-and-conquer approach, which decomposes the
inputs into two sublists (odd and even), sorts each sub-
list, and then merges two sorted lists into one. Further
decomposition and merging operations are applied on
the sublists. An example of odd-even merging network
using 2-sorters is shown in Fig. 2, where two sorted

lists, 〈x
(0)
1,1, · · · , x

(0)
1,4〉 and 〈x

(0)
2,1, · · · , x

(0)
2,4〉, are merged as

a single list 〈x
(2)
1,1, · · · , x

(2)
1,4, x

(2)
2,1, · · · , x

(2)
2,4〉 in two stages.

Instead of merging two lists, multiple sorted lists can
be merged as a single sorted list simultaneously. An n-
way merger (n ≥ 2) of size m is a network merging
n sorted lists of size m (m values) each into a single
sorted list in multiple stages. This was first proposed as
a generalization of the Batcher’s odd-even merging algo-
rithm. It is also motivated by the use of n-sorters, which
sort n (n ≥ 2) values in unit time [8], [9]. Since large
sorters are used as basic building blocks, the number of
sorters as well as the latency is expected to be reduced
greatly. Many multiway merging algorithms exist in the
literature [7], [8], [10]–[17]. The algorithms in [16], [17]
implement multiway merge using 2-sorters. In [7], a gen-
eralization of Batcher’s odd-even is introduced as shown
in Fig. 3, where an n-way merger of n lists of size ud is
decomposed into d n-way mergers of n sublists of size
u plus a combining network. Each of the small n-way
mergers is further decomposed similarly. However, the

Fig. 3. Iterative construction rule for the n-way merger [7].

combining network in the merging network in Fig. 3 still
uses 2-sorters as basic blocks. In [12], Leighton proposed
a columnsort algorithm, which showed how to sort an
m × n matrix denoting the n sorted lists of m values
each. A modification of Leighton’s columnsort algorithm
was given in [8]. In [14], [15], merging networks with
n-sorters as basic blocks are introduced based on the
modified Leighton’s columnsort algorithm.

In this work, we focus on multiway merge sort with
binary values as inputs. Our merge sort also works
for arbitrary values, which is justified by the following
theorem.

Theorem 2.1 (Zero-one principle [2]). If a network with n
input lines sorts all 2n lists of 0s and 1s into nondecreasing
order, it will sort any arbitrary list of n values into nonde-
creasing order.

3 MULTIWAY MERGING

In the following, we propose an n-way merging
algorithm with n-sorters as basic building blocks as
shown in Alg. 1. We consider a sorting network, where
all iterations of Alg. 1 are simultaneously instantiated
(loop unrolling). We refer to the instantiation of iteration
i of Alg. 1 as stage i of the sorting network. The sorters
in the last for loop in Alg. 1 consist of the last stage.

Let the n sorted input lists be 〈x
(0)
j,1 , x

(0)
j,2 , · · ·x

(0)
j,m〉
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Algorithm 1 Algorithm for n-way merging network.

Input: n sorted lists 〈x
(0)
j,1 , x

(0)
j,2 , · · ·x

(0)
j,m〉 for j = 1, · · · , n;

i = 1;
while i ≤ ⌈m

2 ⌉ do
for j = 1 to n− 1 do

Apply (m− i)-spaced sorters between lists j and
j + 1;

end for
Merge all (m− i)-spaced sorters;

Update n sorted lists 〈x
(i)
j,1, x

(i)
j,2, · · ·x

(i)
j,m〉 for j =

1, · · · , n;
i = i+ 1;

end while
for j = 1 to n− 1 do

Apply (m − 1)-sorters on m− 1 adjacent lines with

first half, x
(i−1)
j,m−k, from list j and second half, x

(i−1)
j+1,k ,

from list j + 1, where k = 1, · · · , m−1
2 ;

end for
Output: Sorted lists.

for j = 1, · · · , n. Denote the values of j-th list after
stage k by (x

(k)
j,1 , x

(k)
j,2 , · · · , x

(k)
j,m). After T = 1 + ⌈m

2 ⌉
stages, all input lists are sorted as a single list,

〈x
(T )
1,1 , x

(T )
1,2 , · · · , x

(T )
1,m〉, 〈x

(T )
2,1 , x

(T )
2,2 , · · · , x

(T )
2,m〉, · · · , 〈x

(T )
n,1 ,

x
(T )
n,2 , · · · , x

(T )
n,m〉.

For convenience of describing and proving our al-
gorithm, we introduce some notations and definitions.
Denote the number of zeros in the j-th list after stage i

as r
(i)
j , where i = 1, 2, · · · , ⌈m

2 ⌉ + 1 and j = 1, · · · , n. A
sorter is called a k-spaced sorter if its adjacent inputs
span k other wires and each connection of the same
sorter comes from different lists of m wires, where
0 ≤ k ≤ m− 1. For simplicity, we arrange the sorters in
the order of their first connections in each stage. Denote
{1, 2, · · · ,m} as Zm. Two k-spaced sorters are said to

be adjacent if they connect adjacent two wires, x
(i)
j,k and

x
(i)
j,k+1, respectively, for some j ∈ Zm and k ∈ Zm−1.

Then, our n-way merging Alg. 1 can be intuitively
understood as flooding lists with zeros in descending
order. The correctness of Alg. 1 can be shown by first
proving the following lemmas. See the appendix for the
proofs of the following lemmas and theorems.

Lemma 3.1. Apply (m − 1)-spaced sorters to n lists of m
values, 〈xj,1, xj,2, · · · , xj,m〉, for j = 1, · · · , n. The outputs
of each list are still sorted, 〈x′

j,1, x
′
j,2, · · · , x

′
j,m〉, for j =

1, 2, · · · , n.

For n sorted lists of m values, there are m (m − 1)-
spaced sorters as illustrated in Fig. 4(a). The proof of the
lemma can be reduced to showing that any two wires
s, s+ l ∈ Zm of each list connected by the s- and (s+ l)-
th sorters are sorted. The simplified network is shown
in Fig. 4(b). Without lose of generality, we can choose
l = 1.

Fig. 4. The network for n sorted lists of m wires.

Lemma 3.2. In each stage of Alg. 1, there are at most four
cases of adjacent two sorters as shown in Fig. 5. If m is prime,
case IV is impossible.

We first show that the first connections of adjacent
two sorters, S1 and S2, belong to either the same list or
adjacent two lists. The same relation is true for the last
connections of S1 and S2. This gives us a total of four
cases as shown in Fig. 5, where b ≥ a+1 for Fig. 5(a)-(c),
and b ≥ a for Fig. 5(d) such that S1 and S2 have a size
of at least two.

The following theorem proves the correctness of
Alg. 1.

Theorem 3.1. For a prime m in Alg. 1, all lists are self-
sorted after every stage. In particular, all lists are sorted after
the final stage.

The theorem can be proved by induction on i.
In Alg. 1, the latency increases linearly with ⌈m

2 ⌉.
When m is large, the latency is also very large. By further
decomposing m into a product of small factors, we can
reduce the latency significantly. In the following, we
propose Alg. 2 for merging n lists of m values, where
m = np−1 for p ≥ 2. When m is not a power of n, we
can use a larger network of m′ = np′

> m inputs. For
any q in stage i (2 ≤ i ≤ p − 1), denote the number of

zeros in each new formed list after stage i as r
(i)
j,q , where

j = 1, · · · , ni. Assume two dummy lists with r
(i)
0,q = n

and r
(i)
ni+1,q = 0 are appended to the two ends of ni lists.

The correctness of Alg. 2 can be shown by first proving
the following lemma.

Lemma 3.3. In Alg. 2, the new lists in stage i with respect
to q are self-sorted. The numbers of zeros of all new lists after
stage i are non-increasing,

r
(i)
j,q ≥ r

(i)
j+1,q for j = 1, · · · , ni − 1,
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Fig. 5. Adjacent two sorters S1 and S2 in each stage of Alg. 1 can be classified into four four cases. (a) Case I
(∆ = v−w

b−a ); (b) Case II (∆ = v−1
b−a+1 ); (c) Case III (∆ = m−w+1

b−a+1 ); (d) Case IV (∆ = m
b−a+2 ).

Algorithm 2 Algorithm for combining n lists of m =
np−1 values.

Input: n sorted lists 〈x
(0)
j,1 , x

(0)
j,2 , · · ·x

(0)
j,m〉 for j = 1, · · · , n

and m = np−1;
i = 1;
for q = 1 to np−2 do

Apply Alg. 1 on 〈x
(0)
j,q , x

(0)
j,np−2+q, x

(0)
j,2np−2+q, · · · ,

x
(0)
j,(n−1)np−2+q〉 for j = 1, · · · , n

and obtain a single sorted list

〈x
(1)
1,q, x

(1)
1,np−2+q, · · ·x

(1)
1,(n−1)np−2+q, x

(1)
2,q, x

(1)
2,np−2+q, · · · ,

x
(1)
2,(n−1)np−2+q, · · · , x

(1)
n,q ,

x
(1)
n,np−2+q, · · · , x

(1)
n,(n−1)np−2+q〉;

end for
for i = 2 to p− 1 do

for q = 1 to np−1−i do
Group n neighboring values of

〈x
(i−1)
j,q , x

(i−1)
j,np−i−1+q, x

(i−1)
j,2np−i−1+q, · · ·x

(i−1)
j,(n−1)np−i−1+q〉

for j = 1, · · · , n and denote the new lists
as 〈x

(i−1)
j,q , x

(i−1)
j,np−i−1+q, · · ·x

(i−1)
j,(n−1)np−i−1+q〉 for

j = 1, · · · , ni;
for k = 2 to ⌈n

2 ⌉ do
Apply (n−k)-spaced sorters between lists j and
j + 1;

end for
Apply (n− 1)-sorters between lists j and j+1 for
j = 1, · · · , ni − 1;
Obtain a single sorted list

〈x
(i)
1,q, x

(i)
1,np−i−1+q, · · · , x

(i)
1,(n−1)np−i−1+q, x

(i)
2,q,

x
(i)
2,np−i−1+q, · · · , x

(i)
2,(n−1)np−i−1+q, · · · , x

(i)
ni,q,

x
(i)
ni,np−i−1+q, · · · , x

(i)
ni,(n−1)np−i−1+q〉;

end for
end for
Output: Sorted list.

Fig. 6. A 3-way merging network of N = 3 × 7 inputs
implemented via 7 stages.

where i = 2, · · · , p− 1 and q = 1, · · · , np−1−i. Furthermore,
there are at most n consecutive lists that have between 1 and
n− 1 zeros,

r(i)s,q = n > r
(i)
s+1,q ≥ · · · ≥ r

(i)
s+l,q > 0 = r

(i)
s+l+1,q for l ≤ n,

where s ≥ 0 and s+ l ≤ ni.

See Sec. A.4 for the proof.
The following theorem proves the correctness of

Alg. 2.

Theorem 3.2. Alg. 2 combines n sorted lists of m = np−1

values as a single sorted list.

In Alg. 2, the latency is reduced to 1 + (p− 1)⌈n
2 ⌉ for

n sorted lists of m = np−1 values.
In the following, we show two examples for com-

parison of the two algorithms. First, a 3-way merging
network of N = 3 × 7 inputs via Alg. 1 is shown in
Fig. 6. Then, a 3-way merging network of N = 3 × 9
inputs via Alg. 2 is shown in Fig. 7. Though there are
more inputs in Fig. 7 than that in Fig. 6, the latency of
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Fig. 7. A 3-way merging network of N = 3 × 9 inputs
implemented via 5 stages.

Fig. 8. A 3-way sorting network of N = 33 inputs
implemented via 9 stages.

Alg. 2 is smaller due to recursive decomposition. The
numbers of sorters in Figs. 6 and 7 are given by 40 and
41, respectively. For six more inputs, it requires only one
more sorter in Fig. 7. Hence, Alg. 2 can be more efficient
than Alg. 1 for a large m.

4 MULTIWAY SORTING

In this section, we first focus on how to construct sorting
networks with n-sorters using the multiway merging
algorithm in Sec. 3. Then, we analyze the latency and the
number of sorters of the proposed sorting networks by
deriving the closed-form expressions. We compare them
with previously proposed SS-Mk in [14] but not the ISS-

Mk [15], because for our interested ranges of N , the ISS-
Mk requires larger latency due to a large constant.

4.1 Multiway sorting algorithm

Based on the multiway merging algorithm in Sec. 3, we
proposed a parallel sorting algorithm using a divide-
and-conquer method. The idea is to first decompose
large list of inputs into smaller sublists, then sort each
sublist, and finally merge them into one sorted list. The
sorting of each sublist is done by further decomposition.
For instance, for N = np inputs, we first divide the np

inputs into n lists of np−1 values. Then we sort each of
these n lists and combine them with Alg. 2. The sorting
operation of each of the n lists is done by dividing the
np−1 inputs into n smaller lists of np−2 values. We repeat
the above operations until that each of n smaller lists
contains only n values, which can be sorted by a single
n-sorter. The detailed procedures are shown in Alg. 3.

Algorithm 3 Algorithm for sorting N = np values.

Input: N = np values, x
(0)
1 , x

(0)
2 , · · · , x

(0)
np ;

Partition the N = np values as np−1 lists of n values
each, (x

(0)
j,1 , x

(0)
j,2 , · · · , x

(0)
j,n) for j = 1, · · · , np−1;

Apply one n-sorter on each of np−1 lists and obtain

〈x
(1)
j,1 , x

(1)
j,2 , · · · , x

(1)
j,n〉 for j = 1, · · · , np−1;

for i = 2 to p do
for j = 1 to np−i do

Apply Alg. 1 on 〈x
(i−1)
(j−1)n+k,1, x

(i−1)
(j−1)n+k,2, · · · ,

x
(i−1)
(j−1)n+k,ni−1 〉 for k = 1, · · · , n, and obtain a

single sorted list 〈x
(i)
j,1, x

(i)
j,2, · · ·x

(i)
j,ni〉;

end for
end for
Output: Sorted list.

For example, a 3-way sorting network of N = 33

inputs is shown in Fig. 8. The first stage contains 9 3-
sorters. The second stage contains 3 three-way mergers
with a depth of 3. The last stage contains a three-way
merger with a depth of 5. The total depth is given by 9.

4.2 Latency analysis

First, we focus on the latency for sorting N values. The
latency is defined as the number of basic sorters in the
longest paths from the inputs to the sorted output. In
Alg. 3, there are p iterations. In iteration i, there are ni

merging networks, each of which is to merge n sorted
lists of np−i values. For iteration i, the latency is given
by Lour(n, n

i−1) = 1+(i−1)⌈n
2 ⌉. For a sorting network of

N = np values via Alg. 3, by summing up the latencies
of all levels, we obtain the total latency

Lour(n
p) =

∑p
i=1 Lour(n, n

i−1)

= p+ ⌈n
2 ⌉ ×

p(p−1)
2 .

(1)
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The closed-form expression of latency for the SS-Mk
given in [14] is

LSS−Mk(n
p) = 1+ (p− 1)n+

(p− 1)(p− 2)

2
⌈log2 n⌉. (2)

We compare our latency for sorting N = np values
with that for the SS-Mk in [14]. From Eqs. (1) and (2),
for N = np inputs, p should be as small as possible
to obtain small latencies. In Table 1, we compare the
latencies of Eqs. (1) and (2) for small p (p = 2, 3, 4). It is
easily seen that our implementation has a smaller latency
than the SS-Mk in [14] for a prime greater than 3. It is
also observed that Lour(2

p) = LSS−Mk(2
p) = p(p + 1)/2

for n = 2, which is the same as the odd-even merge sort
in [2].

TABLE 1
Comparison of latencies of sorting networks of N = np

inputs via the SS-Mk in [14] and our implementation.

p = 2 p = 3 p = 4
[14] 1 + n 1 + 2n+ ⌈log2 n⌉ 1 + 3n+ 3⌈log2 n⌉

Ours 2 + ⌈n

2
⌉ 3 + 3⌈n

2
⌉ 4 + 6⌈n

2
⌉

4.3 Analysis of the number of sorters

In the following, we compare the number of sorters
of our algorithms with the SS-Mk in [14]. Since the
distribution of sorters for an arbitrary sorting network
of N inputs is not known, we assume that any m-sorter
(m < n) has the same delay and area as the basic n-
sorter and count the number of sorters. We first derive
the closed-form expression of the number of sorters for
sorting N values via our Alg. 3. Since the expression of
the number of sorters for the SS-Mk was not provided in
[14], we also derive the corresponding closed-form ex-
pression and compare it with our algorithm. The whole
sorting network is constructed recursively by merging
small sorted lists into a larger sorted list. We first derive
the number of sorters of a merging network of n lists of
np−i values, which is given by

Sour(n, n
p−i) = (p− i) ·M∗

np−i +
np−i − 1

n− 1
· C∗

n + np−i,

where M∗
np−i =

(

1 + ⌈n/2⌉(⌈n/2⌉−1)
2

)

np−i and C∗
n =

(⌈n/2⌉ − 1)n − 3⌈n/2⌉(⌈n/2⌉−1)
2 − 1. By summing up the

numbers of sorters of all mergers in all stages, we obtain
the total number of sorters, which is given by

Tour(n
p) =

∑p−1
i=1 ni−1 · Sour(n, n

p−i) + np−1

= p(p−1)
2 ·M∗

np−1 +
[

(p−1)np−1

n−1 − np−1−1
(n−1)2

]

·C∗
n + pnp−1,

(3)
As N → ∞, Tour(n

p) is on the order of

O(A1
N logN(logN−logn)

(logn)2/n + A2
N(logN−logn)

logn + A3
N logN
n logn ).

Similarly for the SS-Mk in [14], the number of sorters

of the merging network of n lists of np−i values each is
given by

SSS−Mk(n, n
p−i) = M †

np−i +K†
n,np−i + C†

n,

where M †
np−i =

(

(n+1−⌈n/2⌉)(n−⌈n/2⌉)
2 + (⌈n/2⌉+1)(⌈n/2⌉−2)

2

+2
)

np−i, K†
n,np−i = ⌈log2 n

p−1−i⌉np−i + (n −

3)2⌈log2 np−1−i⌉+1, and C†
n = (⌈n/2⌉ − 2)n −

3(⌈n/2+1⌉)(⌈n/2⌉−2)
2 − (n+1−⌈n/2⌉)(n−⌈n/2⌉)

2 − (n − 3).
The total number of sorters of the sorting network via
the SS-Mk in [14] is given by

TSS−Mk(n
p) =

∑p−1
i=1 ni−1 · SSS−Mk(n, n

p−i) + np−1

= (p− 1) ·M †
np−1 +

np−1−1
n−1 · C†

n + np−1

+np−1
∑p−2

i=1 ⌈i log2 n⌉

+
∑p−1

i=1 ni−1(n− 3)2⌈(p−1−i) log2 n⌉+1,
(4)

As N → ∞, TSS−Mk(n
p) is on the order

of O(B1
N(logN−logn)

(logn)/n + B2
N logN(logN−logn)

n logn +

B3
N(logN−logn)

n log n +B4
N
n ).

According to the big-O expressions of Tour(n
p) and

TSS−Mk(n
p), when n is bounded, the asymptotic bounds

on the number of sorters required by both our Alg. 3
and the SS-Mk in [14] are given by O(N log2 N), which
is also the asymptotical bound for the odd-even and
bitonic sorting algorithms [2], [4]. When N is fixed and
n increases, the first term of the big-O expressions of
Tour(n

p) and TSS−Mk(n
p) decreases first, then increases,

and decreases to zero when n → N . While other
terms decrease monotonically with n. Hence, if n is
not constrained, the minimum value of Tour(n

p) and
TSS−Mk(n

p) is one when n = N , meaning a single N -
sorter is used.

4.4 Comparison of the number of sorters

According to the analysis of both our Alg. 3 and the
SS-Mk in [14], the number of sorters for sorting N =
np inputs can be reduced by using a larger basic sorter.
However, a very large basic sorter is not feasible due to
some practical concerns, such as fan-in and cost. In this
work, we assume that the basic sorter size is limited. For
a given N , we take the total number of sorters in Eqs. (3)
and (4) as a function of p with n = N1/p ≤ nb, where
nb is the upper bound of the basic sorter size. When N
is not a power of a prime, we append redundant inputs
of 0’s and get a larger N ′ such that N ′ is a power of a
prime. Hence, we have n′ = N ′1/p = ⌈⌈N1/p⌉⌉, where
⌈⌈x⌉⌉ denotes the smallest prime larger than or equal to
x. There exists an optimal p such that the total number
of sorters is the minimum. We search for the optimal p’s
for our Alg. 3 and the SS-Mk [14] using MATLAB. By
plugging the optimal p’s into Eqs. (3) and (4), we obtain
the total number of sorters for sorting networks of N
inputs.

We compare the number of sorters for sorting net-
works via the Batcher’s odd-even algorithm [2], our
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Alg. 3, and the SS-Mk [14] for wide ranges of N . The
results are show in Fig. 9. The numbers of sorters are
illustrated by staircase curves, because we use a larger
sorting network for N not being a power of prime. From
Fig. 9, the Batcher’s odd-even algorithm using 2-sorters
always requires more sorters than both our Alg. 3 and
the SS-Mk in [14]. For both our Alg. 3 and the SS-
Mk [14], the number of sorters is smaller for a larger
nb, meaning that using larger basic sorters reduces the
number of sorters. For the comparison of the number
of sorters required by our Alg. 3 and the SS-Mk [14],
there are three scenarios with respect to three ranges of
N . We first focus on nb = 10. For N ≤ 6.25 × 102, our
Alg. 3 has fewer or the same number of sorters than
the SS-Mk as shown in Fig. 9. For some segments in
6.25× 102 < N ≤ 3.13× 103, our Alg. 3 has fewer sorters
than the SS-Mk. For N > 3.13 × 103, the SS-Mk in [14]
needs fewer sorters. For nb = 20, we have similar results.
For N ≤ 1.46 × 104, our Alg. 3 has fewer or the same
number of sorters than the SS-Mk as shown in Fig. 9. For
some segments in 1.46× 104 < N < 1.3× 105, our Alg. 3
has fewer sorters than the SS-Mk. For N > 1.3× 105, the
SS-Mk in [14] needs fewer sorters.

Similarly, we compare the latency of the Batcher’s odd-
even algorithm, our Alg. 3, and the SS-Mk in [14]. The
latencies are obtained by plugging the corresponding
optimal p’s into Eqs. (1) and (2) and shown in Fig. 10
for N ≤ 2 × 104. From Fig. 10, the Batcher’s odd-even
algorithm using 2-sorters has the largest latency. For both
our Alg. 3 and the SS-Mk [14], the latency can be reduced
by having a larger nb. The latency of our Alg. 3 is not
greater than the SS-Mk for N ≤ 2× 104 for both nb = 10
and nb = 20 as shown in Fig. 10. This is because our
Alg. 3 tends to use large sorters, leading to less stages
of sorters. We note that the latency goes up and down
for some N in Fig. 10. This is because of the switching
from a smaller basic sorter to a larger one to reduce the
number of sorters.
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Fig. 9. Comparison of the number of sorters (n ≤ 10 and
n ≤ 20) for sorting N inputs via the SS-Mk in [14] and our
Alg. 3.

TABLE 2
Comparison of the number of sorters for sorting N = 2k

inputs (1 ≤ k ≤ 16) with n ≤ 20 via the SS-Mk in [14] and
our Alg. 3.

N SS-Mk Ours Rd. (%)
2 1 1 0.0
4 5 5 0.0
8 11 11 0.0

16 38 30 21.05
32 95 65 31.58
64 347 207 40.35
128 566 326 42.40
256 1250 690 44.80
512 3952 3500 11.44

1024 8287 6378 23.04
2048 15595 12039 22.80
4096 44652 33891 24.10
8192 143762 136574 5.00
16384 179631 183143 -1.96
32768 1176250 1134692 3.53
65536 1176250 1134692 3.53
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Fig. 10. Comparison of the latency for sorting N inputs
with n ≤ 10 and n ≤ 20 via the SS-Mk in [14] and our
Alg. 3.

To some researchers’ interest, we also compare the
number of sorters for N being a power of two. The
results are shown in Table 2, where columns two and
three show the numbers of sorters for the SS-Mk and our
Alg. 3, respectively, and column five shows the reduction
by our Alg. 3 compared with the SS-Mk [14]. For our
Alg. 3, there are up to 46% fewer sorters than the SS-Mk
in [14] for N = 2i, for i = 4, 5, · · · , 16. It is also observed
that a greater reduction is obtained for small p, meaning
our approach is more efficient for networks with larger
sorters as basic blocks.

5 APPLICATION IN THRESHOLD LOGIC

In Sec. 4.4, we assume all basic sorters in the sorting
network are the same and measure the complexity by
the number of sorters, since the distribution of sorters is
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unknown. This would overestimate the total complexity.
In this section, we focus on the threshold logic and
measure the complexity by the number of threshold
gates. In the following, we first briefly introduce the
threshold logic, which is very powerful for computing
complex functions, such as parity function, addition,
multiplication, and sorting, with significantly reduced
number of gates. Then, we present an implementation
of a large sorter in threshold logic. Last, we compare the
complexity of sorting networks in terms of the number
of gates. This is a very narrow application in the sense
that sorters are implemented by threshold logic and the
inputs are binary values.

5.1 Threshold logic

A threshold function [18] f with n inputs (n ≥ 1),
x1, x2, · · · , xn, is a Boolean function whose output is
determined by

f(x1, x2, · · · , xn) =

{

1 if
∑n

i=1 wixi ≥ T
0 otherwise,

(5)

where wi is called the weight of xi and T the thresh-
old. In this paper we denote this threshold function
as [x1, x2, · · · , xn;w1, w2, · · · , wn;T ], and for simplicity
sometimes denote it as f = [x;w;T ], where x =
(x1, x2, · · · , xn) and w = (w1, w2, · · · , wn). The physical
entity realizing a threshold function is called a threshold
gate, which can be realized with CMOS or nano tech-
nology. Fig. 11 shows the symbol of a threshold gate
realizing (5).

Fig. 11. Threshold gate realizing f(x) for n inputs,
x1, x2, · · · , xn, with corresponding weights ω1, ω2, · · · , ωn

and a threshold T .

5.2 n-sorter

Binary sorters can be easily implemented in threshold
logic. In [19], a 2-by-2 comparator (2-sorter) was imple-
mented by two threshold gates as shown in Fig. 12(a).
Similarly, we introduce a threshold logic implementation
of an n-sorter as shown in Fig. 12(b), where n threshold
gates are required. As shown in Fig. 12, the number
of gates of an n-sorter scales linearly with the number
of inputs n. Hence, large sorters are preferred to be
used as basic blocks. However, larger sorters are more
complex and expensive to be implemented. For practical
concerns, such as fan-in and cost, some limit on the size
of basic sorters is assumed.

Fig. 12. Sorters implemented in threshold logic (a) 2-
sorter; (b) n-sorter.

5.3 Analysis of number of gates

In the following, we assume all gates are the same and
derive the total number of gates. The sorting network
of N inputs is composed of multiple stages, of which
each partially sorts N values. Not all values in each
stage participate the comparison-and-switch operation.
A simple way to count the gates is to insert buffer
gates in each stage to store values without involving
any sorting operation. Buffer insertion is also needed
for implementation of threshold logic in some nanotech-
nology, where synchronization is required for correction
operation. Hence, each stage contains N gates and the
total number of gates is obtained by multiplying N to
the latency. Note that N does not have to be a power
of n. Hence, the total number of gates of our Alg. 3 and
the SS-Mk [14] are simply given by

Qour(N) = N · Lour(N), (6)

and

QSS−Mk(N) = N · LSS−Mk(N). (7)

If n is bounded, the total numbers of gates in Eqs. (6)
and (7) have an order of O(N log2 N), which is the same
as the order for the numbers of sorters via our Alg. 3
and the SS-Mk in [14] in Sec. 4.3.

To derive the accurate number of gates, we first
derive the number of buffers added for Eqs. (6) and
(7). When N is a power of prime, the number of
buffers for sorting N = np values via our Alg. 3
and the SS-Mk [14] can be easily obtained due to
a regular structure. For our Alg. 3, the number of

buffers is given by Gour(N) = (p − 1)np−2 n2+6n−5
4 +

((p−2)np−1−(p−1)np−2+1)(n+5)
4(n−1) + (p−1)(p−2)

2 np−1 for n 6= 2

and G(np) = (p2 − p+4)2p−1 − 2 for n = 2. Similarly, we
derive the number of buffers for the SS-Mk in [14], which
is given by GSS−Mk(N) = 2

∑p
i=2(2

⌈(i−2) log2 n⌉+1 −

1)np−i + (np−1−1)(n2−5)
2(n−1) + (p−1)(n−1)2np−1

4 for n 6= 2 and

G(np) = (p2−p+4)2p−1−2 for n = 2. By subtracting the
number of buffers from Eqs. (6) and (7), we obtain the
total numbers of gates for our algorithm and the SS-Mk
as shown in the following,

Rour(n
p) = np · Lour(n

p)−Gour(n
p), (8)
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and

RSS−Mk(n
p) = np · LSS−Mk(n

p)−GSS−Mk(n
p). (9)

Though it would overestimate the total number of gates
by adding buffers. However, the asymptotic gate counts
are not affected, since both Gour(n

p) and GSS−Mk(n
p)

have the same order of O(N log2 N).

5.4 Comparison of the number of gates

In the following, we first compare the number of gates
with consideration of buffers. Using the same idea as in
Sec. 4.3, we search for the optimal p’s of Eqs. (6) and (7)
using MATLAB. For n ≤ 10 and n ≤ 20, the numbers
of gates of the SS-Mk and our two implementations are
illustrated in Fig. 13. We also plot the odd-even sorting
for comparison. The curves in Fig. 13 are segmented
linear lines. This can be explained by Eqs. (6) and (7),
which are functions of N and latency. From Fig. 13, the
Batcher’s odd-even algorithm using 2-sorters has more
gates than both our algorithm and the SS-Mk in [14].
For both our Alg. 3 and the SS-Mk [14], the number of
gates is smaller with a larger nb, meaning that using
larger basic sorters reduces the number of gates. For
the comparison of the number of gates required by our
Alg. 3 and the SS-Mk [14], there are also three scenarios
with respect to three ranges of N . We first focus on
nb = 10. For N ≤ 1.68 × 104, our Alg. 3 has fewer or
the same number of gates than the SS-Mk as shown in
Fig. 13. For 1.68×104 < N ≤ 1.17×105, our Alg. 3 has the
same number of gates as the SS-Mk. For N > 1.17× 105,
the SS-Mk in [14] needs fewer gates. For nb = 20, we
have similar results. For N ≤ 3.71× 105, our Alg. 3 has
fewer or the same number of gates than the SS-Mk. For
some segments in 3.71×105 < N ≤ 2.47×106, our Alg. 3
has fewer gates than the SS-Mk. For N > 2.47× 106, the
SS-Mk in [14] needs fewer gates.

Similarly, we compare the latency of our sorting algo-
rithm with the SS-Mk in [14]. The latencies are obtained
by plugging the corresponding optimal p’s into Eqs. (6)
and (7) and shown in Fig. 14 for N ≤ 2× 104. Note that
the minimization of the number of gates is essentially to
minimize the latency, since each N is fixed in Eqs. (6)
and (7). Fig. 14 also shows the minimal latencies of
the Batcher’s odd-even algorithm. All the latencies are
illustrated by staircase curves. From Fig. 13, the Batcher’s
odd-even algorithm using 2-sorters has the largest la-
tency. For both our Alg. 3 and the SS-Mk [14], the latency
can be reduced by having a larger nb. The latency of our
Alg. 3 is not greater than the SS-Mk for N ≤ 2 × 104

for both nb = 10 and nb = 20 as shown in Fig. 14. This
is because our Alg. 3 tends to use large basic sorters,
leading to less stages.

We also compare the number of gates with buffers
for N being a power of two. The numbers of gates are
minimized by varying p according to Eqs. (6) and (7) for
our algorithm and the SS-Mk [14]. Note the optimal p’s
are different from those in Sec. 4.4. The results are shown
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Fig. 13. Comparison of the number of gates (n ≤ 10 and
n ≤ 20) for sorting N inputs via the SS-Mk in [14] and our
Alg. 3.
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Fig. 14. Comparison of the latency (n ≤ 10 and n ≤ 20)
for sorting N inputs via the SS-Mk in [14] and our Alg. 3.

in Table 3, where columns two to four show the numbers
of gates for the SS-Mk, our Alg. 3, and the reduction of
our Alg. 3, respectively, with n ≤ 20, and columns five
to seven show those with n ≤ 10. For n ≤ 10 and n ≤ 20,
there are up to 25% and 39% fewer gates, respectively,
than the SS-Mk in [14] for N = 2i with i = 1, 5, · · · , 16.
It is observed that fewer and the same number of gates
are needed for n ≤ 20 than for n ≤ 10 for all N = 2i

with i = 1, 2, · · · , 16. The reduction percentage of n ≤ 20
is also greater than or equal to that of n ≤ 10 for all
N = 2i with i = 1, 2, · · · , 16 but N = 16. This means our
sorting network takes better advantage of larger basic
sorters.

For N being a power of prime, we compare the
number of gates without buffers according to Eqs. (8)
and (9). For N ≤ 3× 104, we search for the same N ’s for
our Alg. 3 and the SS-Mk with the minimum number
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TABLE 3
Comparison of the number of gates with buffers for

sorting N = 2k inputs (1 ≤ k ≤ 16) with n ≤ 20 via the
SS-Mk in [14] and our Alg. 3.

N
n ≤ 20 n ≤ 10

SS-Mk Ours
Rd.

SS-Mk Ours
Rd.

(%) (%)
2 1 1 0.00 1 1 0.00
22 4 4 0.00 4 4 0.00
23 8 8 0.00 32 32 0.00
24 16 16 0.00 96 80 16.67
25 256 192 25.00 256 192 25.00
26 768 512 33.33 896 768 14.29
27 1792 1152 35.71 2304 1920 16.67
28 4608 2816 38.89 4608 3840 16.67
29 12800 11264 12.00 12800 11264 12.00
210 27648 21504 22.22 31744 28672 9.68
211 63488 49152 22.58 63488 57344 9.68
212 163840 122880 25.00 192512 184320 4.26
213 376832 327680 13.04 385024 368640 4.26
214 770048 737280 4.26 770048 737280 4.26
215 2162688 1900544 12.12 2162688 2162688 0.00
216 4325376 3801088 12.12 4325376 4325376 0.00

of gates. The results are shown in Tables 4 and 5 for
n ≤ 10 and n ≤ 20, respectively, where columns three
and four show the numbers of gates for the SS-Mk and
our Alg. 3, and column five shows the reduction of our
Alg. 3. For all N ’s except for N = 75, our Alg. 3 has
no more gates than the SS-Mk in [14]. There are up to
13% and 23% fewer gates than the SS-Mk in [14] for
n ≤ 10 and n ≤ 20, respectively. This means our sorting
network takes better advantage of larger basic sorters.
We also remark that using a larger sorter size n may
reduce the number of gates for sorting N = np inputs.
For all common N ’s for n ≤ 10 in Table 4 and n ≤ 20 in
Table 5, the same number of gates is needed, since the
same sorter size n is used. For all remaining N ’s except
for N = 39 in Table 4, there is a corresponding larger
N ’s in Table 5 with fewer gates. For N = 39 = 19683 in
Table 4 and N = 134 = 28561 in Table 5, the latter has
about 1% more gates than the former, but accounts for
45% more inputs.

6 CONCLUSION

In this work, we proposed a new merging algorithm
based on n-sorters for parallel sorting networks, where
n is prime. Based on the n-way merging, we also
proposed a merge sorting algorithm. Our sorting algo-
rithm is a direct generalization of odd-even merge sort
with n-sorters as basic blocks. By using larger sorters
(2 ≤ n ≤ 20), the number of sorters as well as the
latency is reduced greatly. In comparison with other
multiway sorting networks in [14], our implementation
has a smaller latency and fewer sorters for wide ranges
of N ≤ 1.46 × 104. We also showed an application of
sorting networks implemented by linearly scaling sorters
in threshold logic and have a similar conclusion that the

TABLE 4
Comparison of the number of gates without buffers for
sorting N = np inputs for n ≤ 10 via the SS-Mk in [14]

and our Alg. 3.

N np n ≤ 10
SS-Mk Ours Rd. (%)

2 2 2 2 0.00
3 3 3 3 0.00
5 5 5 5 0.00
7 7 7 7 0.00
9 32 29 29 0.00
25 52 118 110 6.78
27 33 197 188 4.57
49 72 305 269 11.80
81 34 1067 998 6.47
125 53 1450 1315 9.31
128 27 2942 2942 0.00
343 73 5072 4728 6.78
625 54 13489 12140 10.00
729 36 22801 20411 10.48
1024 210 48126 48126 0.00
2401 74 63354 62254 1.74
3125 55 108175 97265 10.09
4096 212 278526 278526 0.00
6561 38 377375 330236 12.49
8192 213 655358 655358 0.00
16807 75 688713 704693 -2.32
19683 39 1443791 1259711 12.75

TABLE 5
Comparison of the number of gates without buffers for
sorting N = np inputs for n ≤ 20 via the SS-Mk in [14]

and our Alg. 3.

N np n ≤ 20
SS-Mk Ours Rd. (%)

2 2 2 2 0.00
3 3 3 3 0.00
5 5 5 5 0.00
7 7 7 7 0.00
11 11 11 11 0.00
13 13 13 13 0.00
17 17 17 17 0.00
19 19 19 19 0.00
25 52 118 110 6.78
27 33 197 188 4.57
49 72 305 269 11.80
121 112 1117 917 17.91
125 53 1450 1315 9.31
169 132 1814 1454 19.85
289 172 3970 3074 22.57
361 192 5501 4205 23.56
625 54 13489 12140 10.00
729 36 22801 20411 10.48
1331 113 29107 26668 8.38
2197 133 54703 50763 7.20
2401 74 63354 62254 1.74
3125 55 108175 97265 10.09
4913 173 156812 143443 8.53
6859 193 239590 221052 7.74
14641 114 564513 562214 0.41
16807 75 688713 704693 -2.32
28561 134 1230724 1271788 -3.34

number of gates can be greatly reduced by using larger
sorters.



12

APPENDIX A
PROOFS

A.1 Proof of Lemma 3.1

Proof: The proof of the lemma can be reduced to
showing that for l > 0 any two wires s, s + l ∈ Zm of
each list are sorted as shown in Fig. 4(b). We prove the
lemma by contradiction. The inputs satisfy xj,s ≤ xj,s+l

for j ∈ Zn and s, s+ l ∈ Zm. Suppose there exist k ∈ Zn

and s, s+ l ∈ Zm such that x′
k,s > x′

k,s+l. Since the sorter
for xk,s k ∈ Zm acts as a permutation of the index k, we
denote such permutation of the sorter connecting wire s
as f : {1, · · · , n} → {1, · · · , n}. Because f is bijection,
an inverse f−1 exists. Then we have xf−1(t),s+l ≥a

xf−1(t),s = x′
t,s ≥ x′

k,s > x′
k,s+l for k ≤ t ≤ n, where the

“≥a” is because the inputs are sorted and the “=” is due
to the permutation. There are n−k+1 inputs of xf−1(t),s+l

satisfying xf−1(t),s+l > x′
k,s+l. However, at most n − k

outputs satisfy x′
t,s+l > x′

k,s+l for t ∈ {k+1, k+2, · · · , n},
resulting in a contradiction. Hence, all lists are self sorted
after applying n-sorters.

A.2 Proof of Lemma 3.2

Proof: First, we show that the first connections of
adjacent two sorters belong to either the same list or
adjacent two lists. Let (j, t1) and (j + l, t2) be the first
connections of adjacent two sorters S1 and S2, respec-
tively, where (j, t) denotes wire t in list j. If l > 1,
the connection of S1 in list j + l − 1 should be wire
m; otherwise, S2 would have a valid connection in list
j+ l. For lists j to j+ l− 2, only wires m in each list are
connected by S1, since wire m can be connected to the
preceding list only by a (m−1)-spaced sorter. Hence, S1
is the last (m− 1)-spaced sorter in stage 1 and S2 does
not exist. Similarly, we can show that the last connections
of adjacent two sorters S1 and S2 belong to either the
same list or adjacent two lists. This gives us a total of
four cases as shown in Fig. 5, where b ≥ a+1 for Fig. 5(a)-
(c), and b ≥ a for Fig. 5(d) such that S1 and S2 have a
size of at least two.

If m is prime, no adjacent two sorters belong to
case IV, which is equivalent to showing that m is a
composite number if case IV in Fig. 5 exists. Assume
two adjacent sorters S1 and S2 belong to case IV. Let the
first connection of S1 be (j,m) and the last connection
of S2 be (j + p, 1). The last connection of S1 satisfies
(k + 1)p ≡ 0 mod m. We have m | (k + 1)p. Since case
IV is not possible in the first stage, we have p < m. Since
two adjacent sorters connect two adjacent wires in at
least one list, we have p > 1. If k = 0, S1 would connect
the last and first wires of adjacent lists, respectively, in
which case S2 does not exist. We have 1 < k + 1 < m.
So m should have a proper factor dividing k + 1 or p.
Hence, m is a composite number.

A.3 Proof of Theorem 3.1

Proof: The theorem can be proved by induction on i.
In stage 1, m-sorters are applied on corresponding wires

of all m lists. According to Lemma 3.1, the outputs of
each list are sorted. Assume any two adjacent wires s

and s + 1 in list j are sorted after stage i − 1, x
(i−1)
j,s ≤

x
(i−1)
j,s+1 for 1 ≤ j ≤ n and 1 ≤ s ≤ m − 1. We will show

that x
(i)
j,s ≤ x

(i)
j,s+1 for 1 ≤ j ≤ n and 1 ≤ s ≤ m− 1.

According to Lemma 3.2, for a prime m, there are three
cases of two adjacent sorters S1 and S2 as shown in
Fig. 5(a)-(c).

1) For case I, let y
(i−1)
j,1 and y

(i−1)
j,2 be the two adjacent

wires in list j connected by adjacent two sorters in
stage i − 1 for a ≤ j ≤ b. According to Lemma 3.1
(n = 2), the outputs of each list are sorted.

2) For case II, there is an additional single wire y
(i−1)
b+1

connected by S2. If y
(i−1)
b+1,1 = 1, we have y

(i)
b+1,1 = 1.

The last connection of S2 can be removed without
changing the order of others in S2. S1 and the
revised S2 reduce to case I and the outputs are

sorted according to Lemma 3.1. If y
(i−1)
b+1,1 = 0, we

have y
(i−1)
b,1 = 0. This is because they are connected

by the same sorter in stage i − 1. Then, we have

y
(i)
a,1 = y

(i)
a,2 = 0, which are sorted outputs in list a.

Remove y
(i−1)
b+1,1, y

(i−1)
b,1 , y

(i)
a,1, and y

(i)
a,2, the remaining

of S1 and S2 reduce to a smaller configuration
of case II. With recursively applying the above
approach, S1 and S2 either reduce to a smaller
case I or a single wire, both of which gives sorted
outputs.

3) For case III, there is an additional single wire

y
(i−1)
a−1,m connected by the first sorter. Similarly, the

two sorters can be reduced to either a case I or a
smaller configuration of case III and the outputs of
two adjacent wires in each list are sorted.

Assume all lists are self-sorted after stage i− 1, we have

x
(i−1)
j,1 ≤ · · · ≤ x

(i−1)
j,m for 1 ≤ j ≤ n. For stage 1 ≤ i ≤

⌈m
2 ⌉, all wires in lists j = 2, · · · , n− 1 have connections

with some sorters. We have x
(i)
j,k ≤ x

(i)
j,k for j = 2, · · · , n−1

and k = 1, · · · ,m − 1. Hence, lists j = 2, · · · , n − 1
are self-sorted after stage i. For list 1, x

(i−1)
1,i−1 ≤ x

(i−1)
2,1

and x
(i−1)
1,i−1 ≤ x

(i−1)
1,i , we have x

(i)
1,i−1 ≤ x

(i)
1,i. We have

〈x
(i)
1,1, x

(i)
1,2, · · · , x

(i)
1,i−1〉, since list 1 is self-sorted after stage

i − 1 and x
(i−1)
1,k = x

(i)
1,k for k = 1, · · · , i − 1. We also

have x
(i)
1,i, x

(i)
1,i+1, · · · , x

(i)
1,m〉. Hence, list 1 is self-sorted

after stage i, x
(i)
1,1, x

(i)
1,i+1, · · · , x

(i)
1,m〉. Due to symmetry, list

n is also self-sorted after stage i, x
(i)
m,1, x

(i)
m,i+1, · · · , x

(i)
n,m〉.

To prove that the outputs of n sorted lists

〈x
(⌈m

2
⌉)

j,1 , · · · , x
(⌈m

2
⌉)

j,m 〉 for j = 1, · · · , n after stage ⌈m
2 ⌉

are combined as a single sorted list in stage ⌈m
2 + 1⌉,

we need to show that x
(⌈m

2
⌉+1)

j,m+1

2

≤ x
(⌈m

2
⌉+1)

j,m+1

2
+1

for j =

1, · · · , n − 1 and x
(⌈m

2
⌉+1)

j,m+1

2
−1

≤ x
(⌈m

2
⌉+1)

j,m+1

2

for j = 2, · · · , n.

Since x
(⌈m

2
⌉)

j,m+1

2

≤ x
(⌈m

2
⌉)

j,m+1

2
+1

and x
(⌈m

2
⌉)

j,m+1

2

≤ x
(⌈m

2
⌉)

j+1,1 , we have

x
(⌈m

2
⌉+1)

j,m+1

2

≤ x
(⌈m

2
⌉+1)

j,m+1

2
+1

for j = 1, · · · , n − 1. Similarly, we

have x
(⌈m

2
⌉+1)

j,m+1

2
−1

≤ x
(⌈m

2
⌉+1)

j,m+1

2

for j = 2, · · · , n
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A.4 Proof of Lemma 3.3

Proof: In stage i − 1, there are ni−1 sorted lists of
n values with respect to each q (q = 1, · · · , np−i). Since
the outputs of each merging network are sorted after
stage i − 1, we can replace each merging network by
an ni-sorter. According to Lemma 3.1, the outputs of

each new formed list after stage i are sorted, x
(i)
j,q ≤

x
(i)
j,np−i−1+q ≤ x

(i)
j,(n−1)np−i−1+q for j = 1, · · · , ni. Since the

corresponding wires in the new lists are connected by the

same ni-sorter in stage i − 1, we have x
(i)
j,q ≤ x

(i)
j+1,q for

j = 1, · · · , ni−1. Hence, r
(i)
j,q ≥ r

(i)
j+1,q for j = 1, · · · , ni−1.

For r
(i)
s,q = n > r

(i)
s+1,q ≥ · · · ≥ r

(i)
s+l,q > 0 =

r
(i)
s+l+1,q for l ≤ n, it is equivalent to prove that

x
(i)
j+n,q = 1 if x

(i)
j,(n−1)np−i−1+q = 1 for j ∈ {1, · · · , ni − n}.

For any q ∈ {1, · · · , np−1−i} in stage i, there are ni

lists of n values. Suppose x
(i)
j,(n−1)np−i−1+q = 0 for

j ≤ s and x
(i)

s+1,(n−1)np−i−1+q = 1. If t (t ≤ s) zeros of

x
(i)
j,(n−1)np−i−1+q are from the same list of the original n

sorted lists, there are at most t+1 zeros of x
(i)
j,q from that

same list. Since x
(i)
j,(n−1)np−i−1+q = 0 for j ≤ s are from

at most n original lists, there are at most s + n zeros

in x
(i)
j,q , implying that x

(i)
s+n,q = 1. Hence, x

(i)
j+n,q = 1 if

x
(i)
j,(n−1)np−i−1+q = 1 for j ∈ {1, · · · , ni − n}.

A.5 Proof of Theorem 3.2

Proof: In stage 1, all outputs with respect to the
operation of the same Alg. 1 are sorted. For any
q ∈ {1, · · · , np−1−i} in stage i, according to Lemma 3.3,
at most n consecutive lists are not full of zeros. All
preceding lists are all-zero lists and all following lists
are all-one lists. Hence, the combining network in stage
i is to sort n lists of n values, which is reduced to Alg. 1.
In stage p− 1, we have q = 1 and the single sorted list,

〈x
(i)
1,q, x

(i)
1,np−i−1+q, · · · , x

(i)
1,(n−1)np−i−1+q, x

(i)
2,q, x

(i)
2,np−i−1+q,

· · · , x
(i)
2,(n−1)np−i−1+q, · · · , x

(i)
ni,q, x

(i)
ni,np−i−1+q, · · · ,

x
(i)
ni,(n−1)np−i−1+q〉, contains np values, implying all

inputs are sorted as a single list.
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