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Abstract—As the distributed energy generation and storage

X . N . . Enabling Technologies Required Frameworks
technologies are becoming economically viable, energy wing o Energy Storage System e Game Theory
is gradually becoming a profit making option for end-users. o Renewable Generation o Optimization
This trend is further supported by the regulators and the o Electric Vehicles e Simulation
policy makers as it aids the efficiency of power grid operatias, o Communications
reduces power generation cost and the Green House Gas (GHG)
emissions. To that end, in this paper we provide an overview
of distributed energy trading concepts in smart grid. First, we Eneérgy
identify the motivation and the desired outcomes of energy Trading
trading framework. Then we present the enabling technologs
that are required to generate, store, and communicate with le
trading agencies. Finally, we survey on the existing literaure and .
present an array of mathematical frameworks employed. Desired Outcomes

o Profit by energy Trading

o Improved System Efficiency
|. INTRODUCTION e Reduction in GHG Emissions

A. Motivation o Deferral of System Upgrade

As the world’s population is drastically growing, the corre
sponding additional energy demand (estimate8sas by year ) ) : . ]
2040) should to be continuously supplied in order to susta@Perators to provide various ancillary services to imprthe
the economic development][1]. However, to accommodatficiency of the power grid. For instance, injecting active
the projected demand, the energy efficiency aspect shouldRswver from distributed generation options would improve
carefully considered. The recent advancements in smait giffé bus voltages and the power quality, which is mainly
promise unprecedented improvements in energy efficiené§alized minimizing voltage sags. Furthermore, with eperg
This can be mainly realized by the deployment of decentrdf2ding user demand will be met locally and the use of far-
ized generation and storage technologies, so that cussaaer off high capacity generator options will be decreased. This
participate in decentralized bilateral energy tradingddtiplly Way congestions on transmission lines will be reduced and
fulfill their needs without further stressing the grid. Taath the corresponding line losses (in the form heat) will be
end, in this paper we survey on recent literature on energinimized. Corollary, the required system upgrades (due to
exchange and trading in smart grid. An overview of this pap8lcreasing demand) will be deferred and take place graguall
is presented in Figuré 1. over a wider time horizon. Note that these improvements

The success of the aforementioned energy trading franyélll €nhance the reliability of the equipments and reduce
work depends on active participation of end-users and tH& average customer interruption cost. A detailed survey o
availability of enabling technologies. The biggest mdiiva IMmProved energy efficiency is presented|in [2].
for the users comes in the form of cost savings and prof-2) Reduced System Operation Cogt: order to meet the
its. From the utility standpoint, the economic benefits affochastic customer demand, utilities dispatch their getiua
multifaceted [[2]. The distributed generation, storagej e  Portfolio according their operating cost. Large-scaley-lo
exchange of energy will: (1) improve the overall efficienc§°3t generating units are usually preferred to meet b_asia loa
of the grid operations; (2) minimize system operation cogemand. On the oth_er hand, as the customer demand increases,
and (3) reduce the Green House Gas emissions. Note th¥teém operators dispatch more generators to keep up with
the savings in utility operations will further be reflecten i the minute-by-minute varying customer demand. During peak
electricity tariffs and customers will benefit from lowered'ours, thatis only arounth% of the day, utilities employ fast-
tariffs. Next, we explain the aforementioned motivations f Start, high operating cost, and usually gas-power generato

Fig. 1: An Overview of Energy Trading Components.

energy trading in more details. to accommodate high electricity demand. One of the main
motivations of the energy trading is to reduce to peak-to-
B. Benefits average demand ratio by locally trading energy during peak

hours. In Figuré2, we present a typical cost of dispatcheurv
for summer 2011 in the US [[4]. During the peak hours, the
stem operation cost increases exponentially. If theggner
ding takes places in the shaded region, both the utility a
The authors are with the Department of Electrical and Cosipin- the users W'I_l bEIjefIt in the fo_rm_ of cost sa_vmgs.
gineering, Texas A&M University at Qatar. Emails:(islamybam, muham-  3) Reduction in GHG EmissionsCountries around the
mad.shakw, moham_ed.abdallah, khalid.garaqe) @qaar.éau. This pu'b||ca- globe have set targets for reducing the GHG emissions in
tion was made possible by NPRP grant # 6-149-2-058 from tharQ&ational h d de. For i E Uni .
Research Fund (a member of Qatar Foundation). The statenmatte herein the ne_Xt ecaade. ror 'nStancej _uropean nion countries are
are solely the responsibility of the authors. targeting to cut the GHG emission B0% by year 2020.

1) Improved System Efficiencyfhe penetration of dis-
tributed generation and storage units and the capabilitg E
to store considerable amount of ener@y [3], enable systg
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Fig. 2: Electric Power Generation Cost.
Fig. 3: Energy Trading Among Microgrids
The full exploitation of renewable and distributed energy . . ,
generation is a critical element in reducing the GHG emigsio®0Urces, such as solar panels and wind turbines, or high

since the power grid operations are responsible for the oREICIENCy conversion of bio-energy or fossil fuels. Ovee th

fourth of the global GHG emissions. This can be mainl9a5t decade there has been a strong push to accelerate the

realized by the selling/buying excess generation at micritegration of distributed renewable energy sources ih t
grid level during the peak hours and improving the overa@Xisting generation portfolio. With swtal?le control thaye
system efficiency. On-site power generation in the meantifiB!e t0 reduce peak loads and can provide reliable power for
often releases significant amounts of waste heat, which ¢inmercial buildings, industrial facilities, residertizeigh-
be recycled for heating and cooling buildings, refrigemati P0rnoods, college/un|ver§|ty campuses, and military ase
through absorption chilling, and heating water. Suchaatipn /hat is more, they don’t require connection to a national
can improve overall "energy efficiencies” of consumer frorffid- Hence, they are attractive technologies in achieving
around 35% to as high as 85%, with additional reductiorf@€cific local operational objectives, such as reliabiggrbon
in per capita CO2 emissions|[5]. It is shown [ [6] that thgmission reductlc_)n, diversification of er)ergy.sources,(ami
aforementioned smart grid features can reduce the carff§fuction. established by the community being served.
emission by12% by year2030. A detailed analysis on the To _thls end, microgrid architectures are key enablgrs in
GHG savings with the smart grid features is presentedlin [Ffaching these goals as they employ renewable generatibn an
4) Energy Profiling: The efficiency of micro-grid genera- offer flexible energy management solutions. Microgrid aser
tors is greatest when they are networked together with sm@iher individuals or groups, act like “prosumers” who can
virtual micro-grids to profile the user demand and subsBfoduce and consume energy at the same time. Moreover
quently control the flow and generation of the energy. Likduring the periods of supply-demand mismatch, “prosumers”
the bulk power grid, smart micro-grids generate, distgputcan interact among each other and trade electric generation
and regulate the flow of electricity energy to consumers, b@yer @ marketplace (an overview is illustrated in FigureCk).
do so locally. Being local they offer much lower line losse8n€ hand, users make extra profit by selling their excesspowe
in comparison with the higher line losses associated with tR" buying cheap electricity from their neighbors. On theeoth
energy transmission over long-distance. Being networkeuhi hand, the elimination of starting fast ramp generatorscedu
ideal way to integrate renewable resources on the commurift¢ operation cost of the power system. Hence, energy gadin
level and allow for customer participation in the electsici creates a win-win situation for both parties. In literafuire
enterprise, balancing supply and demand near point of uree. prder to quantify the additional savings, second ordertions
emerging energy trading processes form the building blocREe Predominantly used to model the power generation cost of
of the perfect power system of future. Perhaps one of tRECh generators, which is given by:
greatest advantages of networked micro-generators istteat
can be better adapted to meet the needs of the future energy
demand gnd CO2 reduction targets, and provide rapid re8PORBere » is the active power output ang, as, and as are
to balancing between demand and supply at smaller gratwilaghe cost coefficients of the generatdd (1) usually serve as a
than the central grid can offer. Rather than relying ontitili o1 of the profit function in energy trading literature [§].
companies to build capital-intensive, full-scale powearp$, another important aspect of the research efforts in renévab
networked micro-generators can enlarge the overall &89t ,oneration is to choose appropriate stochastic modelspo ca
supply rapidly and cost-effectively using relatively stiatal ;e the intermittency in energy trading. The power gerenat

C(x) = a12” + agw + as, @)

generators. in wind turbines are correlated with the wind speed which is
modeled by a Weibull distribution, and the scale parameters
~II. ENABLING TECHNOLOGIES& M ODELS are associated with strength of the wind and the peak of the

A. Distributed Renewable Generation wind distribution. A similar mathematical model to predict

Micro power stations (micro-grid generation) are moderithe output of solar power generation is presentedlin [10],
small, on-site distributed energy generators that canatperwhere the output power is computed by the following three
grid-connected or be isolated from it. They generally haygmrameters; efficiency of the photovoltaic (PV) systemarsol
capacities under 10 megawatts (MW) using renewable energll temperature, and the intensity of the solar radiation.



On the other hand, from system design point of view, mod- TABLE I Literature Review
els in stochastic network calculus are successfully iratiegr Ref. Rnwbll ESY EVs Model
in smart grid application for the renewable energy genanati 2], 3]
[11]. In this frameworks, renewable generation is modeked a 114], [15]
general stochastic arrival process and it is stored in arggne 28], 129]
storage. Then the goal is provide a probabilistic bound on 35]
the percentage of time the supply will be short of demangk 6]
Corollary, there has been a growing body of literature on the

Double Auction
Stochastic Optimization
Noncooperative Game
Social Welfare Max.
Double Auction

LS ) 21 Noncooperative Game
use of renewable generation in energy trading framewaorks [8
[12]-[1€] @l Stackelberg Game
' ] Stackelberg Game
B. Energy Storage Systems (ESS) (30] Double Auction
. [A7] Bidding

As the ESS technology is becoming more economically i g
able, the role of ESS in energy trading will be more prominent___[18] Convex Optimization
For large-scale renewable generation (e.g., solar arveiysl [36] Particle Swarm Optim.
farms), the ESS will be used to smooth out the output breviations: References (Refs.), Renewable GenergfRmwhbl.), Energy Storage
the system[[19]. On the other hand, for end-user applicsmtionyStemS (ESS). Flectric Vehicles (EV)
(d|str|buted) Community_based energy Storage systeme h&vehicle-to-vehicle, V2V) to fulﬂ” their requirements -m]COSt
already gained popularity [20]. In this case, the goal is fffective way. The most popular EV application concept & th
deploy small size storage units in the residential feedeYghicle-to-Grid (V2G) where the stored energy is exchange
to accommodate the demand of several houses during p#4lh the grid. The predominant use of EVs in the literature
demand. Similarly for energy trading applications, theraiy IS for energy trading to make extra profit by selling excess
role of the energy storage system will be to store off-ped@wer and the related literature includes [8].1[16]./[28f]
hour renewable energy, so that users can use and exchdwever the stored energy of EVs can also be used in ancillary
it during the periods of peak demand. The bibliography o¥ervices([21],[[32],[I33].
energy trading applications with ESS include [9],][12[9[17 [n energy trading applications, the optimization problems
[27]. Overall the goals of the ESS technologies are: (Ijay include different objectives. The most profound ones
improve power grid optimization for bulk power productiongre: (1) cost minimization; (2) cost-emission minimizati¢3)

(2) balance the power system operations with intermittepewer-loss minimization; and (4) peak-to-average load-min
and/or diurnal renewable generation options; (3) help ferdeimization. Depending on the objective, different consitsi
capital-intensive upgrades in the transmission and Higicn may be required for the energy trading schemes. The most
grids; (4) provide ancillary services to grid operations. important constraint is of course the electricity pricesialh

From the modeling perspective researchers threat stor&genes from the utility company. In order to minimize the
units as linear entities and use resource provisioningplitlre power losses, the physical distance between the tradiitgesnt
from communications to solve the sizing problerms [22]-[26peeds to be considered. Also technological constraints lik
To that end, the role of ESS modeling in optimization protden$tate-of-Charge limitations, battery types, batterynggiand
depends on the underlying assumption. If it is assumed ieat €fficiency will play a critical role.

ESS has already been acquired and operated by utility, then
the energy trading entities use the ESS size as a constnaint.i
the optimization problem. However, if the owner of the ES
is also the energy trading entity (micro grid or individuatde The success of the energy trading mechanism heavily de-
users), then the size of the ESS becomes an additional qosbds on the availability of the necessary communication

<|<|<|Z|Z|<|z|z|<| z| <| <
<|z|<|Z|Z|<|z|<|z|z|<|z
zlz| <] <| < <|<|<|z|<|z|z

i o
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term in the objective function. infrastructures to ensure reliable information dissemma
) . In energy trading, participants need to update their demand
C. Electric Vehicles or the amount of available energy to sell with the market

Even though the primary goal of Electric Vehicles (botlplace via two-way communication technologies. Also commu-
pure electric and plug-in hybrid) is to offer environmehtal nication networks will enable trading entities to monitbeir
friendly and cost-effective transportation options, tlapabil- renewable generation and the state of charge at the storage
ity of EV's to store huge amount of electric power (e.g., tze siunit. The literature in its current state assumes that there
of Nissan Leaf battery can store up to two household demarnsisperfect communication between all players. However, it
in the U.S.) makes them a natural player in energy exchangealso important to quantify the impacts of communication
mechanism. With the use of bidirectional chargers, EVs cagstem performance on the operations of the energy trading
exchange electric power with the power grid or other EVimechanisms as it will create another level of uncertainty.
[27]. From energy trading standpoint, there are three eimgrg Trading entities can make sub-optimal choices due to loss
concepts on the use of EVs. The first one is Vehicle-to-Honaé communications. For instance, the work presented_in [34]
(V2H), in which the vehicle battery pack acts exactly the sanguantifies the effects of communication system reliabiiity
as the stand-alone ESS given in the previous section. Apawer consumption of smart grid users. Similar concepts can
second scenario, EVs can exchange energy among each dfieeused in energy trading programs.



[1l. REQUIRED FRAMEWORKS 3) Non-cooperative GameNon-cooperative game theory

The literature on energy trading can be classified into sadavepaz beer_1 use_d e>t<ten;5|\éely(tr|]n r_nf;lny at|c_)pl|cat|ons n ZCOHO?IC?
subcategories by considering the different combinatiohs gna engineering fo study the inferaction among independen

employed enabling technologies that are presented in %%d self-mte:gsted agents. In er:erg)(/jttradmlg ?ptph(t:ri]ittha ¢
previous section. Another important aspect in categagitie non-cooperaive games are employed fo caiculate the amoun

literature is the employed mathematical framework. In gahe of energy to be sold in the market and the optimal solution (if

such frameworks can be classified into three categories.eﬁ‘iStS) is the Nash equilibrium, where no player has ingent
}oadeviate from his strategy. The work presented_in [28] uses

the energy trading scenario is set to have only one user o . .
Bon—cooperatwe game to solve the optimal amount of energy

central controller who can dictate his decisions to a grolup féchange among a group of plug-in hybrid vehicles. Similar
users, then the appropriate framework would be to use Sm%pproach has been adopted (il [29] and [24].

objective maximization tools such as convex, stochastic,
swarm optimization, or social welfare maximization. Howev

in majority of the cases there are multiple interacting 8Seg_ centralized Solution: Single Objective Maximization
who try to optimize their own utilities without consideririge

rest of the user and the grid conditions. In this case gamén the case of centralized approaches, the trading agencies
theoretic approaches are adopted to find the optimal saltict @s one entity or follow the orders of a central controller
in a decentralized way. As a final approach, we present tA80 is assumed to know all the information about buyers and
literature on simulation-based solutions. To that end, xieret  Sellers. In this case, single objective maximization téghes

our categorization by adding another dimension present € adequate to compute the optimal amount of energy to be

most popular approaches used in the existing literature aﬁ'i%lded_- In [1_8] aut.hors model the peer—to—peer.er.]ergyngadi
the summary of the literature is presented in Téble I. in a microgrid environment and use convex optimizationgool
to minimize the total energy generation and transportation

cost. Similarly the authors in_[86] employ particle swarm
optimization schemes to minimize the fuel cost generation
1) Auction MechanismAuction mechanisms have been th%ost On the other hand, in the case of renewable gener-
cornerstone of many applications in wholesale and retad-el ation stochastic optimization techniques have been used to
tric power markets. Similar to traditional auction meclsami address the uncertainty in generation. The work presented i
the primary goal of the distributed energy trading is to finfif2] proposes a profit maximization problem from end-users

the lowest-cost matching between the supply and demagendpoint using stochastic programming.
to maximize the economic efficiency [37]. 10_]32], authors

present a generic auction mechanism for energy trading in
local markets. Moreover, the works presented[inl [12]] [13F. Simulation-based Solutions

[16], [30] employ double auction mechanism in their model. ¢ third group of approaches use simulation based studies
More specmcall_y, the .WOI’k pr.esented in_[12] Proposes @ model the behavior of multi scale decision making agents.
ma_rket mechanism using continuous dpuble auction aimilgha main part of such approaches is the use of statistical
to_lmprove the market effl_mency. I_n this framevx(ork buyerﬁearning algorithms (e.g., reinforcement learning, Qg

(bid) and sellers (ask) continue trading period until theke& o(¢ y 5q that trading agents can derive long-term profitingak

is cleared that is when a bid exceeds an ask. Similarlojicies in an autonomous way [39]=]42]. 1A [41] authors
authors of [15] quel t.he energy trading among d'St”bUtﬁ%e electricity brokers as aggregators to manage the lealanc
energy §torage units W'tr“ game theory using double auctiBRyyeen buyers and sellers. A similar approach is used |n [40
mechanism. Moreover[_[30] formulates a game for ENer¥d the broker agents behavior is modeled with Markov De-

exchange among electric vehicles and the power grid Wifjon processes and Q-learning techniques. Furtherrtiae,

double auction mechanism. _ work presented in [43] proposes a simulation based modeling
2) Stackelberg Game:n economics Stackelberg gameg, |ocal energy trading.

models the behaviour of two agents, one of them being the
leaderwith the first move advantage and the other one being
the follower who plays a best response strategy to maximize
his own utility [3€]. In energy trading applications, thegag- Over the past few years, there has been a growing interest
gator often becomes tHeader and sets the prices accordingn energy trading applications in smart grid. In this paper,
to the needs of the market and aims to motivate users fwe surveyed on the distributed energy trading and exchange
participation. For instance, the work presented In [9] itdes in smart grid. We characterized the enabling technologges a
customers to sell their surplus energy during the peak houtfse renewable generation, energy storage, electric e=hicl
Moreover, authors of [8] usdsader-followergame to model and communications systems. Furthermore, we divide the
the energy exchange in vehicle to grid application and tmeathematical frameworks into three. The first group inctude
solution of the game is proven to be the socially optim@lame theoretic models that are used for multi-agent decisio
point. In both papers, utility functions are used to capturaaking. On the other hand, second type of approaches uses
the behaviour of players, and the strategies are develapedsingle objective maximization. Finally, we showed the uge o
maximize this functions which are concave. the simulation-based studies for energy trading mechanism

A. Decentralized Solution: Game Theoretic Approach

IV. CONCLUSIONS
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