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Abstract—We consider a two-relay network in which a source
aims to communicate a confidential message to a destination while
keeping the message secret from the relay nodes. In the first hop,
the channels from the source to the relays are assumed to be
block-fading and the channel states change arbitrarily -possibly
non-stationary and non-ergodic- across blocks. When the relay
feedback on the states of the source-to-relay channels is available
on the source with no delay, we provide an encoding strategy to
achieve the optimal delay. We next consider the case in which
there is one-block delayed relay feedback on the states of the
source-to-relay channels. We show that for a set of channel state
sequences, the optimal delay with one-block delayed feedback
differs from the optimal delay with no-delayed feedback at most
one block.

I. INTRODUCTION

Delay required to communicate message W from a source
to a destination, is a key metric for communication networks.
However, evaluating the optimal delay required to deliver the
message in a network is not widely considered as it is very
difficult to evaluate delay even in networks where no security
constraint is imposed on a message. We consider a two-relay
network with a secrecy constraint on a message, and do not
make any assumption on the statistics of the source-to-relay
channels, even on the existence of it. We evaluate the minimum
delay required to communicate the message to the destination
reliably and securely, and find the algorithm that achieves it.

The two-relay network we consider is depicted in Figure 1.
The goal of the source is to communicate a finite size message
W to the destination, while keeping it secret from the relays.
Source-to-relay 1 and source-to-relay 2 channels are assumed
to be block erasure channels, and the states of relay channels
change one block to the next in an arbitrary manner. Further-
more, we assume there is no direct channel from source to
the destination, and both relay 1-to-destination and relay 2-
to-destination channels are assumed to be noiseless. We study
this communication model under three set-ups each of which
has a different channel state information (CSI) assumption: 1)
Genie-aided CSI set-up: The source obtains the whole channel
state sequence of the relay channels before the communication
starts, 2) Zero-block-delayed CSI set-up: The source obtains
the state of the relay channels at the beginning of a block,
and 3) One-block delayed CSI set-up: The source obtains the
state of the relay channel with a 1 block delayed feedback.
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Fig. 1: System Model

We evaluate the minimum number of channel blocks required
to communicate message securely and reliably.

The main challenge in our problem stems from the fact that
since we delay with delay, we focus on the transmission of a
message with a finite and fixed size. Hence, we cannot employ
traditional asymptotic approaches [1] to show the message is
communicated securely and reliably, since such approaches
focus on large message sizes. To that end, we propose encod-
ing strategies for each CSI set-up to communicate the finite
size message reliably and securely to the destination. Our
contributions are as follows:
• We provide an encoding strategy to achieve the optimal

delay of genie aided CSI set-up and optimal delay of
zero-block delayed set-up D∗Zero-Block Delayed. We observe
that the optimal delays of two set-ups are equal.

• We bound the optimal delay of the one-block delayed CSI
set-up. We show that the optimal delay of the one-block
delayed CSI set-up differs from that of the zero-block
delayed CSI set-up at most one block, if the source-to-
relay 1 channel or the source-to-relay 2 channel does not
experience an erasure on the channel block arriving after
block D∗Zero-Block Delayed.

Related Work: In his seminal paper [1], Wyner introduces
the theoretical basis for information theoretic security for
the point to point setting, where the adversary eavesdrops
the communication between the transmitter and the receiver.
In [2], Cai and Yeung study the information theoretically
secure communication of a message in networks with general
topologies, where the adversary can eavesdrop an unknown
set of communication channels. The authors assume all the
channels in the network have the same capacity. In [3], the
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authors consider the same problem in [2] in networks in which
the channels do not need to have the same capacity. In [2]
and [3], the authors consider the communication channels as
noiseless channels, whereas the source-to-relay 1 channel and
the source-to-relay 2 channel are block erasure channels in our
study.

In [4], the authors study information theoretically secure
communication over noisy networks, where each channel is
assumed to be block erasure channel. The authors provide
upper and lower bounds to the secrecy capacity. In [5], the
authors study a secure communication over broadcast block
erasure channel with channel state feedback at the end of each
block. In both [4] and [5], the channel state changes from one
block to the next in an independent and identically distributed
fashion, whereas the channel state changes in an arbitrary
manner in our study. Also, neither of [4] and [5] consider the
delay of noisy networks, and both of them consider message
size asymptotic regimes. The delay of a noisy network even
without a secrecy constraint is very difficult to evaluate. We
develop an encoding strategy for the genie aided CSI set-up
and for the zero-block delayed CSI set-up, that achieves the
minimum achievable delay of the two-relay network. For the
one-block delayed CSI set-up, we provide a novel encoding
strategy, and characterize the relation of the optimal delay of
the one-block delayed CSI set-up with that of the zero-block
delayed CSI set-up. The encoding strategies we provide in the
paper also keep the message secret from the relays without
any assumption on the channel statistic.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We study the communication system illustrated in Figure 1.
The source has a message w ∈W to transmit to the destination
over 2-relay network. The source-to-relay 1 and the source-
to-relay 2 channel are block erasure channels. In the block
erasure channel model, time is divided into discrete blocks
each of which contains N channel uses. The channel states
are assumed to be constant within a block and vary from one
block to the next in an arbitrary manner. Relay 1-to-destination
and relay 2-to-destination channels are assumed to be error-
free, i.e there is a wired connection between the relays and
the destination. The observed signals at the relays and the
destination in the i-th block are as follows:

zN1 (i) =

{
xN (i) if s1(i) = 1

∅ if s1(i) = 0
(1)

zN2 (i) =

{
xN (i) if s2(i) = 1

∅ if s2(i) = 0
(2)

yN (i) =

{
xN (i) if s1(i) = 1 or s2(i) = 1

∅ if s1(i) = 0 and s2(i) = 0
(3)

where xN (i) ∈ {0, 1}N is the transmitted signal at i-th
block, zN1 (i) is the received signal by the relay 1, zN2 (i)
is the received signal by relay 2, and yN (i) is the received
signal by the destination at i-th block. With loss of generality,
we assume that at each channel use, the source-to-relay 1

channel and the source-to-relay 2 channel accept binary inputs,
{0, 1}. Channel states s1(i) and s2(i) denote the state of the
source-to-relay 1 channel and the state of the source-to-relay
2 channel at i-th block, respectively. Equality (s1(i) = 1)
denotes that the source to relay 1 channel is in on state, i.e
there is no erasure at i-th block and (s2(i) = 0) denotes that
the source to relay 1 channel is in off state, i.e there is an
erasure at i-th block. Define s(t) , [s1(t), s2(t)].

In this paper, we study the two-relay network in Figure 1
under three set-ups each of which has a different channel state
information (CSI) assumption. The set-ups are as follows:
1) Genie aided CSI set-up: The source knows whole state
sequence, {s(t)}∞t=1 before the communication starts, 2) Zero-
block delayed CSI set-up: The source acquires the state of the
channel block at the beginning of the corresponding block, 3)
One-block delayed CSI set-up: The source obtains the state of
the channel block at the end of the corresponding block.

The source aims to send message w ∈ W =
{1, 2, . . . , 2NRs} to the receiver. By employing a
c(2NRs , DN), the encoder at the source maps message
w ∈ W to a codeword xDN , and the decoder at the
destination, d(·) maps the received sequence Y DN to ŵ ∈W.
The average error probability of a c(2NRs , ND) code is
defined by

PDN
e = 2−DNRs

∑
w∈W

P(d(Y ND, {s(t)}∞t=1) 6= w|w was sent)

(4)
The secrecy of transmitted message, w is measured by the
equivocation rates at relay 1 and relay 2, which are equal to
the entropy rates of the transmitted message conditioned on
the observations of relay 1 and the observations of relay 2,
respectively.

Definition 1. Delay D , D (Rs, {s(t)}∞t=1) is said to be
achievable if there exists a channel code c(2NRs , ND) for
which

PND
e = 0

1

N
H
(
W |ZND

1 , sD
)
= Rs,

1

N
H
(
W |ZND

2 , sD
)
= Rs

for any N ≥ 1.

The optimum delay, D∗ (Rs, {s(t)}∞t=1) is defined to be the
infimum of the achievable delays. Specifically,

D∗ , D∗ (Rs, {s(t)}∞t=1) , infD (Rs, {s(t)}∞t=1)

In this paper, our goal is to characterize optimum delay
of genie-aided CSI, zero-block delayed CSI, and one-block
delayed CSI set-ups. Delays D∗Genie-Aided, D∗Zero-Block Delayed,
and D∗One-Block Delayed are referred to as the optimum delays
of genie-aided CSI, zero-block delayed CSI, and one-block
delayed CSI set-ups, respectively. Note that as stated in
Definition 1, block length N does not require to be infinite.
The delay results we give in Sections III and IV are valid for
any finite N .



III. THE OPTIMAL DELAY OF GENIE-AIDED CSI AND
ZERO-BLOCK DELAYED CSI SET-UPS

In this section, we provide the optimal delay of the genie-
aided CSI set-up and the optimal delay for zero-delayed CSI
set-up. We show that the optimal delay of genie-aided CSI
set-up is equal to the optimal delay of the zero-delayed CSI
set-up.

Theorem 1. The optimal delay of the genie-aided CSI set up
is equal to the optimal delay of the zero-delayed CSI set-up.
The optimal delay of the genie-aided CSI set up is as follows:

D∗Genie-Aided = D∗Zero-Block Delayed =min d (5)

subject to Ioff-on
(
d, sd

)
≥ dRse

Ion-off
(
d, sd

)
≥ dRse

d ∈ Z+\{0}

where

Ion-off
(
d, sd

)
, |{t ∈ [1 : d] : s1(t) = 1, s2(t) = 0}|, (6)

Ioff-on
(
d, sd

)
, |{t ∈ [1 : d] : s1(t) = 0, s2(t) = 1}| (7)

2

Define an on-off block as a block on which the source-to-relay
1 channel is in on state and the source-to-relay 2 channel is
in off state. Define an off-on block, an on-on block, and an
off-off block in a similar way. Theorem 1 states that delay D
is achievable if and only if the source observes dRse on-off
blocks and dRse off-on blocks until the end of block D, and
the optimal delay is the minimum of the achievable delays. The
encoding strategy to achieve the optimal delay is provided in
Algorithm 1. Note that Algorithm 1 runs successfully for both
the genie-aided CSI set up and the zero-delayed CSI set-up.
Hence, the delay achieved with Algorithm 1 is an upper bound
to both set-ups. We next prove Theorem 1, and start the proof
by explaining Algorithm 1 in detail.

Proof: We first prove that D is achievable if dRse ≤
Ioff-on(D, sD) and dRse ≤ Ion-off(D, sD). The achievability
strategy depicted in Algorithm 1 is as follows. Message w

is partitioned into dRse sub-messages, {wi}dRse
i=1 , i.e., w =[

w1, . . . , wdRse
]
, each of which except the last sub-message

has N bits. The last sub-message is padded with random bits
so that it has N bits. For the secure transmission of message
w, the source generates a set of keys {ki}dRse

i=1 . For each i ∈
[1 : dRse], key ki ∈ {0, 1}N is picked from random variable
Ki that is uniformly distributed on {0, 1}N and is independent
from message W and random variables {Kj}dRse

j=1,j 6=i. The
source encrypts each sub message as w

′

i = wi⊕ki. The source
sends the encrypted sub-messages in on-off blocks, and sends
the keys in off-on blocks. Specifically, at the beginning of
block t, the source observes the channel state. If block t is an
on-off block, the source sends the next encypted sub-message,
i.e., xN (t) = wi⊕ki. If block t is an off-on block, the source
sends the next key, i.e., xN (t) = ki. In on-on blocks and
off-off blocks, the source remains silent.

The secrecy analysis of Algorithm 1 is as follows. The

equivocation analysis below stands for the secrecy analysis
for relay 1.

H(W |ZND
1 , sD) (8)

= H
(
{Wi}dRse

i=1 |{Wi ⊕Ki}dRse
i=1 , sD

)
(9)

(a)
=

dRse∑
k=1

H
(
Wk|{Wi ⊕Ki}dRse

i=1 , {Wi}k−1i=1 , s
D
)

(10)

(b)
= NRs, (11)

where (a) follows from the chain rule, and (b) follows from
the fact Wk and

{
{Wi ⊕Ki}dRse

i=1 , {Wi}k−1i=1

}
are independent

and from the fact Wk is uniformly distributed on {0, 1}N .
In a similar way with derivation (8-11), we can show that
H(W |ZND

2 , sD) = NRs

Algorithm 1 Encoding strategy in Genie-Aided CSI and Zero-
Block Delayed CSI set-ups

1: i← 1, j ← 1, t← 1
2: while i ≤ dRse or j ≤ dRse do
3: if [s1(t), s2(t)] = [1, 0] and i ≤ dRse then
4: xN (t)← wi ⊕ ki
5: i← i+ 1
6: else if [s1(t), s2(t)] = [0, 1] and j ≤ dRse then
7: xN (t)← kj
8: j ← j + 1
9: else

10: xN (t)← ∅
11: end if
12: t = t +1
13: end while
14: D∗Zero−BlockDelayed ← t, D∗GenieAided ← t

We next prove that delay D is achievable only if dRse ≤
Ioff-on(D, sD) and dRse ≤ Ion-off(D, sD). Suppose that delay
D is achievable. From Definition 1 and Fano’s inequality, we
have

H(W |Y ND, sD) = 0 (12)
1

N
H
(
W |ZND

1 , sD
)
= Rs (13)

1

N
H
(
W |ZND

2 , sD
)
= Rs (14)



Then, we have the following derivation:

Rs =
1

N
H(W ) (15)

(a)
=

1

N
H
(
W |ZDN

1 , sD
)
− 1

N
H
(
W |Y DN , sD

)
(16)

≤ 1

N
H

(
W |ZDN

1 , sD)− 1

N
H(W |Y DN , ZDN

1 , sD
)

(17)

=
1

N
I
(
W ;Y DN |ZDN

1 , sD
)

(18)

(b)

≤ 1

N
I
(
XDN ;Y DN |ZDN

1 , sD
)

(19)

(c)

≤ 1

N

D∑
t=1

H
(
Y N (t)|ZN

1 (t), s(t)
)

−H
(
Y N (t)|Y (t−1)N , XDN , ZDN

1 , sD
)

(20)

(d)
=

1

N

D∑
t=1

H
(
Y N (t)|ZN

1 (t), s(t)
)

(21)

(e)
=

1

N

∑
{t:s1(t)=0, s2(t)=1}

H
(
Y N (t)|ZN

1 (t), s(t)
)

(22)

(f)
=

1

N

∑
{i:s1(t)=0, s2(t)=1}

H
(
XN (t)|s(t)

)
(23)

(g)

≤ Ioff-on(D, sD) (24)

where (a) follows from (12) and (13), (b) follows from the
fact that W → XDN , ZDN

1 → Y DN forms Markov chain, c
follows from the fact that conditioning reduces the entropy, (d)
follow from the fact that Y N (t) is a function of

(
XDN , sD

)
.

In (22), (e) follows from the fact that Y N (t) = ZN
1 (t)

if [s1(t), s2(t)] = [1, 0], [s1(t), s2(t)] = [1, 1], or
[s1(t), s2(t)] = [0, 0]. Hence, H

(
Y N (t)|ZN

1 (t), s(t)
)
= 0,

if [s1(t), s2(t)] 6= [0, 1]. In (23), (e) follows from the fact hat
Y N (t) = XN (t) and ZN

1 (t) = ∅. In (24), (g) follow from the
fact that XN (t) is a random variable whose sample space is[
1 : 2N

]
.

With a derivation similar to (16)-(24), we find that Rs ≤
Ion-off(D, sD). Hence, we conclude that if D is an achievable
delay, it has to satisfy constraints Rs ≤ Ion-off(D, sD) and
Rs ≤ Ioff-on(D, sD). Note that these constraints imply that
dRse ≤ Ion-off(D, sD) and dRse ≤ Ioff-on(D, sD), since
Ioff-on(D, sD) and Ioff-on(D, sD) are integers.

IV. ON THE OPTIMAL DELAY OF ONE-BLOCK DELAYED
SET-UP

In this section, we provide lower and upper bounds for the
optimal delay of the one block delayed CSI set-up. The tight-
ness of the bounds depend on the number of the consecutive
off-off blocks arriving after block D∗Zero-Block Delayed. If the first
block arriving after block D∗Zero-Block Delayed is on-on block, on-
off block, or off-on block, the optimal delay of one-block
delayed CSI set-up differs from that of genie-aided CSI set-up
at most one block.

Theorem 2. The optimum delay of the one block delayed CSI
set-up is bounded as follows:

D∗Zero-Block Delayed ≤ D∗One-Block Delayed ≤ D′ (25)

where

D′ ,min d (26)
subject to D∗Zero-Block Delayed < d

s1(d) = 1 or s2(d) = 1

d ∈ Z+\{0}

2

Define an on block as a block on which at least one of
the source-to-channels is in the on state. Block D′ given
in Theorem 2 is the first on-block incoming after block
D∗Zero-Block Delayed. Algorithm 2 provides an encoding strategy
to achieve delay D′. We next provide the proof of Theorem 2

Proof: We first explain Algorithm 2 and then prove
the second inequality in (25). Message w is partitioned into
dRse sub-messages, {wi}dRse

i=1 , i.e., w =
[
w1, . . . , wdRse

]
. In

Algorithm 2, there are two phases which are key generation
phase and data transmission phase. At the beginning of block t,
if either key queue at relay 1 or key queue at relay 2 are empty,
the source enters into the key generation phase. The source
transmits random bit sequence r(t) ∈ {0, 1}N that is picked
from random variable R(t) ∈ {0, 1}N which is uniformly
distributed on {0, 1}N and independent from message W . If
block t is an on-off block (resp. off-on block), transmitted
random packet, r(t) will not be heard from relay 2 (resp.
relay 1) and will be stored at key queue at relay 1 (resp. key
queue at relay 2) as key k

(1)
n , i.e., k(1)n = r(t) (resp. as key

k
(2)
m , i.e., k(2)m = r(t)). If block t is in an on-on block, r(t)

will be heard by both relays. Hence, no keys will be generated
at both relay 1 and relay 2.

At the beginning of block t, if both key queues at relay 1 and
2 are non-empty, the source enters into the data transmission
phase. The source encodes next sub-message, wi as xN (t) =

wi⊕ k
(1)
m ⊕ k

(2)
n , and transmits xN (t) in block t. If block t is

on-off block, key k
(2)
n is removed from the key queue at relay

2, and key queue at relay 1 remains same. Key k
(1)
m is used

to encode next sub-message wi+1.
The source switches back and forth between the key gen-

eration and data transmission phases as described above until
all sub-messages are transmitted. Next, we prove the second
inequality stated in (25). First define two variables d1(wi) and
d2(wi). Variable d1(wi) is the block on which sub-message wi

is transmitted, when the source observes CSI at the beginning
of each block and employs the encoding strategy in Algorithm
1. Variable d2(wi) is the block at the end of which the source is
ready to send sub-message wi, when the source observes CSI
at the end of each block and employs the encoding strategy in
Algorithm 2, i.e., the key queue at relay 1 and key queue at
relay 2 are non-empty at the end block d2(wi). Specifically, the
source sends sub-message wi on the first on-block incoming
after block d2(wi). Hence, the proof is complete if we show



that d1(wdRse) = d2(wdRse)

We prove statement d1(wdRse) = d2(wdRse) by induction.
First, we show that d1(w1) = d2(w1). Since the source
employing Algorithm 1 transmits sub-message w1 in block
d1(w1), block d1(w1) is the first incoming block by the end of
which the source observes at least one on-off block and at least
one off-on block. Since the source starts the communication
by sending random packets in Algorithm 2, key-queue at relay
1 and key queue at relay 2 will be non-empty at the end of
block d1(w1). Hence, at the end of block d1(w1), the source
employing Algorithm 2 is ready to send sub-message w1 and
d1(w1) = d2(w2). Here, note that transmitted random packet
in on-off block (resp., off-on block) will be stored as a key in
relay 1 (resp., relay 2)

Now assume that d1(wi−1) = d2(wi−1) for any 1 < i ≤
dRse. We next show that d1(wi) = d2(wi). For notational
convenience define Ion-off(i−1) , Ion-off

(
d1(wi−1), s

d1(wi−1)
)

and Ioff-on(i − 1) , Ioff-on
(
d1(wi−1), s

d1(wi−1)
)
. Since the

source employing Algorithm 1 transmits sub-message wi−1
in block d1(wi−1), we have the following equality

i− 1 = min (Ioff-on(i− 1), Ion-off(i− 1)) (27)

We first find the number of keys at key queue at relay 1
and at key queue at relay 2 at the end of block d1(wi−1).
Assume w.l.o.g that by the end of block d2(wi−1), the source
employing Algorithm 2 transmitted v sub-messages at on-off
blocks, y sub-messages at off-on blocks, and z sub-messages
at on-on blocks, with v + y + z = i − 2. The length of key
queue at relay 1 at the end of block d2(wi−1), l1(d2(wi−1))
is derived as follows:

l1(d2(wi−1))
(a)
= Ion-off (i− 1)− v − y − z (28)

(b)
= Ion-off (i− 1)−min (Ioff-on(i− 1), Ion-off(i− 1)) + 1

= [Ion-off (i− 1)− Ioff-on (i− 1)]
+
+ 1 (29)

where (a) follows from the following facts: 1) In first
d1(wi−1) blocks, the source observes Ion-off (i− 1) on-off
blocks. In (Ion-off (i− 1)− v) of Ion-off (i− 1) on-off blocks,
the random packets are transmitted each of which are stored
as a key at the key queue at relay 2, 2) The keys at key-
queue at relay 1, that are used in encoding sub-messages sent
in v on-off blocks are kept in the key queue, 3) The keys at
key-queue at relay 1, that are used in encoding sub-messages
sent in y off-on blocks and z on-on blocks are removed from
the key queue. In the derivation above, (b) follows from the
fact that v + y + z = i − 2 and follows from Eq. (27).
With a similar derivation to Eq. (28)-(29), we can find the
number of keys at key queue at relay 2 at the end of block as
l2(d2(wi−1)) = [Ioff-on (i− 1)− Ion-off (i− 1)]

+
+ 1

We prove d1(wi) = d2(wi) when Ion-off (i− 1) >
Ioff-on (i− 1). The proof of d1(wi) = d2(wi) for case
Ion-off (i− 1) ≤ Ioff-on (i− 1) can be done similarly. Since
Ion-off (i− 1) > Ioff-on (i− 1), l1(d2(wi−1)) = Ion-off (i− 1)−
Ioff-on (i− 1) + 1, l2(d2(wi−1)) = 1, and block d1(wi) is the
first off-on block that arrives after block d1(wi−1).

The source employing Algorithm 2 sends sub-message wi−1
on the first on block arriving after block d1(wi−1). Let the
block on which the source sends sub-message wi−1 is off-
on block. Then, the index of the off-on block is d1(wi). The
length of the key queues at relay 1 and relay 2 at the end of
block d1(wi) are Ion-off (i− 1)− Ioff-on (i− 1) and 1, both of
which are greater than zero. Hence, at the end of block d1(wi),
the source employing Algorithm 2 is ready to send message
wi, and d1(wi) = d2(wi). Now let the block on which the
source sends sub-message wi−1 is either on-off block or on-
on block and refer this block as block s. At the end of block s,
the length of the key queue at relay 2 will be zero. Then, the
source enters into key generation phase at the end of block s.
The source keeps sending random packets until the end of the
first off-on block arriving after block s. Note that the index
of the first off-on block arriving after block s is d1(wi). The
random packet sent in block d1(wi) will be stored at key queue
at relay 2 as a key and the lengths of key queue at relay 1
and relay 2 are non-zero at the end of block d1(wi). Hence,
at the end of block d1(wi), the source employing Algorithm
2 is ready to send message wi, and d1(wi) = d2(wi).

V. CONCLUSION

We study the minimum delay required to communicate the
finite size message reliably to the destination in a two-relay
network while keeping it secret from the relays, where source-
to-relay channels are assumed to be block erasure channels.
We provide an encoding strategy to achieve the optimal delay
when the relay feedback on the states of the source-relay
channels is available on the source with no delay, i.e., the
source obtains the feedback at the beginning of a channel
block. Then, we consider the case in which there is an one-
block delayed relay feedback on the states of the source-to-
relay channels, i.e., the source obtains the feedback at the end
of a block. We show that for a set of channel state sequences,
the optimal delay with one-block delayed feedback differs
from the optimal delay with no-delayed feedback at most one
block.
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Algorithm 2 Encoding strategy in One-Block Delayed CSI
set-up

1: i ← 1, t ← 1, m ← 1, n ← 1, Key-Queue1 ← 0,
Key-Queue2← 0

2: while i ≤ dRse do . i is the sub-message index
3: if Key-Queue1 > 0 and Key-Queue2 > 0 then
4: SendData← 1
5: xN (t)← wi ⊕ k

(1)
m ⊕ k

(2)
n . Data transmission

6: i← i+ 1
7: else
8: SendData← 0
9: xN (t)← r(t) . Key generation

10: end if
. Update the key queues at Relay 1 and 2 at the

end each block
11: if [s1(t), s2(t)] = [1, 0] then
12: if SendData = 1 then
13: Key-Queue2← Key-Queue2− 1
14: n← n+ 1
15: else
16: Key-Queue1← Key-Queue1 + 1
17: end if
18: else if [s1(t), s2(t)] = [0, 1] then
19: if SendData = 1 then
20: Key-Queue1← Key-Queue1− 1
21: m← m+ 1
22: else
23: Key-Queue2← Key-Queue2 + 1
24: end if
25: else if [s1(t), s2(t)] = [1, 1] then
26: if SendData = 1 then
27: Key-Queue1← Key-Queue1− 1
28: Key-Queue2← Key-Queue2− 1
29: n← n+ 1
30: m← m+ 1
31: end if
32: end if
33: t← t+ 1 . t is a block index
34: end while
35: D∗One−BlockDelayed ← t
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