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Abstract—Spectrum used for Machine-to-Machine (M2M)
communications should be as cheap as possible or even free
in order to connect billions of devices. Recently, both UK and
US regulators have conducted trails and pilots to release the
UHF TV spectrum for secondary licence-exempt applications.
However, it is a very challenging task to implement wideband
spectrum sensing in compact and low power M2M devices as
high sampling rates are very expensive and difficult to achieve.
In recent years, compressive sensing (CS) technique makes
fast wideband spectrum sensing possible by taking samples
at sub-Nyquist sampling rates. In this paper, we propose a
two-step CS based spectrum sensing algorithm. In the first
step, the CS is implemented in an SU and only part of the
spectrum of interest is supposed to be sensed by an SU in
each sensing period to reduce the complexity in the signal
recovery process. In the second step, a denoising algorithm is
proposed to improve the detection performance of spectrum
sensing. The proposed two-step CS based spectrum sensing is
compared with the traditional scheme and the theoretical curves.

I. INTRODUCTION

Recently, Machine-to-Machine (M2M) communications has

been identified as a priority area by both the UK and the

US as the benefits of M2M are evident in such field as

energy, manufacturing, e-health, transportation. As promoted

by Federal Communications Commission (FCC) and the UK

Office of Communications (Ofcom), TV white space (TVWS)

provides an excellent opportunity to enable M2M applications

for secondary licence-exempt usage [1][2]. Current approaches

to identifying the TVWS rely on a centrally controlled geo-

location database. The real-time events and dynamic changes

of propagation environment pose significant challenges to

the database approach. Therefore, efficient spectrum sensing

becomes a natural approach to solving this problem.

In spectrum sensing algorithm, the spectrum of interest can

be divided into multiple channels. Only a small portation

of spectrum is occupied by primary users (PUs). Traditional

spectrum sensing algorithms method allow a secondary user

(SU) to sense one narrowband channel only, e.g. maximum

8MHz for one TV channel or maximum 20MHz for the 4G

implementation [2][3], in one sensing period. If the narrow-

band channel is occupied, an SU has to sense another channel

in the next period until a vacant channel is found for the SU

to transmit signals. It would be more efficient if the SU could

sense multiple channels simultaneously in a sensing period.

In [4], SUs are divided into a number of nondisjoint feasible

subsets in a cooperative spectrum sensing network. Only one

subset of SUs is turned on at a period of time and the other

nonactivated SUs are in a low-energy sleep mode to make the

network energy-efficient.

However, in wideband spectrum sensing, the sampling rates

would be very high and difficult for hardware to achieve. As

the spectrum is normally underutilized in reality, the spectrum

has a sparse property in the frequency domain. This sparse

property makes sub-Nyquist rates possible by implementing

compressive sensing (CS) technique in SUs [5].

When CS is performed in an SU, only the compressed

measurements are collected by the SU. In order to determine

the spectrum occupancy, signals should be recovered from

those compressed measurements. The common CS recovery

algorithms include l1 based algorithms such as basis pursuit

denoising (BPDN) [6], and greedy iterative algorithms such

as thresholding and orthogonal matching pursuit (OMP) [7].

It is noticed that the computational complexity of greedy

algorithms is much less than that of l1 based algorithms. But

greedy algorithms normally require prior information to some

extent, such as the sparsity order of signals to be sensed. On

the other hand, for l1 based algorithms, no prior information

of PUs is required but the computational complexity in a

recovery process is high and increases with increasing number

of samples.

In recent research, CS has been applied to wideband spec-

trum sensing [8][9][10]. In [8], a matrix completion and

joint sparsity recovery based spectrum sensing algorithm is

proposed to reduce sensing and transmission requirements

and improve sensing results. However, performance of the

proposed algorithm is studied under 10dB to 45dB. In [9], a

cyclic detector is proposed to reduce the high sampling rates

by utilizing the CS principle and exploiting the unique sparsity

structure in the two-dimensional cyclic spectrum domain. Its

performance is studied though simulations at SNR = 5dB.

In [10], an efficient COR algorithm with low complexity is

proposed for wideband spectrum sensing at SNR > −10dB.

In these algorithms, prior information of PUs such as sparsity

order is considered to be known, which may not be available

in practical applications.

In this paper, we propose an algorithm with low complexity,

which can handle unknown sparsity order and which is robust

to heavy noise. To this end, a two-phase CS based spectrum

sensing algorithm for a single node is proposed to reduce the

signal recovery complexity and improve detection performance

of spectrum sensing. In the first phase, as prior information

of sparsity order is unknown, l1 based BPDN is utilized to

perform signal recovery. Due to the high complexity of the l1



based algorithm, a new wideband division scheme is proposed

to reduce the computational complexity of the signal recovery

process by reducing the number of samples to be recovered.

In the second phase, after signal is recovered, a denoising

algorithm is performed to improve detection performance and

enable the algorithm to be more robust to channel noise.

II. COMPRESSIVE SENSING BASED SPECTRUM SENSING

SYSTEM MODEL

A four-step CS based spectrum sensing mainly includes

sparse representation of received signals, compressed measure-

ments collection, signal recovery and decision making.

A. Sparse representation of the source signals

It is assumed that the bandwidth of the whole spectrum is

BHz. The received signal in the SU is r (t) = h (t) ∗ s (t) +
w (t), where s (t) ∈ RN×1 is the time domain representation

of the transmitted signal, h (t) is the channel gain between the

transmitter and receiver, and w ∼ iid(0, σ2) refers to Additive

White Gaussian Noise (AWGN).

The frequency domain representation of the received signal

r (t) then can be expressed as:

rf = hfsf + wf (1)

where rf , hf , sf and wf are the discrete Fourier transform

(DFT) of r (t), h (t), s (t) and w (t). As mentioned above, sf
is sparse since the spectrum is normally underutilized. This

sparse property makes it possible to reduce sampling rates by

implementing CS in the SU.

B. Compressed measurements collection

After the CS is applied in the SU, the received compressed

measurements can be expressed by:

x = Φrf = Φhfsf +Φwf (2)

where Φ ∈ CP×N (P < N) is a Gaussian distributed

measurement matrix utilized to collect the compressed mea-

surements rc ∈ CP×1, Φwf ∼ iid(0, σ2) is the noise sample

vector as Φ is column normalized.

C. Signal recovery

When CS is performed in the SU, sampling rates are

reduced. However, in order to make accurate decision about

spectrum occupancy, original signals should be reconstructed

before decision making. Signal recovery can be formulated as

a convex optimization problem and solved by BPDN as:

min ‖ŝf‖1
subject to ‖Φ · ŝf − x‖

2

2
≤ σ2

. (3)

D. Decision making

When the reconstructed signal ŝf is obtained by solving the

above convex problems, energy detection (ED) is performed

to determine the spectrum occupancy. The energy of the

recovered signals is compared with a predefined threshold to

make a decision. The predefined threshold λd is dependent on

the noise variance (σ2), the target probability of false alarm

(Pf ) and the number of samples (No) [11]:

λd = σ2

(

1 +
Q−1 (Pf )
√

No/2

)

. (4)

If the energy of the reconstructed signal is higher than the

threshold, the corresponding channel is determined as occu-

pied by PUs, and SUs are forbidden to access it. Otherwise,

the corresponding channel is determined as vacant, and SUs

can access it to transmit unlicensed signals.

III. THE PROPOSED TWO-PHASE COMPRESSIVE SENSING

BASED SPECTRUM SENSING ALGORITHM

As the prior information about PUs is assumed unknown,

l1 based recovery algorithm is adopted to perform the signal

recovery. However, the computational complexity of l1 based

methods is higher than greedy algorithms [12]. In order to

reduce the complexity in the signal recovery process and

enhance the algorithm’s robustness to imperfect channel envi-

ronment, we propose a two-phase CS based spectrum sensing

algorithm. In the first phase, a new efficient channel division

scheme is proposed to reduce the number of samples to

be recovered. In the second phase, a denoising algorithm is

proposed to enable the algorithm to be more robust against

heavy channel noise.

A. The efficient channel division scheme

When an l1 based algorithm is adopted in an SU, the

computational complexity of the signal recovery process is

dependent on the number of samples to be recovered. It is

assumed that there are L channels in the spectrum of interest.

We propose a new channel division scheme in which only

K (K < L) channels are expected to be sensed in one sensing

period to reduce the number of samples to be recovered.

Meanwhile, the necessary sampling rates for the SU are also

reduced. As shown in Fig. 1, each K-channel group is indexed

by i
(

i = 1, 2, · · · , L
K

)

. After the whole spectrum of interest is

divided by the channel division scheme, the CS based single

node spectrum sensing process can be summarized as shown

in Fig. 2.

Once the signal for the K-channel group sfi ∈ Cn×1

(n = KN
L

) arrives at the receiver, compressed samples xi

are collected at sub-Nyquist sampling rates. Subsequently, the

recovered frequency domain representations of the ith K-

channel group ŝfi can be solved by BPDN as:

min ‖ŝfi‖1 s.t. ‖Φ · ŝfi − xi‖
2

2
≤ σ2 . (5)

B. The denoised spectrum sensing algorithm

When making a decision for spectrum occupancy, the de-

cision accuracy is influenced by the recovery error of signals.

The recovery performance of BPDN is degraded by heavy

channel noise and reduced numbers of compressed samples.

As a result, the recovery error becomes higher with heavier

noise and fewer measurements. Furthermore, it is noticed that

the amplitudes of the recovered signal ŝfi (j) may become

negative with high absolute values, while the real amplitude

values of ŝfi (j) are all processed to be positive. If those

negative amplitudes are kept and used to calculate the power

of each subband, the power value would becomes higher than

the real value which will increase Pf which means the vacant
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Fig. 2: Process of compressive spectrum sensing.

channel is determined as occupied. In order to improve the

recovery performance and detection performance, a denoising

algorithm is proposed.

In the denoising algorithm, the amplitudes of ŝfi (j) in the

frequency domain are compared with the noise level σ. If the

amplitude of ŝfi (j) is higher than the current noise level, the

corresponding amplitude of compressed measurements rfi (j)
is kept. Otherwise, the corresponding amplitude will be set to

be 0 to reduce the recovery error. The denoised signal ŝfi d

can be expressed as:

ŝfi d (j) =

{

rfi (j) if ŝfi (j) ≥ σ
0 otherwise

. (6)

After denoising algorithm is performed, the energy of the

signals is compared with the corresponding threshold under

certain Pf as defined in (4) to determine the spectrum occu-

pancy of the corresponding K-channel group. If the channels

are determined as vacant, they can be used by the SU to

transmit unlicensed signals. Otherwise, the SU should sense

the next K-channel group until the vacant channels are found

for it to access, or five sensing periods passed. If vacant

channels can be found, the SU should firstly sense the K-

channel group determined as free in last five continuous

sensing periods, named as a sensing loop. If no vacant channel

can be found in the last sensing loop, the SU should keep

sensing from the first K-channel group as there is a high

probability that the spectrum vacant in last loop keeps to be

Algorithm 1 Two-phase CS based Single Node Spectrum

Sensing Scheme

Initialization:

Set threshold λd as (4);

i = 1.

1: while i = L
K

or E (ŝfi d) < λd do

Phase I:

2: The SU takes measurements at sub-Nyquist rate

for the ith K-channel group to collect ri in the

(i+ 1) th sensing period.

3: Perform signal recovery by l1 algorithm as (5) to

get the recovered signal ŝfi.

Phase II:

4: Perform denoising to ŝfi to get ŝfi d.

5: Increase i by 1.

6: end while

Decision:

If E (ŝfi d) < λd, SU can access the ith K-channel

group. If i = L
K

, new sensing loop begins. The SU senses

from the K-channel group which is vacant in last sensing

loop or the first K-channel group.

free in the current sensing loop. The whole process of the

proposed two-phase CS based spectrum sensing algorithm is

summarized as Algorithm 1.

IV. NUMERICAL RESULTS

In the simulation, PUs are orthogonal frequency-division

multiplexed (OFDM), as used in Digital Video Broadcasting-

Terrestrial (DVB-T) over the TV white space (TVWS) spec-

trum from 470MHz to 790MHz in the UK [2]. There are 40

channels in total with bandwidth 8MHz for each channel. It

is assumed that the number of channels sensed by the SU

in each sensing period is set to be 8 (K = 8). Therefore, 5

sensing periods are needed to finish the sensing for the whole

spectrum of interest. Pf is set to be 0.01. The SNR is defined

as the ratio of signal power and noise power of a K-channel

group.

The computational complexities of (i) spectrum sensing

without CS, (ii) CS based spectrum sensing with the whole

spectrum sensed, and (iii) CS based spectrum sensing algo-

rithm with the proposed channel division scheme are O (B),
O

(

BP
N

)

and O
(

KBP
LN

)

respectively. Since P is much smaller

than N , we can see that the required sampling rates in the

proposed two-phase CS based spectrum sensing are KP
LN

times

lower than that of spectrum sensing without CS implemented

and L
K

times lower than that when the whole spectrum of

interest is sensed by an SU in one sensing period.

Fig. 3 shows the Pd of the proposed two-phase CS based

single node spectrum sensing algorithm (labelled as denoised

BPDN) under different compression ratios. Its detection per-

formance is also compared with that of spectrum sensing

algorithm without CS implemented, as well as the theoretical

values derived from [13] [14]:
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Pd = Q

(

λd/σ
2 − (1 + SNR)

(1 + SNR) /
√

No/2

)

. (7)

When the compression ratio is 100%, the signal recovery

is exact. Fig. 3 shows that the performance of BPDN based

spectrum sensing algorithms with and without denoising are

both the same with that of algorithm without CS implemented

in the SU and the theoretical curves obtained by (7). When

the number of available samples decreases, the detection

performance degrades. It also shows that the performance of

the proposed two-phase CS based spectrum sensing is better

than that of the CS based spectrum sensing without denoising

when the compression ratio is 40%, 25% and 10%. This gain

benefits from the denoising algorithm, which can improve the

signal recovery accuracy. As the recovery accuracy becomes

higher with the higher compression ratio, the detection perfor-

mance of the proposed two-phase CS based spectrum sensing

algorithm gets closer to the theoretical curves. The simulation

result shows that the proposed two-phase CS based spectrum

sensing algorithm can let the sampling rates reduce by 75%

without degrading detection performance.

Fig. 4 shows the detection performance of the proposed

two-phase CS based spectrum sensing algorithm (labeled as

denoised BPDN) with different numbers of active PUs in an

8-channel group. In this scenario, the compression ratio is set

to 25%. The number of active PUs changes from 1 to 3 in an

8-channel group, which means the sparsity order of the signal

to be recovered changes from 12.5% to 37.5%. The positions

of these active PUs are set to be random. The detection

performance becomes worse with increasing sparsity order as

shown in the figure. As the sparsity order increases, the sparse

property of the signals to be recovered becomes worse. As

a result, when the sparsity order increases, more compressed

measurements should be collected for signal recovery to make

sure the detection performance is not degraded. But we can see

that the detection performance would only be slightly degraded

when the proposed algorithm is applied to the practical sensing

for TVWS spectrum as its occupancy ratio is normally 15%

to 20% in practice [1][2].

The Receiver Operating Characteristics (ROC) curves un-

der different SNR values are shown in Fig. 5, where the
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compression ratio is 25%.

compression ratio is set to be 25%. It can be observed that

the proposed two-phase CS based spectrum sensing (labelled

as denoised BPDN) exhibits better performance than the

CS based spectrum sensing without the denoising algorithm

implemented. It is also noticed that the performance of the CS

based spectrum sensing algorithms is almost as good as that

of spectrum sensing without CS. This gain benefits from the

denoising algorithm. This result matches with that in Figure. 3

when the compression ratio is set to be 25%.

V. CONCLUSIONS

In wideband spectrum sensing, high sampling rates are

difficult to achieve, especially for power limited M2M devices.

The CS technique could be implemented in SUs to achieve

sub-Nyquist sampling rates. In this paper, a two-step CS

based spectrum sensing algorithm is proposed to reduce the

complexity in the signal recovery process and improve the

detection performance of spectrum sensing. The simulation

showed that the detection probability of our proposed two-

step CS based spectrum sensing outperformed the traditional

scheme with fewer measurements. Therefore, the proposed

algorithm can be a strong contender for M2M devices.
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