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Abstract—Intercellular heterogeneity serves as both a 
confounding factor in studying individual clones and an 
information source in characterizing any heterogeneous tissues, 
such as blood, tumor systems. Due to inevitable sequencing 
errors and other sample preparation artifacts such as PCR 
errors, systematic efforts to characterize intercellular genomic 
heterogeneity must effectively distinguish genuine clonal 
sequences from fake derivatives. We developed a novel 
approach (SIGH) for identifying significant genuine clonal 
sequences directly from mixed sequencing reads that can 
improve genomic analyses in many biological contexts. This 
method offers several attractive features: (1) it automatically 
estimates the error rate from raw sequence reads and identifies 
genuine clonal sequences; (2) it is robust to the large variety of 
error rate due to the various experimental conditions; (3) it is 
supported by a well-grounded statistical framework that 
exploits probabilistic characteristics of sequencing errors; (4) 
its unbiased strategy allows detecting rare clone(s) despite that 
clone’s relative abundance; and (5) it estimates constituent 
proportions in each sample. Extensive realistic simulation 
studies show that our method can reliably estimate the error 
rates and faithfully distinguish the genuine clones from fake 
derivatives, paving the way for follow-up analysis that is 
otherwise ruined by the often dominant fake clones. 

I. INTRODUCTION 
  While every cell in an individual is expected to have the 

exactly same DNA sequence (germline inheritable genetic 
raw material), genomic landscape heterogeneity is 
commonly observed in some specific cell types, e.g., 
immune T-cell, cancer cell, etc. [1, 2]. Moreover, recent 
studies show that somatic mutations in normal brain and skin 
are much more common than previous appreciated, 
suggesting that intercellular genomic heterogeneity is a rule 
instead of an exception [3-5]. Intercellular heterogeneity is a 
major confounding factor in studying individual populations 
that cannot be resolved directly by global profiling [6].  

  The complexity of heterogeneity has clinical implications. 
For example, a more heterogeneous tumor is more likely to 
fail therapy due to increased drug-resistant variants, and 
characteristics of dominant clones will not necessarily 
predict the behaviors of driver clones [7-9]. Intermingled 
intercellular genomic heterogeneity is often manifested by 

multiple clones with distinct sequences that cannot be 
resolved readily by global sequencing [10]. 

     An experimental solution to mitigate intercellular 
heterogeneity is to isolate pure cell populations before 
sequencing; however, the methods are expensive, tedious, 
potentially biased and inapplicable to existing sequence data. 
On the other hand, thanks to the capacity of reading a 
genomic region multiple times, the next-generation 
sequencing (NGS) data potentially provides an alternative 
way to characterize genomic landscape heterogeneity. The 
major tasks at hand are to detect the genomic sequences of 
genuine clonal subtypes, and the number and abundance of 
clonal subtypes. Due to inevitable sequencing errors, 
systematic efforts to characterize intercellular genomic 
heterogeneity must effectively distinguish genuine clonal 
sequences from fake derivatives [11] (Fig. 1).  

      A quick but rough approach is to simply throw away the 
clonal subtypes whose read counts are less than a pre-
specified threshold. Major limitations associated with this 
strategy are as the following. (1) The threshold is often 
arbitrary and hard to set. Indeed, different experiments may 
require different thresholds. It is also likely that different 
types of fake clones such as A->C or A->T may necessitate a 
separate threshold. (2) Clonal subtypes with higher read 
counts than the threshold can be fake, and similarly, lower 
read counts than the threshold can come from a genuine 
clone, resulting in both large false positives and large false 
negatives. (3) No quantitative quality measure can be 
assigned to the selected clonal subtypes (confidence level). 
Specifically, existing approaches largely ignore (a) 
significant differences in the misreading error rates on 
different nucleotide types (A, C, T, G) [11] and (2) 
differences in the “expected” read counts of fake clones 
caused by the parent genuine clones due to highly variable 
(depth) read counts across genuine clones. 

       Let us use the Fig 1 to both illustrate the limitation of 
existing method and suggest a viable solution. There are two 
ground-truth clones with sequences “ATGCTGCTGTGTA 
CTACTGCCTCGTGGGGC” and “ATGCTGCTGTGTACT 
ACTGCCTCGTGGGGC”, respectively. The only difference 
is in the middle of the sequence. Clone 1 possesses “AC” 
while clone 2 possesses “CC”. Actually, they have only 1 



nucleotide difference. However, from the sequence data we 
can see there are totally five clones, which illustrates the 
point that the number of fake clones is often larger than the 
one of genuine clones. It is obvious that there is no good 
threshold available, because one genuine clone has three 
reads and at the same time there is a fake clone also having 
three reads. If the threshold is larger than three, one genuine 
clone will be missed. If the threshold is less than three, one 
fake clone will be falsely detected as genuine clone.  

      However, if we simultaneously explore the number of 
reads and the error rate, we may be able to reliably 
distinguish the two 3-reads clones. Suppose the error rates 
from A->G and A->C are 20% and 6%, respectively.  Note 
that the error rates in real sequencing data are much lower 
than the ones we assume here, but we do observe that A->G 
error is three times more likely than A->C error. For the sake 
of discussion, we use the middle two nucleotides to represent 
each of the five clones. For example, clone “GC” is a fake 
clone and clone “CC” is a genuine clone, and both clones 
have three reads. According to the error rate we expect to see 
12*0.2=2.4 reads of clone “GC” if we assume that the reads 
of clone “GC” is purely due to error. On the other hand, we 
expect to see 12*0.6=0.72 read of clone “CC”. Compared to 
the real observation of 3 reads, we can conclude that clone 
“GC” is more likely due to error and hence fake, and clone 
“CC” is less likely due to error and hence genuine.  

 
Figure 1. Illustration of genuine-fake mixed sequence clusters with 
variable sizes: raw sequence reads suggest five tumor subclones, 

while actually, there are only two genuine subclones. 

  In this paper we describe a statistical sequence modeling 
approach for detecting significant intercellular genomic 
heterogeneity (SIGH) directly from mixed sequencing reads 
rather than variant signatures. The approach was developed 
to identify the number and sequences of genuine subclones 
justified by model-based significance tests. In our model, the 
technical artifacts include but are not limited to the errors 
resulting from the sample preparation, PCR amplification, 
sequence reading and mapping. The approach is flexible to 
capture all kinds of artifacts and hence minimize the false 
positives. 

  SIGH basically works by exploiting the statistical 
differences in both the sequencing error rates at different 
nucleobases and the read counts of fake sequences in relation 
to genuine clones of variable abundance. We conduct a 

simulation study to demonstrate the performance of SIGH 
under a variety of conditions on realistic synthetic data.   

   To our best knowledge, the work that is closest to ours is 
[10], which applied the finite mixture model to estimate the 
tumor subtypes. However, it is essentially a sophisticated 
extension of the threshold method and largely ignored the 
fundamental relationship between clones embodied by 
various error rates and variable read counts across genuine 
clones that we have explored. 

II. METHODS 

A. Problem Formulation 
      Consider a tissue sample that exhibits intercellular 
heterogeneity. Assume the sample contains M observed 
distinct clonal sequences that represent M candidate 
subclones. Let 𝛽𝛽𝑖𝑖𝑖𝑖 be the probability that the sequence of the 
jth candidate subclone is misclassified into the ith candidate 
subclone due to sequencing or other errors; 𝑛𝑛𝑖𝑖  be the 
observed number of reads in the ith candidate subclone; and 
𝑛𝑛𝑖𝑖𝑖𝑖  be the hidden number of misclassified reads in the ith 
candidate subclone that originate from the jth candidate 
subclone.  

      Hence, 𝑛𝑛𝑖𝑖𝑖𝑖 follows binomial distribution B(𝑛𝑛𝑗𝑗 + 𝑛𝑛𝑖𝑖𝑖𝑖, 𝛽𝛽𝑖𝑖𝑖𝑖), 
where 𝑛𝑛𝑗𝑗 + 𝑛𝑛𝑖𝑖𝑖𝑖  can be interpreted as the number of total 
reads originating from the 𝑗𝑗th clone and 𝛽𝛽𝑖𝑖𝑖𝑖  represents the 
error rate that the 𝑗𝑗th  clone is misread as the 𝑖𝑖th  clone. 
Based on the fact that in NGS data, 𝛽𝛽𝑖𝑖𝑖𝑖 is usually quite small 
(smaller than 1%) for paired-end sequencing, the binomial 
distribution can be approximated quite well by Poisson 
distribution with parameter of (𝑛𝑛𝑗𝑗 + 𝑛𝑛𝑖𝑖𝑖𝑖)𝛽𝛽𝑖𝑖𝑖𝑖 .  

      If we assume that the 𝑖𝑖th clone is fake, it must come 
from its parents. Observing that multiple different parental 
sequences can give birth to the same child sequence, we 
consider all other clones as potential parental clones. So, 
under the null hypothesis that the 𝑖𝑖th clone is fake, we have 

𝑛𝑛𝑖𝑖 = ∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑀𝑀
𝑗𝑗=0,𝑗𝑗≠𝑖𝑖 .  Because 𝑛𝑛𝑖𝑖𝑖𝑖 is independent to each other 

for different j, 𝑛𝑛𝑖𝑖  follows Poisson distribution with 
parameter 𝜆𝜆𝑖𝑖 defined  by, 

 𝜆𝜆𝑖𝑖 = ∑ (𝑛𝑛𝑗𝑗 + 𝑛𝑛𝑖𝑖𝑖𝑖) 𝛽𝛽𝑖𝑖𝑖𝑖𝑀𝑀
𝑗𝑗=0,𝑗𝑗≠𝑖𝑖 ≈ ∑ 𝑛𝑛𝑗𝑗𝛽𝛽𝑖𝑖𝑖𝑖𝑀𝑀

𝑗𝑗=0,𝑗𝑗≠𝑖𝑖 ,    (1) 

where the last approximation comes from the expectation 
that the reads of fake clone are much smaller than its 
parental genuine clone, namely,  𝑛𝑛𝑖𝑖𝑖𝑖 ≪ 𝑛𝑛𝑗𝑗.  

    Thus, under the null hypothesis that the 𝑖𝑖th clone is fake, 
if the number of reads associated with the 𝑖𝑖th clone is 𝑘𝑘, the 
distribution function is,                                                
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i.e., the null distribution model solely due to errors. 

B. Method Description 

    In the discussion above, we assumed the error rate 𝛽𝛽𝑖𝑖𝑖𝑖 is 
known, however, we often don’t know it a priori. 



Fortunately, there are many scenarios under which the error 
rate can be reliably derived based on the estimate of more 
fundamental quantities. For example, immune cell 
sequencing covers both the somatic recombination region 
and constant region, where the somatic recombination 
region can be used to define clones and the constant region 
can be used to learn the error rates. Another example is the 
tumor cell sequencing. The availability of paired tumor-
normal sequences makes it possible to determine which base 
is misread and hence the error probability [11].  

      Let S be the true nucleobase; R be the observed 
nucleobase; and S or R takes one of the four nucleobases (A, 
C, G, T), so there are 12 error types in total. We have 
observed that the error probability is not uniform and 
significantly depends on both genuine and erroneous 
nucleotide types. Hence, it is necessary to learn all 12 kinds 
of error probability. At a single base, the (misread) error 
probability can be estimated by Pr(R=r|S=s) = Nr/Ns, where 
Nr is the read counts with the observed nucleobase r and Ns 
is the read counts with the true nucleobase s. The estimate 
above illustrates the main idea, however, more care needs to 
be taken in real applications. Even in the constant region of 
the immune cells, polymorphisms may be confounded as 
errors if it is not recorded in the public database. A remedy 
trick is to disregard the seemingly extraordinary large error 
counts, because the polymorphism will appear as error of 
100% for homozygous mutation and error of 50% for 
heterozygous mutation. Empirically, we found 10% is a 
good threshold since the real error is often less than 1%. 

      Thus, considering a clone is represented by a sequence 
containing multiple nucleotides, the probability of the jth 
candidate subclone is misclassified into the ith candidate 
subclone due to sequencing or other error is 

( ) ( )( )Pr ,                       (3)L
ij i jl
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where Bi(l) is the nucleobase at the lth location in the 
sequence of the ith candidate subclone, L is the sequence 
length, and ‘𝛽𝛽𝑖𝑖𝑖𝑖 = 0’ if the ith and jth candidate subclones 
have different sequence lengths.  

  Once the error probabilities have been estimated and the 
number of reads supporting a clone is observed, we take the 
framework of hypothesis testing to help assess the 
probability of seeing such a clone under the null hypothesis. 
Given the observed read counts 𝑛𝑛𝑖𝑖   of the ith candidate 
subclone, the p-value under the null hypothesis (the ith 
candidate subclone is fake) is 
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      Accordingly, at the significance threshold Tα, the ith 
candidate subclone is considered as genuine if pi ≤ Tα; 
otherwise, it is fake. The rationale behind is simple. If the 
clone is unlikely to happen under the hypothesis of fake 
clone, that is, the p-value is smaller than the threshold, it 
should be considered as a genuine clone. 

     SIGH determines Tα by controlling the false discovery 
rate, which is defined as the expected proportion of false 
positives among all significant hypotheses [12], via: (1) sort 
the p-values in an increasing order denoted by p(1),…, 
p(M); (2) find the largest m such that 𝑝𝑝(𝑚𝑚)  ≤  𝑚𝑚𝑚𝑚 ∕ 𝑀𝑀; (3) 
set 𝑇𝑇𝛼𝛼  =  𝑝𝑝(𝑚𝑚) for the significance level α. The reliability 
of the detected genuine subclones is assured by the 
quantitative significance measure. 

III. SIMULATION STUDIES AND RESULTS 
To demonstrate the performance of SIGH under various 

conditions, we conducted simulation studies based on real 
sequencing data from our in-house immune T-cells dataset. 
Our simulations adopt settings similar to [10], with L=100. 
We first simulated sequence read data for normal samples by 
randomly replacing the nucleobase s by r at each locus of the 
baseline sequence, according to an error probability table 
(Table 1).  

TABLE I.  PARAMETER SETTINGS AND RESULTS. THE NUMBERS OF 
OBSERVED AND GENUINE CLONAL SEQUENCE CLUSTERS IDENTIFIED 

BY SIGH ARE REPORTED. 

Probability (10-4 except diagonal)    Case                   # of clones  

          A        C       G       T       #    M M0    MSIGH  
A     0.99 0.29   8.70    0.48                1        171~250     3          3  
C     0.27 0.99   0.38     9.62         2        180~423    5          5 
G     4.82 0.19   0.99     0.45         3        257~625      10        10 
T      0.62  7.48   0.32     0.99                *All detections are made at p=0.05. 
     We ran similar simulations with M0 = 3, 5, 10 genuine 
subclones of distinct sequences for various clonal 
proportions to determine how well SIGH could identify 
genuine subclone sequences and characterize intratumor 
heterogeneity. The distributions of proportions of genuine 
clones are varying across the 15 datasets as shown in Table 
2. Since error probability is generally much smaller than that 
of random polymorphisms, only the loci with error rates 
smaller than 10% were used in the estimation. We tested 
SIGH on 15 datasets each with unique set of conditions. For 
each application of SIGH, mean per-sample execution time 
was ~2 minutes on a computer equipped with an Intel® 
Xeon ® CPU X5660 @ 2.80GHz (24 cores and 23.5 GB of 
RAM).  
TABLE 2. THE PROPORTIONS OF EACH CLONE IN EACH DATASET AND 

THE DETECTED RESULTS OF GENUINE CLONES FROM SIGH 

Data
set 

Proportions of each genuine clone 
 

SIGH 
(all clones, genuine 
clones) 

1 (0.33,0.33,0.33) (250, 3) 
2 (0.90,0.09,0.01) (177, 3) 
3 (0.70,0.20,0.10) (195, 3) 
4 (0.831,0.166,0.003) (172, 3) 
5 (0.01,0.98,0.01) (171, 3) 
6 (0.20, 0.20, 0.20, 0.20, 0.20) (423, 5) 
7 (0.009,0.003,0.006,0.893,0.089) (180, 5) 
8 (0.71,0.17,0.02,0.09,0.01) (254, 5) 
9 (0.002,0.395,0.592,0.001,0.010) (181, 5) 

10 (0.61,0.20,0.08,0.10,0.01) (283, 5) 
11 (0.10,0.10,0.10,0.10,0.10,0.10,0.

10,0.10,0.10,0.10) 
(625, 10) 



12 (0.167,0.001,0.033,0.668,0.067,
0.010,0.027,0.017,0.007,0.003) 

(257, 10) 

13 (0.208,0.001,0.104,0.416,0.104,
0.021,0.062,0.062,0.011,0.011) 

(395, 10) 

14 (0.152,0.001,0.061,0.606,0.121,
0.009,0.030,0.015,0.003,0.002) 

(283, 10) 

15 (0.116,0.001,0.047,0.698,0.093,
0.007,0.023,0.012,0.002,0.001) 

(279, 10) 

      For the normal sample simulations, SIGH accurately 
learned the reading error probabilities in all datasets, with 
small estimation errors against the ground truth. The 
statistics (boxplot: green stars indicate the ground truths) on 
the estimated error probabilities across the 15 datasets are 
summarized in Figure 2.  

 
Figure 2. Summary of error probabilities estimated by SIGH in 15 

simulation datasets; green stars are ground truth from Table 1. 

      For the heterogeneous tissue with variable subclonal 
proportions, SIGH correctly identified the number of 
genuine subclones from an overwhelmingly large number of 
fake sequences, in all 15 datasets, reported in Tables 1&2. 
As a significance testing approach, measures of confidence 
are directly derived from the null distribution of ni in the 
form of p values (Table 1).  SIGH also accurately estimated 
the proportions of genuine clonal subpopulations. As 
expected, SIGH works well on data with balanced clone 
population, that is, all clone proportions are similar. It is 
worth noting that SIGN also works well on very imbalanced 
data. For example, in data set 15, the most common clone 
has proportion of 69.8%, while the rarest clone occupies 
merely 0.1%, a difference of 700 folds. The capability of 
SIGN for imbalanced data may be particularly useful for the 
detection of rare clones. 

IV. DISCUSSIONS AND CONCLUSIONS 
  Our realistic simulation studies demonstrate the 

feasibility of identifying intercellular genomic heterogeneity 
in the presence of inevitable and variable sequencing errors. 
By statistically modeling read count null distributions for 
each of the observed sequence clusters, SIGH can 
potentially identify rare genuine subclone(s) directly from 
genuine-fake mixed raw or mutation sequence reads, despite 

abundance disparity between subclones. When applied to 
longitudinal studies, SIGH may also provide additional 
information about tumor evolution or clonal repopulation 
dynamics [8].  

  We foresee a variety of extensions to the concepts in 
SIGH. For example, with further development, SIGH 
methodology can be applicable to analyzing the raw 
sequences of enriched immune cells in tumors. The potential 
ability to detect sequence reads associated with somatic 
immune cells is clinically significant, since somatic immune 
cells play a critical role in tumor micro-environment 
heterogeneity [13]. SIGH analysis on somatic T-cells may 
reveal migration of immune cells (recruitment and 
localization) and immune suppression. In fact, immune 
infiltration can include multiple cell types, having both pro- 
and anti-tumor functions with varying activation statuses 
and localizations within the tumor [13].        
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