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Abstract—Gait analysis is often used as part of the
rehabilitation program for post-stoke recovery assessment.
Since current optical diagnostic and patient assessment tools
tend to be expensive and not portable, this paper proposes
a novel marker-based tracking system using a single depth
camera which provides a cost-effective solution suitable for
home and clinic use. The proposed system can simultaneously
generate motion patterns even within a complex background
using the proposed geometric model-based algorithm and
autonomously provide gait analysis results. The processed
rehabilitation data can be accessed by cross-platform mobile
devices using cloud-based services enabling emerging tele-
rehabilitation practices. Experimental validation shows a good
agreement with state-of-the-art non-portable and expensive
industrial standards.
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I. INTRODUCTION

During typical clinical rehabilitation programs, stroke
patients are asked to complete a series of exercises and
training modules after their conditions have been stabilized
for periodically evaluating their walking patterns [1]. Mo-
tion capture systems have become popular for this clinical
recovery assessment in rehabilitation programs. However,
these systems are usually based on multiple cameras, used to
construct a 3D scene and track the positions of all markers
in the 3D space, fixed within a large laboratory room.

An attractive alternative is to use Microsoft (MS) Kinect
sensor [2] with provided software capable of tracking 25
skeleton joints. However, it is demonstrated in [3], [4],
[5] that Kinect’s skeleton results are too noisy and not
suitable for clinical applications. Furthermore, other marker-
based single or multiple RGB camera tracking systems have
limitations, requiring specific color of the cloths, lack of
portability or high price such as VICON [6], single RGB
camera systems of [1], [7]–[10] and multiple RGB camera
systems, such as [11]. [12] explores the marker-less solution
for gait analysis using MS Kinect v1, but the reported results
are still not a good match with 3D benchmarks.

In this paper, we propose a novel system using a single
depth camera (MS Kinect), combining the benefits of the
3D reconstruction ability of Kinect and high accuracy from
VICON-like optical marker-based tracking. The proposed
multimedia system provides a convenient solution for track-

ing multiple retro-reflective markers simultaneously, solv-
ing a geometric model-based identification problem even
within a complex background. Our proposed geometric
model detector is able to label markers and construct the
corresponding digital models. All markers are detected by a
white blob detector before marker identification takes place.
Since the retro-reflective marker introduces blank hole into
the depth image, we introduce a novel algorithm to estimate
the depth value for the region of each marker to restore
their 3D trajectories. In experiments, we adopt the cubic
Bezier curve interpolation [13] for gap filling, calculate the
joint angles, visualize movement patterns, detect gait phases,
measure step and stride length, swing and stance phase.

All locally processed results can be sent to a cloud server
and accessed via a smart-phone by clinicians for visual-
ization and diagnostics, facilitating tele-rehabilitation, as a
mobile multimedia communication service. Result validation
with VICON clearly shows the ability to reconstruct sagittal
view planes’ gait cycles accurately.

II. PROPOSED SYSTEM

The proposed multimedia system enables 3D optical
marker-based kinematics reconstruction with high accuracy
and robustness using a single Kinect sensor. The task is to
estimate the position of each attached joint marker during the
straight-line walking and automatically calculate customiz-
able data such as joint angles, movement patterns, velocity,
step and stride length, swing and stance phase, etc [14].

The system consists of four modules: (1) Data Cleaning
- used for filtering out invalid data before processing. (2)
Modeling - for subject modeling as identification reference.
(3) Tracking - for locating the markers and automatically la-
beling the trajectory of each marker. (4) Kinematics Analysis
- used for customizable data computation.

All processed data are dispatched to a cloud server or
another remote terminal device as a mobile inquiry service
for tele-rehabilitation. We elaborate these modules next.
A. Data Cleaning

The infrared (IR) and depth image sequences are captured
by MS Kinect v2 with factory calibrated depth camera
intrinsic parameters. We adopt depth-map projection method
from [15] to get undistorted camera space coordinates of
tracked markers before data cleaning.



Next, we build a trapezoidal cylindrical scene model
shown in Fig.1 to clean the camera and environment noise
(due to reflective materials), i.e., to remove all redundant
point clouds due to potentially complex background.

Fig. 1. Sagittal View Modeling Schematic Map.
In particular, estimation of the distance L from the Kinect

sensor to the centroid of the floor square (denoted as red
x in Fig.1) can be done by offline extraction of the floor
square corners (blue dots in Fig.1) and calculating the central
point used for subject modeling in Sec. II-B. After this, the
walking start/end points can be estimated by view angle
β = 70◦ [16], defining the valid scene region shown in
Fig.1 limited by the predefined reliable Kinect depth range.
The proposed trapezoidal cylindrical scene model aims to
construct the walking line scene and filter out the irrelevant
point clouds outside the region of interest.
B. Modeling

Next, we define the frontal and sagittal subject model
according to the tracking requirements by physically mea-
suring the subject. Our sagittal model is split into three parts:
upper body, limb and foot models as shown in Fig.2.

Fig. 2. Sagittal Model (Right Hand Side). 12 visible markers are marked
with green circles. 2 partial invisible markers are shown in circle outlines.

We locate all markers by validating their camera space
coordinates along with axes X,Y. See Sec.II-C2. We measure
H0∗, H7∗, and W4∗ to W8∗ shown in Fig. 2 after all
markers have been labeled for the static subject.
C. Tracking

The proposed tracking method detects and labels markers
attached on subject during the walking exercise, on a frame-

by-frame basis using both IR and depth images.
1) Marker Detection

The marker detector consists of 4 parts: (1) Blob Filter
- for detecting center of each blob. (2) Contour Finder
[17] - used for finding valid contours. (3) Ellipse And
Minimum Area Rectangle Fitter [18] [19] - for extracting
blob information. (4) Proposed Kernel Cluster Filter - used
for grabbing valid blobs as markers.

The blob filter filters the acquired 16-bit single-channel IR
image into a binary image. To detect the center of each blob
we use a contour finder [17] and an ellipse and minimum
area rectangle fitter. The next step is to remove the blobs
that do not represent markers but are due to camera noise
and background. To do that, we form a concentric cycles
around each blob center. Let RMarker be the radius of the
marker in pixels, and let Centre be the center of a blob.
Regard C(Rn) as the pixel values forming an imaginary
circle centered at Centre with radius Rn [in pixels], where
Rn = 1, . . . , RMarker pixels.

We apply a histogram filter on all C(Rn) to obtain the
significant pixel values κn for each concentric cycle. Let κm

be the mean of κn for Marker m. Next, for Marker m we
find the smallest index im such that κm

i

κm
i+1

> 2. Let Am =∑
j=1,im Rj Then, we obtain the marker detection threshold

T as the mean of all κm weighted by Am∑M

l=1
Al

where M is

the number of visible markers in the floor square.
To detect markers, first we apply a contour algorithm of

[17] to locate concentric contours Ω = ω0, ω1, ... for each
blob in the binary image using threshold T . Let |Ω| be the
number contours in the set Ω. Then, the centroid of each
marker is identified as:

Centroid =



FitEllipse(Ω) if |Ω| > 5

FitMinRect(Ω) if |Ω| ∈ (2, 5)

ω0+ω1
2

if |Ω| = 2
and FitDepth[Grow(Ω, δ)] = 1

ω0
if |Ω| = 1
and FitDepth[Grow(Ω, δ)] = 0

(1)
where FitEllipse uses the algorithm of [18] to obtain

the centroid given each blob’s contours Ω and FitMinRect

uses the algorithm of [19] to calculate the minimum-area
bounding rectangle for locating the centroid. If the number
of counters is less than 3, then the function Grow given by
(2) is applied to create a new rectangular region by applying
kernel increment δ on Pi,j from contours ω0 (and ω1).

G = Grow(Pi,j , δ) =Mini,Pi,j∈Ω(Pi,j)− δ︸ ︷︷ ︸
left

,Minj,Pi,j∈Ω(Pi,j)− δ︸ ︷︷ ︸
top

,

Maxi,Pi,j∈Ω(Pi,j) + δ︸ ︷︷ ︸
right

,Maxj,Pi,j∈Ω(Pi,j) + δ︸ ︷︷ ︸
bottom

(2)

δ is set to 3 and 2 for the case |Ω| = 2 and |Ω| = 1,
respectively. Function FitDepth in (1) determines whether



to include the Centroid by examining the new window G
given by (2) as:

FitDepth =
{
1, for N > τ
0, for N = τ (3)

where we set τ = 0 and N as the number of pixels in G
whose corresponding depth value is in the sensor’s reliable
range of (500, 4500] mm. As a result, we regard all blobs
centered at Centroid as the final detected markers.
2) Marker Identification

In this section, we introduce a model-based identifier for
restoring depth value, relocating the region of interest on
the associated depth image using our proposed histogram
clustering algorithm, that is used to obtain marker trajec-
tories. Since we use retro-reflective markers, the area in
the depth image occupied by the markers is full of zero
depth values while the spatially collocated regions in the IR
image will have very high values. Having this in mind, we
can estimate the depth value at the marker centroid from
the surrounding depth pixels. However, marker intersection
is difficult to be identified due to low resolution and the
uncertain surrounding background especially when arm and
leg overlap. Moreover, the surrounding depth values will also
be zero since edge noise is pre-introduced by the Time of
Flight (TOF) sensor.

Therefore, we calculate the weighted mean depth from
depth-map histogram statistics with our proposed clustering
algorithm described next. The task of clustering is to clean
the zero depth hole inside the region of pixels grown by
recovery radius δ = 3 using (Eq.2) with Pi,j from the
corresponding detected marker region where the IR value is
high. The weight value of depth clustering is calculated as
the significant mean relative distance between depth pixels
to the centroid in each histogram bin.

Fig. 3. Histogram Clustering Workflow

Fig. 3 shows a flowchart of the histogram clustering
algorithm for the markers on knee, ankle, heel, toe, using
T0 =Min(D) and estimate the depth value for the marker
on hip, femur that has occlusion or missing conditions during

arm swing with T1 = Max(D1) and T0 = T1 −W , where
D, W , and D1 are distances shown in Fig. 2. If the shoulder
marker is on topmost of the surrounding pixels due to its
distance to neck on sagittal plane, we set T0 = Min(D1).
By applying these different thresholds, we eventually reduce
the noise from the edges and holes, moving forward to
restore the depth.

When labeling each marker, we use the subject model
(Sec. II-B) to examine all possible marker groups for upper
body, limb and foot models (see Fig. 2). We order all markers
in the region of L12 and L13 by X-coordinate and validate
the distances D0, D1, D2 for obtaining the most-like group
as a result for the upper body model. For the upper limb, we
firstly order all markers under L13 by Y-coordinate and X-
coordinate afterwards. Secondly, we separate them into two
groups by evaluating 6 markers nearest to the ground by
testing all possible groups for the triangle foot model shown
in Fig. 2 so that we can eventually get the labeled right foot.
When labeling the limb model, we choose the left markers
in the upper limb region for combining them according to
Y-coordinates and finally determine left foot’s position by
checking its relative 3D position with right knee marker and
foot. For large out-of-plane rotation on the subject, we detect
the gaps when large position error occurs between adjacent
frames and predict to find the most-like marker trajectories
according to the 4th cubic Bezier curve [13] interpolation.
D. Kinematics Analysis

We adopt relative knee angle (based on hip, knee and an-
kle trajectories) and gait phases (detecting local extremums
and inflection ranges) defined in [14] for kinematics analysis
in our system. The gait cycle mainly consists of initial
contact, loading response, mid stance, terminal stance, pre-
swing, initial swing, mid swing and terminal swing [14].
We examine the relative trajectories of knee, ankle, and heel
markers to the floor to detect these gait phases.

The proposed method to measure step and stride length,
stance and swing phase uses resampled trajectories (100 fps)
of heel, ankle, knee and hip markers by calculating vertical
thigh segment angle, tibia segment angle, inflection points
and local peaks of heel markers horizontal and vertical axis
values shown in Figs. 4 and 5.

Fig. 4. Heel Horizontal Axis Fig. 5. Heel Vertical Axis
For measuring the step and stride length, it is easier to

analyze the stable values ψ0, ψ1, ψ2 using window matching
for the region between inflection points in Fig. 4. Once the
left and right heels horizontal stable values are found, the
step and stride length can be calculated using the adjacent
stable values over time.



Fig. 6. Inflection and Local Extremum Searching

Detecting gait phase depends on heel strike and toe off.
This can be simplified into finding inflection points η0,
η1, η2, η3 and local extremum ρ0, ρ1 where we adopt a
novel global gradient filtering algorithm (instead of using an
averaging filter) shown in Fig. 6. The algorithm searches the
region between the inflection points from a global minimum
to maximum by regrouping iteratively.

E. Rehabilitation Online Service
Due to high portability and low price, our system can be

easily deployed in small clinics and community hospital or
even use at home. Furthermore, its simple setup procedure
naturally provides the feasibility to build up a mobile mul-
timedia communication system for visualization, presenta-
tion and telemedicine services through mobile devices after
dispatching the diagnostic reports. In Fig. 7, one can see
that the overall system is capable of remote operation and
data transmission simultaneously with a cloud server which
consists of components on data mining, active diagnostics
and permission management.

Fig. 7. Mobile Multimedia System

Once the diagnostics reports of knee angle, step and stride
length, swing and stance phases are obtained using our
proposed system, the built-in software dispatcher will up-
load encrypted patient personal information and diagnostics
reports to a cloud server for authorized direct inquiry or
secondary data mining as to evaluate patient’s rehabilita-
tion conditions from big data. When our designed mobile

application interacts with the dispatcher or cloud server, it
takes the advantages of remote diagnostics, operation and
tele-rehabilitation, etc. These benefits provides a very user
friendly environment for tele-rehabilitation with no operation
expertise, potentially ready for clinic test.

III. EXPERIMENTAL RESULTS&DISCUSSION

We recorded 5 randomly selected healthy subjects (4
males, 1 female), and each recording contains 8 separate
trials. Thus, we tested the proposed approach on 40 inde-
pendent trials. We follow [14], measure knee angle α, step
length ζ, stride length ξ, stance and swing phases.

Fig. 8. Relative Knee Angle Comparison with VICON
Four typical trials are shown in Fig. 8. It can been seen

that our results have high accuracy benchmarked to the in-
dustrial standard VICON (100 fps). Moreover, we manually
select the key frames (by examining the infrared image
sequence with corresponding static point clouds captured
in the experiments as reference) for validating the step and
stride length, stance and swing phase. In order to evaluate
the performance of the phase detection, we averaged 40
sets of results, representing their mean percentage error and
percentage standard derivation in Table I.

TABLE I
PERFORMANCE OF THE PROPOSED METHOD FOR MEASURING STEP AND

STRIDE LENGTH, AND STANCE AND SWING PHASE

Error Step Stride Stance Swing

Mean(%) 1.05 1.17 1.82 1.10
Std(%) 5.33 4.76 5.83 4.37

IV. CONCLUSION

Our proposed cheap and portable single camera tracking
system is more attractive for gait analysis in the rehabili-
tation program than typical optical motion capture systems
such as current VICON. Furthermore, the proposed system
provides a mature solution for building up a mobile multi-
media interactive service for visualization, presentation and
tele-rehabilitation. Validation results indicate high perfor-
mance for the sagittal plane gait analysis which certainly
has practical value in clinical tests using the designed mobile
multimedia application for further study.
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