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Abstract—We consider a compressive hyperspectral imaging recon-
struction problem, where three-dimensional spatio-spectral information
about a scene is sensed by a coded aperture snapshot spectral imager
(CASSI). The approximate message passing (AMP) framework is
utilized to reconstruct hyperspectral images from CASSI measurements,
and an adaptive Wiener filter is employed as a three-dimensional
image denoiser within AMP. We call our algorithm “AMP-3D-Wiener.”
The simulation results show that AMP-3D-Wiener outperforms existing
widely-used algorithms such as gradient projection for sparse recon-
struction (GPSR) and two-step iterative shrinkage/thresholding (TwIST)
given the same amount of runtime. Moreover, in contrast to GPSR and
TwIST, AMP-3D-Wiener need not tune any parameters, which simplifies
the reconstruction process.

Index Terms—Approximate message passing, CASSI, compressive
hyperspectral imaging, Wiener filtering.

I. INTRODUCTION

Motivation: A hyperspectral image is a three-dimensional (3D)
image cube comprised of a collection of two-dimensional (2D)
images (slices), where each 2D image is captured at a specific
wavelength. Hyperspectral imaging allows us to analyze spectral
information about each spatial point in a scene, and has applica-
tions to areas such as medical imaging [1], remote sensing [2],
geology [3], and astronomy [4].

The imaging processes in conventional spectral imagers [5—7]
take a long time, because they require scanning a number of
zones linearly in proportion to the desired spatial and spectral
resolution. To address the limitations of conventional spectral imag-
ing techniques, many spectral imager sampling schemes based on
compressive sensing [8—10] have been proposed [11-13]. The coded
aperture snapshot spectral imager (CASSI) [11, 14-16] is a popular
compressive spectral imager and acquires image data from differ-
ent wavelengths simultaneously, which significantly accelerates the
imaging process. On the other hand, because the measurements from
CASSI are highly compressive, reconstructing 3D image cubes from
CASSI measurements becomes challenging. Moreover, because of
the massive size of 3D image data, it is desirable to develop fast
reconstruction algorithms in order to realize real time acquisition
and processing.

Related work: Several compressive sensing algorithms have been
proposed to reconstruct image cubes from measurements acquired
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by CASSI One of the efficient algorithms is gradient projection
for sparse reconstruction (GPSR) [17]. GPSR models hyperspectral
image cubes as sparse in the Kronecker product of a 2D wavelet
transform and a 1D discrete cosine transform (DCT), and solves
the ¢;-minimization problem to enforce sparsity in this transform
domain. Wagadarikar et al. [14] employed total variation [18]
as the regularizer in the two-step iterative shrinkage/thresholding
(TwIST) framework [19], a modified and fast version of standard
iterative shrinkage/thresholding. Apart from using the wavelet-DCT
basis or total variation, one can learn a dictionary with which the
image cubes can be sparsely represented [12,20]. However, these
algorithms all need manual tuning of some parameters, which may
be time consuming.

Contributions: We develop a robust and fast reconstruction algo-
rithm for CASSI using approximate message passing (AMP) [21].
AMP is an iterative algorithm that can apply image denoising at
each iteration. Previously, we proposed a 2D compressive imaging
reconstruction algorithm, AMP-Wiener [22], where an adaptive
Wiener filter was applied as the image denoiser within AMP. In
this paper, AMP-Wiener is extended to 3D hyperspectral images,
and we call it “AMP-3D-Wiener.” Our numerical results show that
AMP-3D-Wiener reconstructs 3D image cubes with less runtime
and higher quality than other reconstruction algorithms such as
GPSR [17] and TwIST [14,19] (Figure 2), even when the regu-
larization parameters in GPSR and TwIST have already been tuned.
In fact, the regularization parameters in GPSR and TwIST need to
be tuned carefully for each image cube, which requires to run GPSR
and TwIST many times with different parameter values. Moreover,
the improved reconstruction quality of AMP-3D-Wiener allows to
reduce the number of shots taken by CASSI by a factor of 2
(Figure 4).

The remainder of the paper is arranged as follows. We review
CASSI in Section II, and describe our AMP based compres-
sive hyperspectral imaging reconstruction algorithm in Section III.
Numerical results are presented in Section IV, while Section V
concludes.

II. CODED APERTURE SNAPSHOT SPECTRAL IMAGER

The coded aperture snapshot spectral imager (CASSI) [16] is
a compressive spectral imaging system that collects far fewer
measurements than traditional spectrometers. In CASSI, (i) the 2D
spatial information of a scene is coded by an aperture, (ii) the coded
spatial projections are spectrally shifted by a dispersive element, and
(iii) the coded and shifted projections are detected by a 2D focal
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Figure 1: The matrix H is presented for M = N = 8, L = 4, and
K = 2. The circled diagonal patterns that repeat horizontally corre-
spond to the coded aperture pattern used in the first FPA shot. The
second coded aperture pattern determines the next set of diagonals.
Each FPA shot captures M (N + L + 1) = 104 measurements.

plane array (FPA). For a 3D image cube of dimension M X N x L,
the imaging process of CASSI can be written in a matrix-vector
form,

g =Hfo + z, M

where fo € R" is the vectorized 3D image cube of dimension
n = MNL,and vectors g € R™ and z € R™ are the measurements
and the additive noise, respectively. The matrix H € R™*™ models
the linear relationship between fo and g, and accounts for the effects
of the coded aperture and the dispersive element. Recently, Arguello
et al. [23] proposed a higher order model to characterize the CASSI
system with greater precision. In this higher order CASSI model,
each cubic voxel is shifted to an oblique voxel because of the
continuous nature of the dispersion, and therefore the oblique voxel
contributes to multiple measurements in the FPA. A sketch of the
matrix H in the higher order CASSI model is depicted in Figure 1,
where the image cube size is M = N = 8, and L = 4. The
matrix H consists of a set of 3 diagonal patterns, accounting for
the voxel energy impinging into 3 neighboring FPA pixels. The 3
diagonal patterns repeat in the horizontal direction, each time with
a unit downward shift, as many times as the number of spectral
bands. Each diagonal pattern is the coded aperture itself after being
column-wise vectorized. Just below, the next set of diagonal patterns
is determined by the coded aperture pattern used in the subsequent
shot. With K shots of CASSI, the number of measurements is
m = KM(N + L+ 1) (see [23] for details).

III. PROPOSED ALGORITHM

The goal of our proposed algorithm is to reconstruct the image
cube fp from its compressive measurements g, where the matrix H
is known. In this section, we describe our algorithm in detail. The
algorithm employs (i) approximate message passing (AMP) [21],
an iterative algorithm for compressive sensing problems, and (ii)
adaptive Wiener filtering, a hyperspectral image denoiser that can
be applied within AMP.

Scalar channels: Below we describe that the linear imaging sys-
tem model in (1) can be converted to 3D image denoising in scalar
channels. Therefore, we begin by defining scalar channels, where

the noisy observations q of the image cube fo obey q = fo + v,
and v is the additive noise vector. Recovering fo from q is known
as a 3D image denoising problem.

Approximate message passing: AMP [21] has recently become
a popular algorithm for solving signal reconstruction problems in
linear systems as defined in (1). The AMP algorithm proceeds
iteratively according to

£ = (H e 4 1Y), (@)
1
rt :g_Hft + Ert 1<771/§71(HT t—1 —"—ff 1)> (3)
where H” is the transpose of H, R = m/n represents the

measurement rate, 7;(-) is a denoising function at the ¢-th iteration,
ni(s) = Zm(s), and (u) = 13" u; for some vector u =
(u1,u2,...,un). The last term in (3) is called the “Onsager reaction
term” [21,24] in statistical physics. In the ¢-th iteration, we obtain
the vectors f' and r’. We highlight that the vector HTr! + f?
in (2) can be regarded as a noise-corrupted version of fo in the ¢-
th iteration with noise variance o7, and therefore 7:(:) is a 3D
image denoising function that is performed on a scalar channel
q' = HTr! + £t = fy + v?, where the noise level o2 is estimated

by [25],
o = 1 200

and r! denotes the i-th component of the vector r’ in (3).

Adaptive Wiener filter: We are now ready to describe our 3D
image denoiser, which is the function 7 (-) in (2). First, we want to
find a sparsifying transform such that hyperspectral images have
only a few large coefficients in this transform domain, because
based on the sparsifying coefficients, some shrinkage function can
be applied in order to suppress noise [26]. Inspired by Arguello
and Arce [27], we apply a wavelet transform to each of the 2D
images in a 3D cube, and then apply a DCT along the spectral
dimension. That is, the sparsifying transform ¥ can be expressed
as a Kronecker product of a DCT transform & and a 2D wavelet
transform W, i.e., ¥ = & ® W, and it can easily be shown that ¥
is an orthonormal transform. Our 3D image denoising is processed
on the sparsifying coefficients 92 =Tq'.

Our proposed 3D image denoiser is a modification of the adaptive
Wiener filter in our previous work [22], which is inspired by Mlhgak
et al. [28]. Let 0 , denote the i-th element of Ot The coefficients 0f
of the estimated (den01sed) image cube ft are obtained by Wiener
filtering,

0t+1 _ max{0, Vi, — 0t}
7,
7,t

efl i ﬁi,t) + ﬁ’i,tv (4)

where [i; + and ﬁzt are the empirical mean and variance of wa
within an appropriate wavelet subband, respectively. Note that
in our previous work [22], the variance was estimated locally
from the coefficients within a 5 x 5 window, and all coefficients
had different variance values. In the current work, the variance
is estimated from an entire subband, and the coefficients within
each subband share the same variance. Such a denoiser has a
simpler structure, and is likely to help prevent AMP from diverging.
Taking the maximum between O and ( Uiy — a?) ensures that if
the empirical variance Vm of the noisy coefficients is smaller than
the noise variance &7, then the corresponding noisy coefficients



are set to 0. After obtaining the denoised coefficients 5?—1 from
0, = ¥q’, the estimated image cube in the (¢ + 1)-th iteration
satisfies £ = n,(q") = o9, = wTe,
AMP-3D-Wiener: It has been discussed [22] that when the
sparsifying transform is orthonormal, the derivative calculated in
the transform domain is equivalent to the derivative in the image
domain. According to (4), the derivative of the Wiener filter in the
transform domain with respect to 1/9\31 is max{(),’u\zt — o7} /1/)127,5.
Because the sparsifying transform W is orthonormal, the Onsager
term (3) can be calculated as
((HT 4 1 max{0,7;, — 57 }
nH r +£)) = EZT

2 Vit

Basic AMP has been proved to converge with i.i.d. Gaussian
matrices and scalar functions n:(-) [29], i.e., é}l only depends on
its corresponding noisy coefficient é\f“ Other AMP variants [30—
32] have been proposed in order to encourage convergence for a
broader class of measurement matrices. The matrix H defined in (1)
is not i.i.d. Gaussian, but highly structured as shown in Figure 1,
and the adaptive Wiener filter in (4) is not a scalar function owing
to f1;,; and 122 + being functions of multiple noisy coefficients gf“
Unfortunately, AMP-3D-Wiener encounters divergence issues with
this matrix H. We choose to apply “damping” [31,33], which
resembles a technique used in Gaussian belief propagation [34],
to solve for the divergence problems of AMP-3D-Wiener, because
it is simple and only increases the runtime modestly. Specifically,
damping is an extra step within AMP iterations that updates the
values of r® and f'™* by weighted sums as shown in Lines 2 and 7
of Algorithm 1. We will show in Section IV that AMP-3D-Wiener
converges with an appropriate amount of damping, and AMP-3D-
Wiener serves as a demonstration that non-scalar denoisers have
promises in the AMP framework [22, 35].

Algorithm 1 AMP-3D-Wiener
Inputs: g, H, 0 < o < 1, maxlter
Outputs: /fAMP

Initialization: f' =0, r° =0

for ¢t = 1 : maxIter do
) r'=g—Hf + ' ' L3
) ri=a-r+(1—-a) r?
3) qt _ HTrt 4 ft

4) 8152 = %Zj(@f

max{0.02,_,~52_,)

Vit—1

5) 0, = ¥q' L
~ max{0,7; ,—& —~ —~
0) 9;,1‘ = a{Tjt} (93,«; - ,ui,t) + it
7) £ = o 070 + (1 - a) - f*
end for
/f\AMP — fmaxIler+l

IV. NUMERICAL RESULTS

In this section, we compare the reconstruction quality and run-
time of AMP-3D-Wiener, gradient projection for sparse reconstruc-
tion (GPSR) [17], and two-step iterative shrinkage/thresholding
(TwiIST) [14,19]. In all experiments, we use the same coded
aperture pattern for AMP-3D-Wiener, GPSR, and TwIST. In order
to quantify the reconstruction quality of each algorithm, the peak

signal to noise ratio (PSNR) of each 2D slice in reconstructed cubes
is measured.

In AMP, the damping parameter « is set to be 0.2. The choice
of damping mainly depends on the structure of the imaging model
in (1) but not on the characteristics of the image cubes, and thus
the value of the damping parameter o need not be tuned in our
experiments.

To reconstruct the image cube fy, GPSR and TwIST minimize
objective functions of the form f = argming g —Hf||5+ 8-
o(f), where ¢(-) is a regularization function that characterizes the
structure of the image cube fo, and (5 is a regularization parameter
that balances the weights of the two terms in the objective function.
In GPSR, ¢(f) = ||®f]||1; in TWIST, ¢(f) is the total variation
function [18]. We select the optimal values of 5 for GPSR and
TwIST manually, i.e., we run GPSR and TwIST with 5—10 different
values of 3, and select the results with the highest PSNR.

In order to compare the performance of AMP-3D-Wiener, GPSR,
and TwIST, an image cube is experimentally acquired using a wide-
band Xenon lamp as the illumination source, modulated by a visible
monochromator spanning the spectral range between 448 nm and
664 nm, and each waveband has 9 nm width. The image intensity
was captured using a grayscale CCD camera, with pixel size 9.9
pm, and 8 bits of intensity levels. The resulting test image cube is
of size M x N = 256 x 256, and L = 24.

Setting 1: The measurements g are captured with K = 2 shots
such that the two coded apertures are complementary. Therefore,
we ensure that the norm of each column in H (1) is similar. The
measurement rate is m/n = KM(N + L +1)/(MNL) =~ 0.09.
Moreover, we add zero-mean Gaussian noise z to the measurements
such that the signal to noise ratio (SNR) is 20 dB. The SNR is
defined as 10log;o(ftg/0noise) [27], where puq is the mean value of
the measurements Hfp and onoise 1S the standard deviation of z.

Figure 2 compares the reconstruction quality of AMP-3D-Wiener,
GPSR, and TwIST within 450 seconds. Runtime is measured on
a Dell OPTIPLEX 9010 running an Intel(R) CoreTM i7-860 with
16GB RAM, and the environment is Matlab R2013a. In Figure 2, the
horizontal axis represents runtime in seconds, and the vertical axis is
the averaged PSNR over the 24 spectral bands. Although the PSNR
of AMP-3D-Wiener oscillates during the first few iterations, which
may be because the matrix H is ill-conditioned, it becomes stable
after 50 seconds and reaches a higher level compared to the PSNRs
of GPSR and TwIST at 50 seconds. After 450 seconds, the average
PSNRs of the cubes reconstructed by AMP-3D-Wiener, GPSR, and
TwIST are 26.16 dB, 23.46 dB and 25.10 dB, respectively. Figure 3
displays the reconstructed cubes in the form of 2D RGB images,
and we can see that AMP-3D-Wiener produces images with better
quality; images reconstructed by GPSR and TwIST are blurrier.

Note that in 450 seconds, AMP-3D-Wiener and GPSR run
roughly 400 iterations, while TwIST runs around 200 iterations.
Therefore, for the rest of the simulations, we run AMP-3D-Wiener
and GPSR with 400 iterations, and TwIST with 200 iterations, so
that all algorithms complete within the similar amount of time.

Setting 2: In Setting 1, the measurements are captured with
K = 2 shots. We now test our algorithm on the setting where
the number of shots varies from K = 2 to K = 12 with pairwise
complementary coded apertures. Specifically, we randomly generate
the coded aperture for the k-th shot for k = 1,3,5,7,9,11, and
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Figure 2: Runtime versus average PSNR comparison of AMP-3D-
Wiener, GPSR, and TwIST. Cube size is M = N = 256, and
L = 24. The measurements are captured with K = 2 shots using
complementary coded apertures, and the number of measurements is
m = 143, 872.

Figure 3: Moving from left to right, the panels correspond to the
groundtruth and image cubes reconstructed by AMP-3D-Wiener,
GPSR, and TwIST. The 2D RGB images shown in this figure are
converted from their corresponding 3D image cubes. (The target
object presented in the experimental results was not endorsed by the
trademark owners and it is used here as fair use to illustrate the qual-
ity of reconstruction of compressive spectral image measurements.
LEGO is a trademark of the LEGO Group, which does not sponsor,
authorize or endorse the images in this paper. The LEGO Group.
All Rights Reserved. http://aboutus.lego.com/enus/ legal-notice/fair-
play/.)

the coded aperture in the (k + 1)-th shot is the complement of the
aperture in the k-th shot. In this setting, a moderate amount of noise
(20 dB) is added to the measurements. Figure 4 presents the PSNR
changes of the reconstructed cubes as the number of shots increases,
and AMP-3D-Wiener consistently beats GPSR and TwIST.

Test on natural scenes: We have also tested our algorithm on
the dataset “natural scenes 2004 [36,37]. In this dataset, there are
8 image cubes with L = 33 spectral bands and spatial resolution
of around 1000 x 1000. To satisfy the dyadic constraint of the 2D
wavelet, we crop their spatial resolution to be M = N = 512. The
measurements are captured with K = 2 shots, and the measurement
rate is m/n = KM(N + L+ 1)/(MNL) =~ 0.065. We test for
measurement noise levels such that the SNRs are 15 dB and 20 dB.
The typical runtimes for AMP with 400 iterations, GPSR with 400
iterations, and TwIST with 200 iterations are approximately 2, 800
seconds. We run the algorithms on 5 different complementary coded
apertures, and the average PSNR for each algorithm is shown in
Table I. We highlight the highest PSNR among AMP-3D-Wiener,
GPSR, and TwIST using bold fonts. It can be seen from Table I
that AMP-3D-Wiener usually outperforms GPSR by 2 — 5 dB in
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Figure 4: Number of shots versus average PSNR comparison of
AMP-3D-Wiener, GPSR, and TwIST. Cube size is N = M = 256,
and L = 24. The measurements are captured using pairwise comple-
mentary coded apertures.

terms of the PSNR, and outperforms TwIST by 0.2 — 4 dB.

15 dB 20 dB

AMP | GPSR | TwIST AMP | GPSR | TwIST
Scene 1 30.46 | 28.43 30.14 30.54 | 2852 30.27
Scene 2 27.33 | 24.74 27.09 27.74 | 24.88 27.42
Scene 3 33.29 | 29.53 31.87 33.10 | 29.57 31.93
Scene 4 32.04 | 27.00 31.61 3225 | 2722 31.97
Scene 5 27.44 | 2428 26.46 27.80 | 24.64 26.84
Scene 6 29.17 | 25.02 25.82 30.06 | 25.55 26.27
Scene 7 36.36 | 33.07 33.76 37.14 | 3354 34.21
Scene 8 32.15 | 28.19 28.17 3299 | 28.79 28.57

TABLE I: Average PSNRs of AMP-3D-Wiener, GPSR, and TwIST
for the dataset “natural scene 2004” [36]. The spatial dimensions of
the cubes are cropped to M = N = 512, and each cube has L = 33
spectral bands. The measurements are captured with K = 2 shots,
and the number of measurements is m = 559, 104.

V. CONCLUSION

In this paper, we considered compressive hyperspectral imaging
reconstruction in coded aperture snapshot spectral imager (CASSI)
systems. Considering that the CASSI system is a great improvement
in terms of imaging quality and acquisition speed over conventional
spectral imaging techniques, it is desirable to further improve
CASSI by accelerating the 3D image cube reconstruction process.
Our proposed AMP-3D-Wiener used an adaptive Wiener filter as
a 3D image denoiser within the approximate message passing
(AMP) [21] framework. AMP-3D-Wiener was faster than existing
image cube reconstruction algorithms, and also achieved better
reconstruction quality.
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