
Decentralized Quadratically Approximated
Alternating Direction Method of Multipliers

Aryan Mokhtari† Wei Shi? Qing Ling? Alejandro Ribeiro†
†Department of Electrical and Systems Engineering, University of Pennsylvania
?Department of Automation, University of Science and Technology of China

Abstract—This paper considers an optimization problem that
components of the objective function are available at different nodes
of a network and nodes are allowed to only exchange information
with their neighbors. The decentralized alternating method of mul-
tipliers (DADMM) is a well-established iterative method for solving
this category of problems; however, implementation of DADMM
requires solving an optimization subproblem at each iteration for
each node. This procedure is often computationally costly for the
nodes. We introduce a decentralized quadratic approximation of
ADMM (DQM) that reduces computational complexity of DADMM
by minimizing a quadratic approximation of the objective function.
Notwithstanding that DQM successively minimizes approximations of
the cost, it converges to the optimal arguments at a linear rate which
is identical to the convergence rate of DADMM. Further, we show
that as time passes the coefficient of linear convergence for DQM
approaches the one for DADMM. Numerical results demonstrate the
effectiveness of DQM.

Index Terms—Multi-agent network, decentralized optimization,
alternating direction method of multipliers.

I. INTRODUCTION

Decentralized algorithms are designed to solve the problem of
minimizing a global cost function over a set of nodes. Agents
(nodes) only have access to their local cost functions and try
to minimize the global cost cooperatively only by exchanging
information with their neighbors. To be more precise, consider a
variable x̃ ∈ Rp and a connected network containing n agents
each of which has access to a strongly convex local cost function
fi : Rp → R. The agents cooperate to solve

x̃∗ = argmin
x̃

n∑
i=1

fi(x̃). (1)

Problems of this form arise in decentralized control systems [1]–
[3], wireless communication networks [4], [5], sensor networks
[6]–[8], and large scale machine learning systems [9]–[11].

There are different algorithms to solve (1) in a distributed
manner [6], [12]–[25]. Decentralized implementations of the
alternating direction method of multipliers (DADMM) are well-
known for solving (1), with a fast linear convergence rate [6],
[24]–[26]. On the other hand, DADMM steps are computationally
costly, since each node has to minimize a convex problem at each
iteration. This issue is addressed by the Decentralized Linearized
ADMM (DLM) algorithm that in lieu of minimizing the exact
primal convex problem, minimizes a first-order linearized version
of the primal objective function [27], [28]. DLM reduces the
computational complexity of DADMM, however, convergence
rate of DLM is slow when the primal objective function is
ill-conditioned, since DLM operates on first-order information.

Supported by NSF CAREER CCF-0952867 and ONR N00014-12-1-0997.

Moreover, the coefficient of linear convergence for DLM is strictly
smaller than the one for DADMM [29]. These drawbacks can be
resolved by incorporating second-order information of the primal
function.

In this paper we propose a decentralized quadratic approxima-
tion of ADMM (DQM) that successively minimizes a quadratic
approximation of the primal objective function. Therefore, DQM
enjoys the low computational cost of DLM, while its convergence
is exact and linear same as DADMM. This approximation in-
corporates the second-order information of the primal objective
function which leads to a provably fast linear convergence even
in the case that the cost function is ill-conditioned. Further, we
show that as time progresses the coefficient of linear convergence
for DQM approaches the one for DADMM.

We begin the paper with describing the DADMM steps and
explaining the idea of the DLM algorithm (Section II). Then, we
introduce the DQM method which is different from DADMM
and DLM in minimizing a quadratic approximation of the primal
function (Section III). We analyze convergence properties of DQM
(Section IV) and evaluate its performance in solving a logistic
regression problem (Section V). Proofs of the results in this paper
and comprehensive numerical results are provided in [29].

II. DADMM: DECENTRALIZED ALTERNATING DIRECTION
METHOD OF MULTIPLIERS

Consider a connected network with n nodes and m edges where
the set of nodes is V = {1, . . . , n} and the set of ordered edges E
contains pairs of nodes (i, j). Node i can communicate with node
j if and only if the pair (i, j) ∈ E and we further assume that
the network is symmetric so that (i, j) ∈ E implies (j, i) ∈ E .
We define the neighborhood of node i as the set Ni = {j |
(i, j) ∈ E} of nodes that can communicate with i. In problem
(1) agent i has access to the local objective function fi(x̃) and
agents cooperate to minimize the global cost

∑n
i=1 fi(x̃). This

specification is more naturally formulated by defining variables
xi representing the local copies of the variable x̃. In DADMM
we further introduce the auxiliary variables zij associated with
edge (i, j) ∈ E and rewrite (1) as

min
x,z

n∑
i=1

fi(xi),

s.t. xi = zij , xj = zij , for all (i, j) ∈ E . (2)

The constraints xi = zij and xj = zij enforce consensus among
neighbors and, since the network is connected, they also enforce
global consensus. Therefore, problems (1) and (2) are equivalent
in the sense that for all i and j the optimal arguments of (2)
satisfy x∗i = x̃∗ for all i ∈ V and zij = x̃∗, for all (i, j) ∈ E .

ar
X

iv
:1

51
0.

07
35

6v
1 

 [
m

at
h.

O
C

] 
 2

6 
O

ct
 2

01
5



To specify the DADMM algorithm we write the constraints
of (2) in matrix form. Begin by defining the block source
matrix As ∈ Rmp×np which contains m × n square blocks
(As)e,i ∈ Rp×p. The block (As)e,i is not identically null if and
only if the edge e = (i, j) corresponds to (i, j) ∈ E in which
case (As)e,i = Ip. Likewise, define the block destination matrix
Ad ∈ Rmp×np containing m× n square blocks (Ad)e,i ∈ Rp×p.
The square block (Ad)e,i is equal to identity matrix Ip if and
only if e = (j, i) corresponds to (j, i) ∈ E , otherwise the block
is null. Further define the vector x := [x1, . . . ,xn] ∈ Rnp as
the vector that concatenates the local variables xi and the vector
z := [z1, . . . , zm] ∈ Rmp that concatenates the auxiliary variables
ze = zij . If we further define the aggregate function f : Rnp → R
as f(x) :=

∑n
i=1 fi(xi) we can rewrite (2) as

min
x,z

f(x), s. t. Ax + Bz = 0. (3)

where the matrices A ∈ R2mp×np and B ∈ R2mp×mp are defined
as the stacks A := [As;Ad] and B := [−Imp;−Imp].

Introduce now multipliers αe = αij and βe = βij respectively
associated with the constraints xi = zij and xj = zij [cf. (2)].
Concatenate the multipliers αe in the vector α := [α1, . . . ,αm]
and, likewise, stack the Lagrange multipliers βe in the vector β :=
[β1, . . . ,βm]. Further stacking the vectors α and β into λ :=
[α;β] ∈ R2mp leads to the Lagrange multiplier λ associated with
the constraint Ax + Bz = 0 in (3). The augmented Lagrangian
of (3), and (2), which is the same optimization problem written
with different notation, is now defined as

L(x, z,λ) := f(x) + λT (Ax + Bz) +
c

2
‖Ax + Bz‖2 , (4)

where c > 0 is an arbitrary positive constant.
The idea of the DADMM algorithm is to alternatively minimize

the Lagrangian L(x, z,λ) with respect to the variable x and the
auxiliary variable z and to follow these minimizations by a mul-
tiplier update collinear with the constraint violation. Specifically,
consider a time index k ∈ N and define xk, zk, and λk as the
primal and dual iterates at step k. The first step of DADMM is
Lagrangian minimization with respect to x with zk and λk given,

xk+1 = argmin
x

f(x)+λTk (Ax + Bzk)+
c

2
‖Ax + Bzk‖2 . (5)

The second step is minimization with respect to the auxiliary
variable z with λk given but using the updated variable xk+1,

zk+1 =argmin
z

f(xk+1)+λTk (Axk+1+Bz)+
c

2
‖Axk+1+Bz‖2.

(6)
With the primal iterates xk+1 and zk+1 updated, the third and
final step is to move the Lagrange multiplier λk in the direction
of the constraint violation Axk+1 + Bzk+1,

λk+1 = λk + c (Axk+1 + Bzk+1) , (7)

where the constant c is the same constant used in (4). The
DADMM algorithm follows from the observation that the updates
in (5)-(7) can be implemented in a distributed manner, [6], [24],
[25].

Notice that the update formulas in (6) and (7) have low
computational cost. However, the update for the primal variable
x in (5) requires solution of an optimization problem. To avoid
the cost of this minimization, the primal variable xk+1 can
be updated inexactly. This idea leads to the DLM algorithm
that approximates the objective function value f(xk+1) in (5)

through a linearization of the function f in a neighborhood
of the current variable xk. This approximation is defined as
f(xk) +∇f(xk)T (x−xk) +ρ‖x−xk‖2, where ρ is an arbitrary
positive constant. Using this approximation, the update formula
for the primal variable x in DLM replaces (5) by

xk+1 = argmin
x

f(xk) +∇f(xk)T (x− xk) + ρ‖x− xk‖2

+ λTk (Ax + Bzk) +
c

2
‖Ax + Bzk‖2 . (8)

Since the problem in (8) is quadratic, its solution is elementary.
E.g., the first order optimality condition for (8) requires the
variable xk+1 to satisfy

∇f(xk) + ρ(xk+1 − xk) + ATλk + cAT (Axk+1 + Bzk) = 0.
(9)

The expression in (9) is a linear equation for x that an be solved
by inversion of the positive definite matrix ρI + cATA.

The sequence of variables xk generated by DLM converges
linearly to the optimal argument x∗ [27]. This is the same rate of
convergence of DADMM, but the linear rate coefficient of DLM
is strictly smaller than the linear rate coefficient of DADMM
[29]. In this paper we propose an alternative approximation that
will be shown to achieve linear convergence with a coefficient
that is asymptotically equivalent to the DADMM coefficient.
This approximation utilizes second order information of the local
functions fi(x) and leads to the DQM algorithm that we introduce
in the following section.

III. DQM: DECENTRALIZED QUADRATICALLY
APPROXIMATED ADMM

We introduce a Decentralized Quadratic Approximation of
ADMM (DQM) that uses a quadratic approximation of the primal
function f(x) for updating the variable x. To be more precise,
instead of using f(xk+1) in the optimization problem (5), DQM
executes the quadratic approximation f(xk)+∇f(xk)T (x−xk)+
(1/2)(x−xk)THk(x−xk) for computing the new iterate xk+1,
where Hk := ∇2f(xk) is the Hessian of the primal function f
computed at xk which is a block diagonal matrix. Therefore, the
primal variable x is updated as

xk+1 = argmin
x

f(xk) +∇f(xk)T (x− xk) (10)

+
1

2
(x− xk)THk(x− xk)

+ λTk (Ax + Bzk) +
c

2
‖Ax + Bzk‖2 .

The DQM updates for the variables zk and λk are identical to
the DADMM updates in (6) and (7), respectively.

Comparison of the updates in (8) and (10) shows that in DLM
the quadratic term ρ‖xk+1 − xk‖2 is added to the first-order
approximation of the primal objective function, while in DQM
the second-order approximation of the primal objective function
is used to reach a more accurate approximation for f(xk+1). First
order optimality conditions of updates in (10), (6) and (7) imply
that the DQM iterates can be generated by solving the equations

∇f(xk)+Hk(xk+1 − xk) + ATλk+cAT (Axk+1+Bzk) = 0,

BTλk + cBT (Axk+1 + Bzk+1) = 0,

λk+1 − λk − c (Axk+1 + Bzk+1) = 0. (11)

Notice that the first equation in (11) can be solved by inverting
Hk+cATA. To guarantee that the system of equations in (11) can



be solved in a distributed manner, we assume a specific structure
for the initial vectors λ0 = [α0;β0], x0, and z0 as mentioned in
Assumption 1. Before introducing this assumption we define the
oriented incidence matrix as Eo := As −Ad and the unoriented
incidence matrix as Eu := As + Ad.

Assumption 1 The initial Lagrange multipliers α0 and β0, and
the initial variables x0 and z0 are chosen such that

a) α0 = −β0,
b) Eux0 = 2z0,
c) α0 lies in the column space of Eo.

Assumption 1 enforces some initial conditions on the Lagrange
multipliers α0 and β0, and the initial variables x0 and z0. These
conditions are satisfied by setting α0 = β0 = 0 and x0 = z0 = 0.
Considering the initial conditions in Assumption 1 we propose
a simpler update rule for generating the iterates xk instead of
solving equations in (11).

Proposition 1 Consider the system of equations for the DQM
algorithm in (11) and define the sequence φk := ETo αk. Further,
define the unoriented Laplacian as Lu := (1/2)ETuEu, the
oriented Laplacian as Lo := (1/2)ETo Eo, and the Degree matrix
as D := (Lu + Lo)/2. If Assumption 1 holds true, the DQM
variables xk can be generated as

xk+1 = (2cD + Hk)−1 [(cLu + Hk)xk −∇f(xk)− φk] , (12)

φk+1 = φk + cLoxk+1. (13)

Proposition 1 states that by introducing the new variables φk,
the update formulas for the DQM iterates can be computed using
the primal objective function Hessian Hk, the degree matrix D,
and the oriented and unoriented Laplacians Lo and Lu. This
observation guarantees that the updates in (12) and (13) are
implementable in a distributed manner, since all of these matrices
can be computed using local and neighboring information of
the nodes. To be more precise, the matrix 2cD + Hk is block
diagonal and its i-th diagonal block is given by 2cdiI+∇2fi(xi)
which is locally available at node i. Likewise, the inverse matrix
(2cD + Hk)−1 is block diagonal and locally computable since
the i-th diagonal block is (2cdiI + ∇2fi(xi))

−1. Computations
of the products Luxk and Loxk+1 can be implemented in a
decentralized manner as well, since the Laplacian matrices Lu and
Lo are block neighbor sparse. Note that a matrix is block neighbor
sparse when its ij-th block is not null if and only if nodes i and
j are neighbors or j = i. Therefore, nodes can compute Luxk
and Loxk+1 by exchanging information with their neighbors. By
defining the components of φk as φk := [φ1,k, . . . ,φn,k], the
update in (12) can be implemented locally as

xi,k+1 =
(
2cdiI +∇2fi(xi,k)

)−1 [
cdixi,k + c

∑
j∈Ni

xj,k

+∇2fi(xi,k)xi,k −∇fi(xi,k)− φi,k

]
, (14)

where xi,k and φi,k are the iterates of node i at step k.
Notice that the definition Lu := (1/2)ETuEu = (1/2)(As +
Ad)

T (As+Ad) is used to simplify the i-th component of cLuxk
as cdixi,k + c

∑
j∈Ni

xj,k. Further, considering the definition
Lo = (1/2)ETo Eo = (1/2)(As − Ad)

T (As − Ad), the i-th
component of cLoxk+1 can be simplified as c

∑
j∈Ni

(xi,k−xj,k).

Algorithm 1 DQM method at node i
Require: Initial local iterates xi,0 and φi,0.

1: for k = 0, 1, 2, . . . do
2: Update the local iterate xi,k+1

xi,k+1 =
(
2cdiI+∇2fi(xi,k)

)−1
[
cdixi,k + c

∑
j∈Ni

xj,k

+∇2fi(xi,k)xi,k −∇fi(xi,k)− φi,k

]
.

3: Exchange iterates xi,k+1 with neighbors j ∈ Ni.
4: Update local dual variable φk+1 as

φi,k+1 = φi,k + c
∑
j∈Ni

(xi,k+1 − xj,k+1) .

5: end for

Therefore, the update formula in (13) for node i is given by

φi,k+1 = φi,k + c
∑
j∈Ni

(xi,k+1 − xj,k+1) . (15)

The proposed DQM algorithm is summarized in Algorithm 1. At
each iteration k, the primal and dual updates in (14) and (15) are
implemented in Steps 2 and 4, respectively. Nodes exchange their
local variables xi,k with their neighbors j ∈ Ni in Step 3, since
this information is required for Steps 2 and 4.

IV. CONVERGENCE ANALYSIS

In this section we show that the sequence of iterates xk
generated by the DQM method converges linearly to the optimal
argument x∗. In addition, we compare the linear convergence
coefficients of the DQM and DADMM methods. To provide these
results first we make the following assumptions.

Assumption 2 The local objective functions fi(x) are twice
differentiable and the eigenvalues of the local Hessians ∇2fi(x)
are bounded with positive constants 0 < m ≤M <∞. I.e.,

mI � ∇2fi(x) �MI. (16)

Assumption 3 The local Hessians ∇2fi(x) are Lipschitz contin-
uous with parameter L. I.e., for all x, x̂ ∈ Rp, it holds∥∥∇2fi(x)−∇2fi(x̂)

∥∥ ≤ L ‖x− x̂‖. (17)

The lower bound m for the eigenvalues of the local Hessians
∇2fi(x) implies that the local objective functions fi(x) are
strongly convex with parameter m. The upper bound M for
the eigenvalues of the local Hessians ∇2fi(x) is similar to the
condition that the local gradients ∇fi(x) are Lipschitz continuous
with parameter M . The Lipschitz continuity of the local Hessians
imposed by Assumption 3 is typical of second order methods.

Define γu and Γu as the minimum and maximum singular val-
ues of the unoriented incidence matrix Eu, respectively. Further,
define γo as the smallest non-zero singular value of the oriented
incidence matrix Eo. These parameters capture connectivity of
the network. Denote the unique solution of (2) as (x∗, z∗). Notice
that the uniqueness is implied by the strong convexity assumption.
Further, define α∗ as the unique optimal multiplier that lies in the
column space of Eo – see Lemma 1 of [28] for the uniqueness of
such an optimal dual variable α∗. We define the energy function
V : Rmp×mp → R as introduced in [25] for DADMM,

V (z,α) := c‖z− z∗‖2 + (1/c)‖α−α∗‖2. (18)



The energy function V (z,α) captures the distances of the aux-
iliary variable zk and the dual variable αk with their optimal
arguments z∗ and α∗, respectively. Therefore, convergence rate
of the energy function is a valid tool for comparing performances
of DQM and DADMM. To simplify the notation of the energy
function V (z,α), define u ∈ R2mp and C ∈ R2mp×2mp as

u :=

[
z
α

]
, C :=

[
cI 0
0 (1/c)I

]
. (19)

The energy function V (z,α) is equal to weighted squared norm
‖u − u∗‖2C where u∗ := [z∗;α∗]. Our goal is to show that the
sequence ‖uk − u∗‖2C converges linearly to null.

Theorem 1 Consider the DQM method as introduced in (10)-
(15). Define the sequence of non-negative variables ζk as

ζk := min

{
L

2
‖xk+1 − xk‖, 2M

}
. (20)

Assume that the constant c is chosen such that c > ζ2k/(mγ
2
u).

Moreover, consider µ, µ′ > 1 as arbitrary constants and η as
a positive constant chosen from the interval (ζk/m, cγ

2
u/ζk).

If Assumptions 1-3 hold true, then the sequence ‖uk − u∗‖2C
generated by DQM satisfies

‖uk+1 − u∗‖2C ≤
1

1 + δk
‖uk − u∗‖2C , (21)

where the sequence of positive scalars δk is given by

δk=min

{
c− ηζkγ−2u

4µ′µζ2k
c(µ′−1)(µ−1)γ

−2
u γ−2o + µ′µ

(µ−1)Γ
2
uγ
−2
o

,
m− ζk/η

c
4Γ2

u+ µ
cM

2γ−2o

}
.

(22)

Notice that δk is a decreasing function of ζk and observe that
ζk is bounded above by 2M . Therefore, if we substitute ζk by
2M in (22), the inequality in (21) is still valid. This substitution
implies that the sequence ‖uk −u∗‖2C converges linearly to null.
As a result of this convergence we obtain that uk approaches the
optimal argument u∗. Therefore, the sequence of primal iterates
xk converges to the optimal argument x∗. This result is formalized
in the following corollary.

Corollary 1 Under the assumptions in Theorem 1, the sequence
of squared norms ‖xk − x∗‖2 generated by the DQM algorithm
converges R-linearly to null, i.e.,

‖xk − x∗‖2 ≤ 4

cγ2u
‖uk − u∗‖2C. (23)

Corollary 1 states that the sequence xk converges to the optimal
argument x∗. Hence, we obtain that the sequence ‖xk+1 − xk‖
approaches null. This observation implies that the sequence of
scalars ζk converges to 0 as time passes, since ζk is bounded
above by (L/2)‖xk+1 − xk‖. By considering limk→∞ ζk = 0
and making µ′ arbitrary close to 1, we obtain

lim
k→∞

δk = min

{
(µ− 1)γ2o
µΓ2

u

,
m

c
4Γ2

u + µ
cM

2γ−2o

}
. (24)

Notice that the coefficient δk in (24) is identical to the coefficient
of linear convergence for the DADMM algorithm [25]. This
observation implies that as time passes the coefficient of linear
convergence for DQM approaches the one for DADMM.

0 100 200 300 400 500 600 700 800 900 1000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of iterations k

R
el
at
iv
e
er
ro
r

‖x
k
−
x
∗
‖

‖x
0
−
x
∗
‖

 

 

DADMM
DLM
DQM

Fig. 1: Relative error ‖xk − x∗‖/‖x0 − x∗‖ of DADMM, DQM, and
DLM versus number of iterations. The convergence path of DQM is al-
most identical to the one for DADMM, while DQM has less computation
complexity. Further, DQM outperforms DLM in convergence speed by
orders of magnitude, though at the cost of higher computation complexity.

V. NUMERICAL ANALYSIS

In this section we compare performances of DLM, DQM and
DADMM in solving a logistic regression problem. We assume
that each node in the network has access to q training points.
Therefore, the total number of training points is nq. Each of the
training samples {sil, yil}ql=1 at node i contains a feature vector
sil ∈ Rp with class yil ∈ {−1, 1}. It follows from the logistic
regression model that the maximum log-likelihood estimate of the
classifier x̃ given the training samples (sil, yil) for l = 1, . . . , q
and i = 1, . . . , n is

x̃∗ := argmin
x̃∈Rp

n∑
i=1

q∑
l=1

log
[
1 + exp(−yilsTil x̃)

]
. (25)

The optimization problem in (25) can be written in the form of
(1) by defining the local objective functions fi as

fi(x̃) :=

q∑
l=1

log
[
1 + exp(−yilsTil x̃)

]
. (26)

We compare convergence paths of the DLM, DQM and
DADMM algorithms for solving the logistic regression problem.
We assume the network contains n = 10 nodes and the edges
between nodes are generated randomly with probability Pc = 0.4.
Each agent holds q = 5 samples and the dimension of feature
vectors is p = 3. The reference (ground true) logistic classifier
x̃∗ is pre-computed with a centralized method. Notice that the
parameter c for the three methods is optimized by cADMM = 0.7,
cDLM = 5.5, and cDQM = 0.7. Figure 1 illustrates the relative
errors ‖xk − x∗‖/‖x0 − x∗‖ of DLM, DQM, and DADMM
versus the number of iterations. The convergence path of DQM
is almost identical to the convergence path of DADMM and they
both converge to the optimal argument faster than DLM. The
relative errors ‖xk − x∗‖/‖x0 − x∗‖ for DQM and DADMM
after k = 300 iterations are below 10−9, while for DLM the
relative error after the same number of iterations is 5 × 10−2.
Conversely, achieving error ‖xk − x∗‖/‖x0 − x∗‖ = 10−3 for
DQM and DADMM requires 91 iterations, while DLM requires
758 iterations. Observe that the convergence paths of DQM and
DADMM are almost identical, while the computation complexity
of DQM is lower than DADMM.



REFERENCES

[1] F. Bullo, J. Cortés, and S. Martinez, Distributed control of robotic networks:
a mathematical approach to motion coordination algorithms. Princeton
University Press, 2009.

[2] Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of recent progress in the
study of distributed multi-agent coordination,” Industrial Informatics, IEEE
Transactions on, vol. 9, no. 1, pp. 427–438, 2013.

[3] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over adaptive
networks: Formulation and performance analysis,” Signal Processing, IEEE
Transactions on, vol. 56, no. 7, pp. 3122–3136, 2008.

[4] A. Ribeiro, “Ergodic stochastic optimization algorithms for wireless commu-
nication and networking,” Signal Processing, IEEE Transactions on, vol. 58,
no. 12, pp. 6369–6386, 2010.

[5] ——, “Optimal resource allocation in wireless communication and network-
ing,” EURASIP Journal on Wireless Communications and Networking, vol.
2012, no. 1, pp. 1–19, 2012.

[6] I. D. Schizas, A. Ribeiro, and G. B. Giannakis, “Consensus in ad hoc
wsns with noisy links–part i: Distributed estimation of deterministic signals,”
Signal Processing, IEEE Transactions on, vol. 56, no. 1, pp. 350–364, 2008.

[7] U. A. Khan, S. Kar, and J. M. Moura, “Diland: An algorithm for distributed
sensor localization with noisy distance measurements,” Signal Processing,
IEEE Transactions on, vol. 58, no. 3, pp. 1940–1947, 2010.

[8] M. Rabbat and R. Nowak, “Distributed optimization in sensor networks,” in
Proceedings of the 3rd international symposium on Information processing
in sensor networks. ACM, 2004, pp. 20–27.

[9] R. Bekkerman, M. Bilenko, and J. Langford, Scaling up machine learning:
Parallel and distributed approaches. Cambridge University Press, 2011.

[10] K. I. Tsianos, S. Lawlor, and M. G. Rabbat, “Consensus-based distributed
optimization: Practical issues and applications in large-scale machine learn-
ing,” Communication, Control, and Computing (Allerton), 2012 50th Annual
Allerton Conference on, pp. 1543–1550, 2012.

[11] V. Cevher, S. Becker, and M. Schmidt, “Convex optimization for big data:
Scalable, randomized, and parallel algorithms for big data analytics,” Signal
Processing Magazine, IEEE, vol. 31, no. 5, pp. 32–43, 2014.

[12] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-agent
optimization,” Automatic Control, IEEE Transactions on, vol. 54, no. 1, pp.
48–61, 2009.

[13] D. Jakovetic, J. Xavier, and J. M. Moura, “Fast distributed gradient methods,”
Automatic Control, IEEE Transactions on, vol. 59, no. 5, pp. 1131–1146,
2014.

[14] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized gradient
descent,” arXiv preprint arXiv:1310.7063, 2013.

[15] E. Wei and A. Ozdaglar, “Distributed alternating direction method of multi-
pliers,” in Decision and Control (CDC), 2012 IEEE 51st Annual Conference
on. IEEE, 2012, pp. 5445–5450.

[16] H. Terelius, U. Topcu, and R. Murray, “Decentralized multi-agent optimiza-
tion via dual decomposition,” in 18th IFAC World Congress, 28 August 2011
through 2 September 2011, Milano, Italy, 2011, pp. 11 245–11 251.

[17] W. Shi, Q. Ling, G. Wu, and W. Yin, “Extra: An exact first-order algorithm
for decentralized consensus optimization,” arXiv preprint arXiv:1404.6264,
2014.

[18] A. Mokhtari, Q. Ling, and A. Ribeiro, “Network newton-part i: Algorithm
and convergence,” arXiv preprint arXiv:1504.06017, 2015.

[19] ——, “Network newton-part ii: Convergence rate and implementation,” arXiv
preprint arXiv:1504.06020, 2015.

[20] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for dis-
tributed optimization: convergence analysis and network scaling,” Automatic
Control, IEEE Transactions on, vol. 57, no. 3, pp. 592–606, 2012.

[21] K. I. Tsianos, S. Lawlor, and M. G. Rabbat, “Push-sum distributed dual
averaging for convex optimization.” pp. 5453–5458, 2012.

[22] Z.-q. Luo and P. Tseng, “On the convergence rate of dual ascent methods
for linearly constrained convex minimization,” Mathematics of Operations
Research, vol. 18, no. 4, pp. 846–867, 1993.

[23] D. Jakovetic, J. M. Moura, and J. Xavier, “Linear convergence rate of a class
of distributed augmented lagrangian algorithms,” Automatic Control, IEEE
Transactions on, vol. 60, no. 4, pp. 922–936, 2015.

[24] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method of
multipliers,” Foundations and Trends R© in Machine Learning, vol. 3, no. 1,
pp. 1–122, 2011.

[25] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear convergence
of the admm in decentralized consensus optimization,” Signal Processing,
IEEE Transactions on, vol. 62, no. 7, pp. 1750–1761, 2014.

[26] F. Iutzeler, P. Bianchi, P. Ciblat, and W. Hachem, “Explicit convergence rate
of a distributed alternating direction method of multipliers,” arXiv preprint
arXiv:1312.1085, 2013.

[27] Q. Ling and A. Ribeiro, “Decentralized linearized alternating direction
method of multipliers,” Acoustics, Speech and Signal Processing (ICASSP),
2014 IEEE International Conference on, pp. 5447–5451, 2014.

[28] Q. Ling, W. Shi, G. Wu, and A. Ribeiro, “Dlm: Decentralized linearized
alternating direction method of multipliers,” Signal Processing, IEEE Trans-
actions on, 2014.

[29] A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro, “Dqm: Decentralized
quadratically approximated alternating direction method of multipliers,”
arXiv preprint arXiv:1508.02073, 2015.


	I Introduction
	II DADMM: Decentralized alternating direction method of multipliers
	III DQM: Decentralized Quadratically Approximated ADMM
	IV Convergence Analysis
	V Numerical analysis
	References

