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Abstract—This paper considers artificial noise (AN)-aided
transmit designs for multi-user MISO systems in the eyes of
service integration. Specifically, we combine two sorts of services,
and serve them simultaneously: one multicast message intended
for all receivers and one confidential message intended for only
one receiver. The confidential message is kept perfectly secure
from all the unauthorized receivers. Our goal is to jointly
design the optimal input covariances for the multicast message,
confidential message and AN, such that the achievable secrecy
rate region is maximized subject to the sum power constraint.
This secrecy rate region maximization (SRRM) problem is
a nonconvex vector maximization problem. To handle it, we
reformulate the SRRM problem into a provably equivalent scalar
optimization problem and propose a searching method to find all
of its Pareto optimal points. The equivalent scalar optimization
problem is identified as a secrecy rate maximization (SRM)
problem with the quality of multicast service (QoMS) constraints.
Further, we show that this equivalent QoMS-constrained SRM
problem, albeit nonconvex, can be efficiently handled based on
a two-stage optimization approach, including solving a sequence
of semidefinite programs (SDPs). Moreover, we also extend the
SRRM problem to an imperfect channel state information (CSI)
case where a worst-case robust formulation is considered. In
particular, while transmit beamforming is generally a suboptimal
technique to the SRRM problem, we prove that it is optimal for
the confidential message transmission whether in the perfect CSI
scenario or in the imperfect CSI scenario. For implementation
efficiency, we also analyze the computational complexity of our
proposed methods and put forward two suboptimal schemes and
two possible extensions. Finally, numerical results demonstrate
that the AN-aided transmit designs are effective in expanding the
achievable secrecy rate regions, and that the suboptimal strategies
can achieve near-optimal performance.

Index Terms—Physical-layer service integration, artificial
noise, broadcast channel, secrecy rate region

I. INTRODUCTION

H IGH transmission rate and secure communication are
basic demands for the future fifth-generation (5G) cel-

lular networks. A heuristic way is to merge coexisting ser-
vices, typically, multicast service and confidential service, into
one integral service for one-time transmission, referred to as
physical-layer service integration (PHY-SI). Service integra-
tion is in fact not a new concept: traditional service integration
techniques rely on upper-layer protocols to allocate different
services on different logical channels, which is quite ineffi-
cient. On the contrary, PHY-SI enables coexisting services to
share the same resources by exploiting the physical character-
istics of wireless channels, thereby significantly increasing the
spectral efficiency. The technique of PHY-SI could also find
a wide range of applications in the commercial and military

This work was supported in part by the National Natural Science Foundation
of China under Grants 61631004 and 61571089.

The authors are with National Key Laboratory of Science and Technology
on Communications, University of Electronic Science and Technology
of China, Chengdu (611731), China (e-mails: mwduestc@gmail.com;
chenzhi@uestc.edu.cn; LiLX@std.uestc.edu.cn; JunFang@uestc.edu.cn;
lsq@uestc.edu.cn).

areas. For example, many commercial applications, e.g., ad-
vertisement, digital television, Internet telephony, and so on,
are supposed to provide personalized service customization.
As a consequence, confidential service and public service are
collectively provided to satisfy the demand of different user
groups. A crucial problem lies in how to establish the security
of the confidential service while not compromising the public
service. In battlefield scenarios, it is essential to propagate
commands with different security levels to the frontline. The
public information should be distributed to all soldiers, while
the confidential information can only be accessed by specific
soldiers.

The respective investigation on physical-layer multicasting
and physical-layer security has received lots of attention
in much literature. Herein we give a very brief review on
relevant literature. Physical-layer multicasting offers a way to
efficiently transmit common messages that all receivers can
decode, and it is required that the rate successfully decoded by
all users be maximized. Therefore, physical-layer multicasting
strategies for instantaneous rate maximization have become the
centerpiece of research activities, epitomized in [1]–[7]. Com-
paratively, due to the broadcast nature of wireless medium,
physical layer security approach is playing an increasingly
important role in wireless communication recently. It can
achieve significant security performance without using secret
keys whose distribution and management may lead to security
vulnerability in wireless systems. Different transmit strategies
against eavesdroppers have been developed with various levels
of eavesdropper channel state information (ECSI) available to
the transmitter; see existing surveys and tutorials [8]–[15] and
the references therein. In the literature, artificial noise (AN)-
aided transmission has been demonstrated as an effective way
to combat eavesdroppers [16]–[20]. Recently, there is growing
interest in an emerging topic in the area of physical-layer
security, termed as confidential broadcasting [21], [22]. In this
topic, a transmitter broadcasts multiple confidential messages
to all receivers. Each confidential message is intended for
one specified receiver but required to be perfectly secret from
the others. Different approaches have been proposed in e.g.,
[23]–[25] to maximize the sum secrecy rate under this system
model.

Currently many research activities concentrated on PHY-
SI from the viewpoint of information theory. In particular,
Csiszár and Körner’s work in [26] established the fundamental
limit on the maximum rate region of PHY-SI that can be
applied reliably under the secrecy constraint (i.e., the secrecy
capacity region), where the optimal integration of multicast
service and confidential service was derived in a discrete
memoryless broadcast channel (DMBC). In [27]–[29], the
authors extended the results to the case with multiple-input
multiple-output (MIMO) Gaussian channels. Wyrembelski and
Boche’s work [30] deduced the achievable secrecy rate region
under channel uncertainty in a compound broadcast channel,
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which makes it possible to seek the robust transmit strategies
of PHY-SI. Furthermore, Wyrembelski and Boche amalga-
mated broadcast service, multicast service and confidential
service in bidirectional relay networks [31], in which a relay
adds an additional multicast message for all nodes and a
confidential message for only one node besides establishing
the conventional bidirectional communication. However, the
aforementioned works only aimed to derive capacity results
or determine the existence of coding strategies that result
in certain rate regions [32]. Such rate regions are always
characterized by a union with regard to (w.r.t) all possible
transmit covariance matrices subject to certain power con-
straints. For ease of practical implementation, especially in
the multi-antenna wireless systems, it is also necessary to treat
PHY-SI from the view point of signal processing, i.e., find the
optimal input covariance matrices of the transmitted messages
for maximizing the achievable secrecy rate regions. Such
optimization problems turn out to be generally nonconvex,
which also leads to the unsatisfying fact that most works on
PHY-SI end when a certain characterization of a rate region
is obtained.

In this paper, we handle the PHY-SI from the view point
of signal processing, i.e., find the optimal input covariance
matrices for the transmitted messages, with either perfect
or imperfect CSI. Specifically, we consider the multiuser
multiple-input single-output (MISO) broadcast channel (BC)
with multiple receivers and two sorts of messages: a multicast
message intended for all receivers, and a confidential message
intended for merely one receiver. The confidential message
must be kept perfectly secure from all other unauthorized
receivers. To further enhance the security performance, we
enable the transmitter to send artificial noise to degrade the
reception at all unauthorized receivers. It follows that our
considered system model is actually a generalization of that in
physical-layer security. For example, in PHY-SI, the unautho-
rized receivers play a dual role. On the one hand, they are able
to eavesdrop the confidential information deliberately, just as
that in traditional physical-layer security. On the other hand,
they are legitimate users in terms of the multicast service, and
hence their quality of multicast service (QoMS) should be
guaranteed above a certain threshold. As a result, the use of
AN will fall into a dilemma: Excessive use of AN will degrade
the QoMS at all receivers, while limited use of it cannot attain
the best security performance. To the best of our knowledge,
the only prior work tackling the transmitter optimization in the
PHY-SI context is [27], where a reparameterizing method is
proposed. However, this method is only applicable to a simple
two-receiver MISO setting with perfect CSI. Moreover, this
method itself involves solving a sequence of convex feasibility
problems, which is computationally expensive to implement.

This paper aims to jointly optimize the input covariance
matrices of the multicast message, confidential message and
AN, to maximize the achievable secrecy rate region in a
more general and convenient way. Our problem formulation
considers multiple single-antenna unauthorized receivers, with
perfect or imperfect CSI on the links of all receivers. This
secrecy rate region maximization (SRRM) problem turns out
to be a biobjective vector optimization problem. Our goal is to
find all Pareto optimal solutions of this SRRM problem. Un-
fortunately, the method of scalarization, a standard technique
to seek Pareto optimal points of a vector optimization problem,
might not yield all Pareto optimal solutions due to the non-
convexity of our optimization problem [33]. To deal with it,
we degrade this vector optimization problem into an equivalent

scalar one. Then it is proved that all Pareto optimal solutions
of the primal SRRM problem can be efficiently exhausted by
this means. Our main contributions are summarized as follows.

1) For the perfect CSI case, we derive an equivalent scalar
optimization problem to the primal SRRM problem by
following the above-mentioned idea. Nonetheless, the
equivalent problem still remains non-convex. To handle
it, we first reformulate it as a two-stage optimization
problem. Then it is shown that the outer problem can be
handled by performing a one-dimensional search, while
the inner problem is an SDP problem. Further, we extend
the SRRM problem to an imperfect CSI case, where a
worst-case robust formulation is considered. By adopting
a similar way as that in the perfect CSI case, this worst-
case SRRM problem could also be solved.

2) For implementation efficiency, we first analyze the fea-
sibility of transmit beamforming to achieve the obtained
Pareto optimal performances, since the single-stream
transmit beamforming requires lower implementation
complexity than the high-rank transceiver schemes. It is
proved that transmit beamforming is an optimal strategy
for the confidential information transmission, which
applies to the perfect CSI case as well as to the imperfect
CSI case. In addition, we give complexity analysis of
our proposed two-stage approach, and show that the
resultant computational complexity is polynomial with
regard to (w.r.t.) the problem size for achieving at least
ǫ-suboptimality, with either perfect or imperfect CSI.
Furthermore, we propose two suboptimal schemes to im-
plement PHY-SI with lower complexity and two possible
extensions to show the scalability of our proposal.

3) Finally, we examine the AN’s efficacy from the numer-
ical results. The numerical results demonstrate that in
PHY-SI, AN could also enhance the overall security per-
formance, as that in traditional physical layer security,
without compromising the QoMS.

This paper is organized as follows. Section II provides
the system model description and problem formulation. The
optimization aspects of our formulated designs are addressed
in Section III, for the scenario with perfect CSI. Sections IV
describes extensions of our present work to the scenario with
imperfect CSI. Section V introduces our proposed suboptimal
PHY-SI schemes and possible extensions. The performance
of the proposed transmit designs is studied using several
simulation examples in Section VI, and conclusions are drawn
in Section VII.

The notation of this paper is as follows. Bold symbols in
capital letter and small letter denote matrices and vectors,

respectively. (·)H , rank(·) and Tr(·) represent conjugate trans-
pose, rank and trace of a matrix, respectively. R+ and Hn

+
denote the set of nonnegative real numbers and of n-by-n
Hermitian positive semidefinite (PSD) matrices. The n × n
identity matrix is denoted by In. x ∼ CN (µ,Ω) denotes
that x is a complex circular Gaussian random vector with
mean µ and covariance Ω. A � 0 (A ≻ 0) implies that
A is a Hermitian positive semidefinite (definite) matrix. ‖·‖
represents the vector Euclidean norm. K represents a proper
cone, and K∗ represents a dual cone associated with K .

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the downlink of a multiuser system in which a
multi-antenna transmitter serves K receivers, and each receiver
has a single antenna. Assume that all receivers have ordered
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Multicast signal: x0

Receiver 2

x0, xc, xa

Receiver K

Receiver 1

Fig. 1. Multiuser system model with integrated services

the multicast service and receiver 1 further ordered the con-
fidential service1. To enhance the security of the confidential
service, the transmitter utilizes a fraction of its transmit power
to send artificially generated noise to interfere the unauthorized
receivers (eavesdroppers), i.e., receiver 2 to receiver K . To

facilitate the description, let us denote K ∆
= {1, 2, ...,K}

and Ke
∆
= K/{1} as the indices of all receivers and of all

unauthorized receivers, respectively.

The received signal at receiver k is modeled as

yk = hkx + zk, k = 1, 2, · · · ,K (1)

respectively, where hk ∈ C1×Nt is the channel vector between
the transmitter and receiver k, Nt is the number of transmit
antennas employed by the transmitter, and zk is independent
identically distributed (i.i.d.) complex Gaussian noise with
zero mean and unit variance. x ∈ CNt is the transmitted signal
vector which consists of three independent components, i.e.,

x = x0 + xc + xa, (2)

where x0 is the multicast message intended for all receivers,
xc is the confidential message intended for receiver 1, and
xa is the artificial noise. We assume x0 ∼ CN (0,Q0), xc ∼
CN (0,Qc) [27], where Q0 and Qc are the transmit covariance
matrices. The AN xa follows a distribution xa ∼ CN (0,Qa),
where Qa is the AN covariance. An exemplification of our
system model is given in Fig. 1.

Denote R0 and Rc as the achievable rates associated with
the multicast and confidential messages, respectively. Then
an achievable secrecy rate region is given as the set of
nonnegative rate pairs (R0, Rc) satisfying2 (cf. [27], [34])

R0 ≤ min
k∈K

Cm,k(Q0,Qc,Qa), (3a)

Rc ≤ Cb(Qc,Qa)− max
k∈Ke

Ce,k(Qc,Qa), (3b)

1In this paper, we assume that only one receiver orders the confidential
service within a single time slot. In practice, this corresponds to the case
where the confidential service is provided to all receivers in a round-robin
manner to strengthen the security of confidential messages and to reduce the
operational complexity at the transmitter.

2We should point out that under the case where the secrecy rate is always
zero, it is trivial to investigate the secrecy rate region, since the region would
be degraded into a line segment on the axis of multicast rate. Thus, in this
paper, we only focus on the nontrivial cases.

where

Cm,k(Q0,Qc,Qa)
∆
= log

(

1 +
hkQ0h

H
k

1 + hk(Qc +Qa)hH
k

)

,

(4a)

Cb(Qc,Qa)
∆
= log

(

1 +
h1Qch

H
1

1 + h1Qah
H
1

)

, (4b)

Ce,k(Qc,Qa)
∆
= log

(

1 +
hkQch

H
k

1 + hkQah
H
k

)

, (4c)

and Tr(Q0 +Qc +Qa) ≤ P with P being total transmission
power budget at the transmitter. Cm,k is the achievable rate as-
sociated with the multicast message at receiver k, Cb and Ce,k

are the mutual information at receiver 1 and the unauthorized
receivers, respectively.

The secrecy rate region (3) implies that all receivers first
decode their common multicast message by treating the confi-
dential message as noise, and then receiver 1 acquires a clean
link for the transmission of its exclusive confidential message,
where there is no interference from the multicast message.
This can be achieved by following the same encoding schemes
adopted in [27].

With perfect CSI being available at the transmitter, our work
focuses on the design of Q0, Qc and Qa, under an achievable
SRRM formulation with power constraint. This problem is a
vector maximization problem, with cone K = K∗ = R2

+, i.e.,

max
Q0,Qa,Qc,R0,Rc

(

w.r.t. R2
+

)

(R0, Rc)

s.t. min
k∈K

Cm,k(Q0,Qc,Qa) ≥ R0, (5a)

Cb(Qc,Qa)− max
k∈Ke

Ce,k(Qc,Qa) ≥ Rc, (5b)

Tr(Q0 +Qa +Qc) ≤ P, (5c)

Q0 � 0,Qa � 0,Qc � 0. (5d)

Remark 1: Hereby we remark that it is valid to assume
that the CSI on the links of all receivers and the number of
unauthorized receivers are perfectly known at the transmitter
in the PHY-SI. The reason is that all receivers have to register
in the network for ordering the multicast service. During the
registration or lease renewal, the receivers are required to feed
their CSI back to the transmitter noiselessly, which could be
achieved by utilizing a low-rate transmission with suitable
quantization schemes [35]. Nonetheless, considering the effect
of channel aging, we will also investigate the case of imperfect
channel knowledge at the transmitter in Section IV.

Substituting (4) into (5), one can check that (5) is equivalent
to the following vector optimization problem.

max
Q0,Qa,Qc,R0,Rc

(

w.r.t. R2
+

)

(R0, Rc)

s.t. min
k∈K

log
1 + hk(Qc +Qa +Q0)h

H
k

1 + hk(Qc +Qa)hH
k

≥ R0, (6a)

log
1 + (1 + h1Qah

H
1 )

−1
h1Qch

H
1

max
k∈Ke

1 + (1 + hkQah
H
k )

−1
hkQch

H
k

≥ Rc, (6b)

Tr(Q0 +Qa +Qc) ≤ P, (6c)

Q0 � 0,Qa � 0,Qc � 0. (6d)

The SRRM problem (6) is a nonconvex vector optimization
problem and thus difficult to solve. In the next section, we
will elaborate our approaches to attacking (6).
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III. A TRACTABLE APPROACH TO THE SRRM PROBLEM

A standard technique for dealing with the vector optimiza-
tion problem is referred to as scalarization [33]. Its basic
idea is to maximize the weighted sum of the two objectives,
i.e., R0 and Rc. By varying the weight vector, it could yield
different maximal objective values, associated with Pareto
optimal solutions of the primal vector optimization problem.
However, for a nonconvex vector optimization problem like
(5), this method might not find all Pareto optimal points [33].

A. An Equivalent Scalar Optimization Problem of (6)

In view of the limitation of the scalarization, now we
develop another approach to find all Pareto optimal points of
(6). Specifically, we first fix the variable R0 as a constant
τms ≥ 0. As a result, the maximization of the vector (R0, Rc)
will be degraded into the maximization of a scalar Rc, with
the optimization problem given in (7). As it will be proved
in Theorem 1, by varying the parameter τms and solving the
problem (7), all Pareto optimal solutions of (6) can be found.

g∗(τms) = max
Q0,Qa,Qc

log
1 + (1 + h1Qah

H
1 )

−1
h1Qch

H
1

max
k∈Ke

1 + (1 + hkQah
H
k )

−1
hkQch

H
k

s.t. min
k∈K

log
1 + hk(Qc +Qa +Q0)h

H
k

1 + hk(Qc +Qa)hH
k

≥ τms, (7a)

Tr(Q0 +Qa +Qc) ≤ P, (7b)

Q0 � 0,Qa � 0,Qc � 0. (7c)

In (7), the variable Rc is discarded as a slack variable. It
follows that τms can be interpreted as preset requirement of
the achievable multicast rate, and that (7) is an SRM problem
with QoMS constraints. Actually, when we set τms = 0, (7)
becomes a conventional AN-aided SRM problem for multi-
user MISO system. On the contrary, the confidential message
transmission will be terminated provided that τms is set above
a threshold τmax given by

τmax = max
Q0�0,Tr(Q0)≤P

min
k∈K

log(1 + hkQ0h
H
k ). (8)

It is easy to find that τmax is the multicast capacity, and
the optimization problem (8) can be solved via an SDP
reformulation; see, e.g., [1], [6].

Problem (7) is closely related to (6), and the crucial problem
lies in whether problem (7) guarantees a complete inclusion
of Pareto optimal solutions of problem (6).

Theorem 1: The rate pair (τms, g
∗(τms)) is a Pareto optimal

point of (6), and all Pareto optimal points of (6) can be
obtained by varying τms’s lying within [0, τmax].

Proof: First, we claim that problem (7) has some inter-
esting properties as below, which will play a key role in the
proof of Theorem 1.

Property 1: The maximum objective value of problem (7)
is obtained only when the equality in (7a) holds.

Property 2: The optimal objective value of (7), denoted as
g∗(τms), is monotonically decreasing w.r.t. τms.

The proof of Property 1 can be simply accomplished by
contradiction: Assume the maximum value of problem (7) is
obtained when the equality in (7a) does not hold, with Qa

unchanged, we multiply Qc and Q0 by a scaling factor η (η >
1) and ξ (0 < ξ < 1), respectively, to equalize (7a) while
keeping the total power constant. Then, we can always find a

larger objective value for (7) in this way, which is contrary to
the assumption.

Next we focus on the proof of Property 2. Note that when
τms increases, the feasible region of problem (7) would be
shrank. Thus, g∗(τms) must be monotonically nonincreasing
w.r.t τms. Furthermore, we claim that any two distinct τms

cannot generate an identical objective value of (7), since it will
contradict Property 1. This completes our proof of Property 2.

Let us denote the set of objective values (1-by-2 vectors)
of feasible points of (6) as O. Then, we assume that there
exist two different nonnegative rate pairs (r1, r2), (r3, r4) ∈ O
for which r1 6= r3. From our problem formation of (7)
and Property 1, it is immediate to get (r1, g

∗(r1)) �R
2
+

(r1, r2), (r3, g
∗(r3)) �R

2
+

(r3, r4). According to Property 2,

if r1 >
< r3, then we will have g∗(r1) <

> g∗(r3). Consequently
(r1, g

∗(r1)) and (r3, g
∗(r3)) are both Pareto optimal points

of (6), since it is impossible to increase any one element of
(r1, g

∗(r1)) (resp. (r3, g
∗(r3)) without decreasing the other

one element of it. Substituting r1 (or r3) by τms, we then
complete the proof.

Remark 2: It should be mentioned that from the proof of
Theorem 1, (τms, g

∗(τms)) is also a boundary point of (3).
This implies that, in the specific context here, the Pareto
optimal points of (5) are equivalent to the boundary points of
(3). When there is no ambiguity, the terms “boundary points”
and “Pareto optimal points” will be used interchangeably in
the following sections of this paper.

B. A Charnes-Cooper Transformation-Based Line Search
Method for (7)

However, the equivalent QoMS-constrained SRM problem
(7) still remains nonconvex. We now focus on deriving an
SDP-based optimization approach for problem (7). To start
with, we first rewrite (7) as

g∗(τ ′) = max
Q0,Qa,Qc,α≥1

log

(

1 + h1(Qc +Qa)h
H
1

α(1 + h1Qah
H
1 )

)

s.t. log

(

1 +
hkQch

H
k

1 + hkQah
H
k

)

≤ logα, ∀k ∈ Ke, (9a)

hkQ0h
H
k − τ ′hk(Qa +Qc)h

H
k − τ ′ ≥ 0, ∀k ∈ K, (9b)

Tr(Q0 +Qa +Qc) ≤ P, (9c)

Q0 � 0,Qa � 0,Qc � 0, (9d)

in which τ ′
∆
= 2τms − 1, α is a slack variable introduced to

simplify the denominator of the objective function in (7), and
constraint (9b) is an equivalent form of (7a).

Next, we show that (9) can be recast as a two-stage
optimization problem, and the outer problem is an one-variable
optimization problem over α. First, to achieve a non-negative
secrecy rate, an upper bound of α can be determined via

α ≤ 1+
h1Qch

H
1

1 + h1Qah
H
1

≤ 1+h1Qch
H
1 ≤ 1+P‖h1‖2, (10)

where the third inequality follows from the fact that

h1Qch
H
1 ≤ Tr(Qc)‖h1‖2 for any Qc � 0 and Tr(Qc) ≤ P .

Since constraint (9a) can be expressed as

(α − 1)(1 + hkQah
H
k )− hkQch

H
k ≥ 0, ∀k ∈ Ke (11)

and log(·) function is monotonically increasing, we further
rewrite (9) as (12).

γ∗(τ ′) = max
α

η(τ ′, α)

s.t. 1 ≤ α ≤ 1 + P‖h1‖2,
(12)
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where log γ∗(τ ′) = g∗(τ ′), and

η(τ ′, α) = max
Q0,Qa,Qc

1 + h1(Qc +Qa)h
H
1

α(1 + h1Qah
H
1 )

s.t. (α− 1)(1 + hkQah
H
k )− hkQch

H
k ≥ 0, ∀k ∈ Ke, (13a)

hkQ0h
H
k − τ ′hk(Qa +Qc)h

H
k − τ ′ ≥ 0, ∀k ∈ K,

(13b)

Tr(Q0 +Qa +Qc) ≤ P, (13c)

Q0 � 0,Qa � 0,Qc � 0. (13d)

We split (9) into two stages in (12) and (13): The maximiza-
tion problem (13) is a quasiconvex problem, whose globally
optimal solution can be searched by the bisection method [33].
Even so, it is still preferred to solve (13) by reformulating it as
a convex problem if possible. Fortunately, (13) indeed can be
reformulated as a convex problem by applying the Charnes-
Cooper transformation [36], i.e.,

Qc = Z/ξ,Qa = Γ/ξ,Q0 = Φ/ξ, ξ > 0. (14)

Then we can rewrite (13) as an SDP problem, i.e.,

η(α, τ ′) = max
Z,Γ,Φ,ξ

ξ + h1(Z+ Γ)hH
1

s.t. αξ + αh1Γh
H
1 = 1, (15a)

(α − 1)(ξ + hkΓh
H
k ) ≥ hkZh

H
k , ∀k ∈ Ke, (15b)

hkΦhH
k − τ ′hk(Γ+ Z)hH

k − ξτ ′ ≥ 0, ∀k ∈ K,
(15c)

Tr(Φ+ Γ+ Z) ≤ Pξ, (15d)

Z � 0,Γ � 0,Φ � 0. (15e)

One can notice that the transformation turns (13) into a convex
problem by fixing the denominator of η(τ ′, α). The convex
problem (15) is an SDP problem, and thus can be efficiently
solved through a convex optimization solver, e.g. CVX [37].
Having obtained the optimal objective value for a fixed α,
the remnant work is simply adopting a proper one dimension
search algorithm over α. The golden section search [38] or
uniform sampling search can be exploited to acquire the
optimal α and γ∗(τ ′). The optimal α should be chosen as
the one that leads to the maximum γ∗(τ ′) in (12). Ultimately,
the optimal Q0, Qc and Qa, denoted by (Q∗

0,Q
∗
c ,Q

∗
a), can

be retrieved through the relation (14).
Remark 3: Besides the aforementioned weighted sum

method and our proposed QoMS-based method, some other
scalarization methods have been proposed in literature to
find the complete Pareto set for biobjective optimization,
e.g., the weighted Tchebycheff method [39], [40]. However,
this method would yield a nonconvex scalar optimization
problem if used to tackle the specific scenario considered here,
which is intractable or prohibitively time-consuming to solve.
Therefore, this method may fail to reveal the complete Pareto
optimal set.

C. Rank-Profile Analysis

When the optimal solution (Q∗
0,Q

∗
a,Q

∗
c) to (13) satisfies

the rank condition: rank(Q∗
0) ≤ 1, rank(Q∗

a) ≤ 1 and
rank(Q∗

c) ≤ 1 for any given α, the corresponding maximum
secrecy rate γ∗(τ ′) could be attained via single-stream transmit
beamforming, which facilitates the implementation of physi-
cally realizable transceiver with low complexity. Though the
rank one properties cannot be generally fulfilled for Q∗

0 and
Q∗

a, we give a proposition as below to guarantee rank(Q∗
c) =

1. Physically, it means that transmit beamforming is an optimal
strategy for the transmission of confidential information.

Proposition 1: For problem (9), the optimal transmit co-
variance matrix of the confidential message, denoted by Q∗

c ,
is rank-one.

Proof: The proof can be found in Appendix A.
The exact investigation on rank properties of Q∗

0 and Q∗
a

still remains an open problem; thankfully, by employing some
advanced results about SDP problems, we can prove that the
rank one properties still hold for Q∗

0 and Q∗
a in some special

cases. Next a sufficient condition is given in the following
proposition, under which rank(Q∗

0) = 1 and rank(Q∗
a) ≤ 1

will hold.
Proposition 2: If there only exists a single unauthorized

receiver, i.e., K − 1 = 1, then rank(Q∗
0) = 1, rank(Q∗

a) ≤ 1.
Proof: In fact, Proposition 2 is an immediate result of

[41, Theorem 3.2]. The proof utilizes the solution equivalence
of problems (13) and (43). For (43), it is a separable SDP
problem [41], thus satisfying

rank2(Q∗
0)+rank2(Q∗

a)+rank2(Q∗
c) ≤ M, (16)

where M denotes the total number of linear equalities and
inequalities in (43). For (43), M = 2K .

When K = 2, incorporating rank(Q∗
c) = 1, one can

readily verify rank(Q∗
0) ≤ 1, rank(Q∗

a) ≤ 1. Then we have
completed the proof in that Q∗

0 = 0 is infeasible to (43).

D. Complexity Analysis

After giving the approach to finding the boundary points of
the secrecy rate region (3), we pay our attention to the com-
plexity performance of our proposed method. Recall that for
a given QoMS requirement, our proposed solution is derived
from a two-stage optimization approach, the outer being one-
dimensional search and the inner being SDP. The complexity
of our proposed approach can be roughly calculated through
the complexity of solving (15) times the number of searches
involved, and times the number of boundary points we want
to acquire. Let us take the uniform sampling search as an
example, we characterize its maximum number of searches as
follows.

Proposition 3: Let ᾱ be an ǫ-suboptimal solution of (12),
satisfying g∗(τ ′) − log η(τ ′, ᾱ) < ǫ, for some small positive

constant ǫ. If an uniform sampling search over [1, 1+P‖h1‖2]
is exploited, one can find such ᾱ with a maximum number of
searches given by

T1 =
P‖h1‖2
2ε − 1

. (17)

Thus, the total arithmetic computation cost is on the order of

M1 = T1 ln (1/ǫ)
√
γζ,

where γ and ζ are defined as below, and n = O(3N2
t + 1).

γ = 3Nt + 2K + 1,

ζ = n(3N3
t + 2K + 1) + n2(3N2

t + 2K + 1) + n3 (18)

Proof: The proof can be found in Appendix B.
To obtain N boundary points of (3), the total number of

searches should be MN = NM1. Therefore, the total arith-
metic computation cost of our proposed two-stage approach
is polynomial w.r.t. the problem size for a given solution
accuracy ǫ.
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IV. EXTENSION: THE WORST-CASE ROBUST SRRM

Hitherto, we have assumed that the CSI can be perfectly
obtained at the transmitter. We are now in a position to extend
our model developed in the last section to an imperfect CSI
case, where the transmitter has incomplete knowledge of all
receivers’ CSI. To capture the impact of the CSI imperfection
and isolate specific channel estimation methods from the
resource allocation algorithm design [39], we consider a worst-
case robust SRRM formulation under norm-bounded CSI un-
certainties [42], [43] and develop an SDP-based optimization
approach for the problem.

A. The Worst-case Robust Problem Formulation

We consider the same problem setup as in Section II, with
a more general assumption that the transmitter has imperfect
CSI on links of all receivers. Let

hk = h̃k + ek, ‖ek‖F ≤ εk, ∀k ∈ K, (19)

where hk is the actual channel vector between the transmitter
and the kth receiver as defined before, h̃k is the transmitter’s
estimation of hk, and ek represents the associated CSI error
which is located in a ball whose radius is εk. Here, we assume
a nontrivial case where εk is less than the norm of h̃k for ∀k ∈
K. The worst-case secrecy rate region is therefore determined
by (cf. [30], [34])

R0 ≤ min
k∈K

Cworst
m,k (Q0,Qc,Qa), (20a)

Rc ≤ Cworst
b (Qc,Qa)− max

k∈Ke

Cworst
e,k (Qc,Qa), (20b)

where

Cworst
m,k

∆
= min

hk∈Bk

log

(

1 +
hkQ0h

H
k

1 + hk(Qc +Qa)hH
k

)

, (21a)

Cworst
b

∆
= min

h1∈B1

log

(

1 +
h1Qch

H
1

1 + h1Qah
H
1

)

, (21b)

Cworst
e,k

∆
= max

hk∈Bk

log

(

1 +
hkQch

H
k

1 + hkQah
H
k

)

, (21c)

where Bk
∆
= {hk|hk = h̃k + ek, ‖ek‖F ≤ εk}, ∀k ∈ K de-

notes the set of all admissible CSIs. Physically, Cworst
b charac-

terizes receiver 1’s least possible mutual information among all
admissible CSI in B1, Cworst

e,k , k ∈ Ke characterizes receiver
k’s largest possible mutual information among all admissible
CSI in Bk, and Cworst

m,k , k ∈ K characterizes receiver k’s
worst-case multicast rate among all admissible CSI in Bk.
Therefore, the region (20) is a safe achievable region when
the uncertainties given in (19) exists, and the actual secrecy
rate pairs w.r.t. the true channel vectors must not lie within
the boundary of (20).

Then, to obtain the robust design of Q0, Qc and Qa, we
focus on the following worst-case achievable SRRM problem,

max
Q0,Qa,Qc,R0,Rc

(

w.r.t. R2
+

)

(R0, Rc)

s.t. min
k∈K

Cworst
m,k (Q0,Qc,Qa) ≥ R0, (22a)

Cworst
b (Qc,Qa)− max

k∈Ke

Cworst
e,k (Qc,Qa) ≥ Rc, (22b)

Tr(Q0 +Qa +Qc) ≤ P, (22c)

Q0 � 0,Qa � 0,Qc � 0. (22d)

One can check that plunging (21) into (22) yields

max
Q0,Qa,Qc,R0,Rc

(

w.r.t. R2
+

)

(R0, Rc)

s.t. min
k∈K

min
hk∈Bk

log

(

1 +
hkQ0h

H
k

1 + hk(Qc +Qa)hH
k

)

≥ R0,

(23a)

min
h1∈B1

log

(

1 +
h1Qch

H
1

1 + h1Qah
H
1

)

−

max
hk∈Bk

log

(

1 +
hkQch

H
k

1 + hkQah
H
k

)

≥ Rc, ∀k ∈ Ke

(23b)

Tr(Q0 +Qa +Qc) ≤ P, (23c)

Q0 � 0,Qa � 0,Qc � 0. (23d)

Due to the existence of uncertainties in the constraints, the
vector optimization problem (23) appears more intricate to
solve than (6). As a routine, we degrade (23) into a standard
scalar optimization problem using the same procedures we
adopted in Section III.

B. An Equivalent Scalar Optimization Problem of (23)

Similar to Section III.A, we first fix the variable R0 as a
constant τms ≥ 0. As a result, the degraded version of (23) is
given as below.

max
Q0,Qa,Qc

log
min

h1∈B1

1 + (1 + h1Qah
H
1 )

−1
h1Qch

H
1

max
k∈Ke,hk∈Bk

1 + (1 + hkQah
H
k )

−1
hkQch

H
k

s.t. min
k∈K

min
hk∈Bk

log

(

1 +
hkQ0h

H
k

1 + hk(Qc +Qa)hH
k

)

≥ τms,

(24a)

Tr(Q0 +Qa +Qc) ≤ P, (24b)

Q0 � 0,Qa � 0,Qc � 0, (24c)

where the variable Rc is discarded as a slack variable again.
We also gain some insights on the formulation of (24): τms

is preset requirement of the least achievable multicast rate,
and (24) is a worst-case robust SRM problem with worst-
case QoMS constraints. By setting τms = 0, (24) becomes
a conventional AN-aided worst-case robust SRM problem
for multi-user MISO system. The maximum value of τms,
denoted by τworst

max , is attained when the confidential message
transmission is terminated, i.e.,

τworst
max = max

Q0�0,Tr(Q0)≤P
min

k∈K,hk∈Bk

log(1 + hkQ0h
H
k ), (25)

where τworst
max is essentially the largest achievable worst-case

multicast rate. The optimization problem (8) can also be solved
via an SDP reformulation; see, e.g., [44].

One can notice that the maximum and minimum in the
objective function of (24) have no effect on the efficacy of
our construction method adopted in the proof of Theorem
1. Therefore, by reusing the procedures we introduce in the
proof of Theorem 1, it is straightforward for us to obtain the
following properties w.r.t. (24) and Theorem 2.

Property 3: The maximum objective value of problem (24)
is obtained only when the equality in (24a) holds.

Property 4: The optimal objective value of (24), denoted as
g∗(τms), is monotonically decreasing w.r.t. τms.

Theorem 2: The rate pair (τms, g
∗(τms)) is a Pareto optimal

point of (23), and all Pareto optimal points of (23) can be
obtained by varying τms’s lying within [0, τworst

max ].
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Tk(β,Qc,Qa, tk) =

[

tkI+ (β − 1)Qa −Qc ((β − 1)Qa −Qc)h̃
H
k

h̃k((β − 1)Qa −Qc) h̃k((β − 1)Qa −Qc)h̃
H
k − tkε

2
k + β − 1

]

� 0, ∀k ∈ Ke, (27)

Sk(Qc,Qa,Q0, δk) =

[

δkI+Q0 − τ ′(Qa +Qc) (Q0 − τ ′(Qa +Qc))h̃
H
k

h̃k(Q0 − τ ′(Qa +Qc)) −δkε
2
k − τ ′ + h̃k(Q0 − τ ′(Qa +Qc))h̃

H
k

]

� 0, ∀k ∈ K. (28)

C. A Tractable Reformulation of (24)

Our next endeavor is to develop a tractable reformulation
of (24) that reveals its hidden convexity and thus caters to the
numerical optimization. To start with, by introducing the slack
variables β, we rewrite (24) as

g∗(τ ′) = max
Q0,Qa,Qc,β

min
h1∈B1

log

(

1 + h1(Qc +Qa)h
H
1

β(1 + h1Qah
H
1 )

)

s.t. log

(

1 +
hkQch

H
k

1 + hkQah
H
k

)

≤ log β, ∀k ∈ Ke,hk ∈ Bk,

(26a)

hkQ0h
H
k

1 + hk(Qc +Qa)hH
k

≥ τ ′, ∀k ∈ K,hk ∈ Bk, (26b)

Tr(Q0 +Qa +Qc) ≤ P, (26c)

Q0 � 0,Qa � 0,Qc � 0, (26d)

in which β ≥ 1, τ ′
∆
= 2τms − 1, and thus constraint (26b) is

an equivalent form of constraint (24a). One can notice that β
is introduced to simplify the denominator of the logarithm
in the objective function of (5). Currently, the obstacle of
dealing with (26) lies in the existence of uncertainties in the
objective function and the constraints (26a) and (26b). To deal
with the uncertainties, we first exert S-procedure [33] to turn
the constraints (26a) and (26b) into linear matrix inequalities
(LMIs) in (27) and (28) at the top of this page, where {tk}k∈Ke

and {δk}k∈K are all nonnegative slack variables.

Next, we show that (26) can be recast as a one-variable
optimization problem over β which involves solving a quasi-
concave problem. Analogous to (10), to achieve a non-negative
secrecy rate, an upper bound on β can be determined via

β ≤ 1 + min
h1∈B1

h1Qch
H
1

1 + h1Qah
H
1

≤ 1 + min
h1∈B1

h1Qch
H
1 ≤ 1 + P min

h1∈B1

‖h1‖2

= 1 + P (‖h̃1‖ − ε1)
2,

(29)

where the last equality is derived by solving a simple quadrat-
ically constrained quadratic programming (QCQP) with its
Karush-Kuhn-Tucker (KKT) conditions, which leads to one
upper bound on β.

Noting that log(·) function is monotonically increasing, we
further rewrite (26) as

γ∗(τ ′) = max
β

η(τ ′, β)

s.t. 1 ≤ β ≤ βmax,
(30)

where log γ∗(τ ′) = g∗(τ ′), βmax
∆
= 1 + P (‖h̃1‖ − ε1)

2, and

η(τ ′, β) = max
Q0,Qa,Qc

{tk}k∈Ke
,{δk}k∈K

min
h1∈B1

1 + h1(Qc +Qa)h
H
1

β(1 + h1Qah
H
1 )

s.t. Tk(β,Qc,Qa, tk) � 0, tk ≥ 0, ∀k ∈ Ke, (31a)

Sk(Qc,Qa,Q0, δk) � 0, δk ≥ 0, ∀k ∈ K, (31b)

Tr(Q0 +Qa +Qc) ≤ P, (31c)

Q0 � 0,Qa � 0,Qc � 0. (31d)

To proceed, we will next show the maximization problem
(31) is a quasiconcave maximization problem; thus, its global
optimum can be efficiently found by using the bisection
method [33]. For ease of exposition, we first define

f(Qa,Qc) = min
h1∈B1

1 + h1(Qc +Qa)h
H
1

β(1 + h1Qah
H
1 )

.

With a slight abuse of notations but for notational simplicity,
we replace f(Qa,Qc) by f in the following section.

Property 5: f is a quasiconcave function on the problem
domain of (31), and hence the maximization problem (31) is
a quasiconcave problem.

Proof: With the problem domain of (31) being convex,
to verify Property 5, we should check whether all the α-
superlevel sets of f are convex for every α [33]. The α-
superlevel set of f is defined as

Sα = {(Qa,Qc) |Qa � 0,Qc � 0, f ≥ α} . (32)

Again, we resort to the S-procedure for revealing the hidden
convexity of the function f ≥ α, which is shown in (33) at the
bottom of this page, in which ρ is a slack variable satisfying
ρ ≥ 0. Equation (33) is an LMI, and convex to (Qa,Qc, ρ).
Hence, Sα is a convex set for every α, and we know f is a
quasiconcave function, which completes our proof.

Summarizing our reformulation of (26), we split (26) into
two stages in (30) and (31): The maximization problem (31)
is a quasiconcave problem and calculates η(τ ′, β) for a fixed
β, which can be efficiently solved by combining the bisection
method with the convex optimization solver CVX. Its searching
lower bound and upper bound can be chosen as 1/β and
βmax/β, respectively (cf. (29)). The outer problem (30) is a
single-variable optimization problem with a bounded interval
constraint [1, βmax], which can be handled by performing a
proper one-dimensional search algorithm, and the procedure
is the same as that described in Section III-B.

D. Rank-Profile Analysis

We now pay our attention to the rank properties of the
optimal solution (Q∗

0,Q
∗
a,Q

∗
c) of problem (31). Particularly,

one may curious about whether the rank-one property of Q∗
c

U(β,Qc,Qa, ρ) =

[

ρI+Qc + (1 − αβ)Qa (Qc + (1− αβ)Qa)h̃
H
k

h̃k(Qc + (1− αβ)Qa) h̃k(Qc + (1− αβ)Qa)h̃
H
k − ρε21 − αβ + 1

]

� 0. (33)
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TABLE I
COMPUTATIONAL COMPLEXITY OF PROPOSED SCHEMES

Scheme Complexity Order (suppressing ln (1/ǫ))
Optimal scheme

(perfect CSI) O
(

T1
√
3Nt + 2K + 1[n(3N3

t
+ 2K + 1) + n2(3N2

t
+ 2K + 1) + n3]

)

, where n = O(3N2
t
+ 1).

Power splitting scheme
(perfect CSI) O

(

T1
√
2Nt +K + 1[n(2N3

t
+K + 1) + n2(2N2

t
+K + 1) + n3]

)

, where n = O(2N2
t
+ 1).

Optimal scheme
(imperfect CSI)

O
(

Twc
1

√

(2K + 3)Nt + 4K[n3 + n2(2K(Nt + 1)2 + 3N2
t
+ 2K) + n(2K(Nt + 1)3 + 3N3

t
+ 2K)]

)

,

where n = O(3N2
t
+ 2K − 1).

Power splitting scheme
(imperfect CSI)

O
(

Twc
1

√

(K + 2)Nt + 2K[n3 + n2(K(Nt + 1)2 + 2N2
t
+K) + n(K(Nt + 1)3 + 2N3

t
+K)]

)

,

where n = O(2N2
t
+K − 1).

Lower bound based scheme
(imperfect CSI)

O
(

T lb
1

√

(2K + 4)Nt + 4K + 3[n3 + n2((2K + 1)(Nt + 1)2 + 3N2
t
+ 2K + 2) + n((2K + 1)(Nt + 1)3

+3N3
t
+ 2K + 2)]

)

,where n = O(3N2
t
+ 2K + 3) and T lb

1 =
P (‖h̃1‖−ε1)

2

2ǫ−1
.

applies to the imperfect CSI case. This issue could be solved
in the following proposition.

Proposition 4: With AN and imperfect CSI on all links, the
optimal transmit covariance matrix of the confidential message
is still of rank one.

Proof: The proof can be found in Appendix C.

E. Complexity Analysis

The process of characterizing the maximum number of
searches for the imperfect CSI case is practically analogous to
that in the perfect case. However, since the bisection method
is adopted to find η(τ ′, β), it will increase the total searching
times. Another consideration is that the bisection method
would introduce inaccuracy of η(τ ′, β), relying on the preset
convergence tolerance. If such convergence tolerance is set
sufficiently loose, we may not guarantee the existence of an
ǫ-suboptimal solution for any ǫ > 0. Still we take the uniform
sampling search as an example, we characterize its maximum
number of searches as follows in Proposition 5.

Proposition 5: Let β̄ be an ǫ-suboptimal solution of (30),
satisfying g∗(τ ′) − log η(τ ′, β̄) < ǫ, for some small positive
constant ǫ. If we exploit an uniform sampling search over
[1, βmax] in (30) and a bisection method over [1/β, βmax/β]
in (31), with the convergence tolerance of the bisection method
set as ǫb, then one can find such β̄ with a maximum number
of searches given by

Twc
1 =

Mu
∑

i=1

log

(

P (‖h̃1‖ − ε1)
2

(1 + ∆i)ǫb

)

, (34)

where

Mu =
(1 + 2ǫǫb)P (‖h̃1‖ − ε1)

2

2ε(1− ǫb)− 1
,∆ =

2ǫ(1− ǫb)− 1

1 + 2ǫǫb
.

Thus, the total arithmetic computation cost is on the order of

Mwc
1 = Twc

1 ln (1/ǫ)
√
γζ,

where γ and ζ are defined as below, and n = O(3N2
t +2K−

1).

γ = (2K + 3)Nt + 4K,

ζ = n3 + n2(2K(Nt + 1)2 + 3N2
t + 2K)

+ n(2K(Nt + 1)3 + 3N3
t + 2K)

(35)

Proof: The proof can be found in Appendix D.
One can notice from Proposition 5 that to achieve the

ǫ-suboptimality, the convergence tolerance of the bisection
method must satisfy ∆ > 0, or equivalently, ǫb < 1− 2−ǫ.

Obviously, if we want to obtain N boundary points of (20),
the total number of searches should amount to Mwc

N = NMwc
1 .

Then we know that the total arithmetic computation cost of
our proposed two-stage approach, for the imperfect CSI case,
is still polynomial w.r.t. the problem size for a given solution
accuracy ǫ.

V. SUBOPTIMAL SCHEMES AND EXTENSIONS

In this section, we propose two suboptimal resource al-
location schemes to implement PHY-SI in a more efficient
manner. Then we briefly discuss two possible extensions of
the methods introduced in the preceding sections.

A. Power Splitting Scheme

Our first proposed suboptimal scheme aims to decouple the
multicast message transmission and the confidential message
transmission by introducing a power splitting factor ρ (0 ≤
ρ ≤ 1), such that Tr(Qc + Qa) = ρP and Tr(Q0) = (1 −
ρ)P . Then we specify a secrecy rate Rc(ρ) using the power
allocated to the confidential message and AN, and find the
maximum multicast rate R0(ρ) the remaining transmit power
can achieve. In the following, we take the imperfect CSI case
as an example to show how to implement this scheme.

Specifically, Rc(ρ) is chosen as the maximum worst-case
secrecy rate with Tr(Qc +Qa) = ρP . This worst-case SRM
problem has been previously tackled in [45]. Then, let us
denote the corresponding optimal Qc and Qa as Qc(ρ) and
Qa(ρ), respectively. Next we will determine the maximum
worst-case multicast rate with Tr(Q0) = (1− ρ)P , which can
be obtained by solving the following optimization problem,

η0(ρ) = max
Tr(Q0)≤(1−ρ)P

Q0�0

min
k∈K,hk∈Bk

hkQ0h
H
k

1 + hk(Qa(ρ) +Qc(ρ))hH
k

,

(36)
with R0(ρ) = log(1 + η0(ρ)). Problem (36) is a convex
optimization problem after reformulating it as its epigraph
form and reapplying the S-procedure. Finally, traversing all
ρ lying within the interval [0, 1] will give rise to the secrecy
rate region achieved by this power splitting scheme.

B. A Computationally Efficient Lower Bound for the Worst-
Case SRRM

The purpose of the second suboptimal scheme is to reduce
the computational complexity in solving the worst-case SRRM
problem. As we can see from Proposition 5, solving the worst-
case SRRM problem involves a two-dimensional search, which
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renders the proposed methods time-consuming. Noting the
following relation, i.e.,

f(Qa,Qc) = min
h1∈B1

1 + h1(Qc +Qa)h
H
1

β(1 + h1Qah
H
1 )

≥
1 + min

h1∈B1

h1(Qc +Qa)h
H
1

β(1 + max
h1∈B1

h1Qah
H
1 )

∆
= f̃(Qa,Qc), (37)

we propose to maximize f̃(Qa,Qc) in (31) to find a lower

bound on η(τ ′, β). The maximization of f̃(Qa,Qc) can be
further reformulated into a convex optimization problem. To
elaborate a little further, we can introduce two slack vari-
ables u and v to simplify the numerator and denominator of

f̃(Qa,Qc) and rewrite (31) as

max
Q0,Qa,Qc,u,v

{tk}k∈Ke
,{δk}k∈K

uv−1

s.t. 1 + min
h1∈B1

h1(Qc +Qa)h
H
1 ≥ u, (38a)

β(1 + max
h1∈B1

h1Qah
H
1 ) ≤ v, (38b)

(31a)-(31d) satisfied. (38c)

To proceed, we introduce the following variable transforma-
tion, i.e.,

ξ = 1/v, a = u/v,Qc = Z/ξ,Qa = Γ/ξ,Q0 = Φ/ξ,

tk = λk/ξ, ∀k ∈ Ke, δk = µk/ξ, ∀k ∈ K. (39)

Then one can verify that problem (38) can be recast as a
convex problem after carrying out the transformation above. It
is evident to see this suboptimal scheme is significantly more
time efficient than the optimal one proposed in the last section.
As an additional merit, this scheme may be asymptotically
optimal at high QoMS region, since AN gradually diminishes
with the increase in QoMS.

For ease of comparison, we summarize the computational
complexity of our proposed optimal and suboptimal schemes
in Table I, shown at the top of last page. Since in the
power splitting scheme, the computation of Rc(ρ) requires
higher complexity than that of R0(ρ), the power splitting
scheme should possess the same complexity order as comput-
ing Rc(ρ). In Table I, the complexity order of maximizing
the lower bound (37) is derived by following the similar
procedures to the proof of Proposition 3, but the details are
omitted here due to the page limit. One can see from Table I
that the above-developed suboptimal schemes are more time-
efficient to implement than the optimal ones.

C. Extensions

For simplicity, we set the perfect CSI case as the stage to
introduce the extensions.

1) SRRM with external eavesdroppers: One can also con-
sider including L external eavesdroppers (Eves) into the sys-
tem model. The only difference lies in the expression of the
achievable secrecy rate, both the multicast message and the
confidential message should be kept perfectly secure from the
Eves. To put into context, let gl ∈ C1×Nt be the channel vector
between the transmitter and Eve l, the achievable secrecy rate
should be rewritten as

Rc ≤ Cb −max{max
k∈Ke

Ce,k,max
l∈Le

Re,l, } (40)

in which Le = {1, 2, · · · , L} denotes the indices of the exter-

nal Eves and Re,l = log
(

1 +
gl(Qc+Q0)g

H
l

1+glQag
H
l

)

. It can be proved

that the QoMS-based scalarization method is also applicable to
this scenario, but with more judicious construction method to
prove Property 1. For simplicity, we omit the detailed process
in this paper. The resulting scalar problem can once again be
tackled using the Charnes-Cooper transformation-based line
search method. Apparently, the introduction of external Eves
would suppress the size of the secrecy rate region.

2) Colluding Unauthorized Receivers: Consider the case
where the unauthorized receivers collude to collectively de-
code the confidential message in J groups. Let Gj ∈
CNc,j×Nt be the channel matrix between the transmitter and
the jth colluding group, with Nc,j being the number of
unauthorized receivers in jth colluding group. The channel
matrix Gj is formed by stacking the channel vectors of
the unauthorized receivers in jth colluding group. The only
difference of this colluding scenario still lies in the expression
of the achievable secrecy rate, i.e.,

Rc ≤ Cb −max
j∈J

Re,j , (41)

in which J = {1, 2, · · · , J} and Re,j =

log det(I+ (I+GjQaG
H
j )

−1
GjQcG

H
j ). Though the

determinant expression is generally intractable to handle, it
can be tightly relaxed into a linear expression by following
the approach proposed in [45]. The remnant work is to follow
the same derivations as those in the case with external Eves,
and the details are omitted here.

VI. NUMERICAL RESULTS

In this section, we provide numerical results to illustrate
the secrecy rate regions derived from our proposed optimal
and suboptimal schemes, compared to some other existing
schemes. The first one is the no-AN scheme, i.e., with
prefixing Qa as 0 in the primal SRRM problems. Another
one is based on the traditional service integration strategies,
which assign the confidential message and multicast message
to two different logic channels, for instance, two orthogonal
time slots. This time division multiple address (TDMA)-based
service integration splits the primal SRRM problems into
two conventional rate maximization problem, i.e., the SRM
problem (setting τms = 0) and multicast rate maximization
problem (cf. (8) and (25)). For the fairness of comparison,
the secrecy rate and multicast rate achieved by the TDMA
scheme should be halved [31]. For the imperfect CSI case,
we also give the secrecy rate regions achieved by a nonrobust
(naive) scheme, the details of which will be introduced there-
inafter. We will first consider the perfect CSI case in the first
subsection, and then the imperfect CSI case in the following
subsection.

A. The Perfect CSI Case

Unless specified, the simulation settings are as follows. The
number of transmit antennas at the transmitter is Nt = 2.
The number of receivers is K = 5. In the simulation, we
investigate the secrecy rate regions achieved by deterministic
channels, as [27]–[29] did. All channels are generated from
i.i.d. complex Gaussian distribution with zero mean and unit



10

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Data rate for multicast message R
0
 (bps/Hz)

S
ec

re
cy

 r
at

e 
R c (

bp
s/

H
z)

 

 
AN−aided PHY−SI (proposed)
no−AN PHY−SI
TDMA−based service integration
Power splitting scheme

2.6 2.8 3 3.2

3

3.5

 

 

P=20dB

Fig. 2. Secrecy rate regions with perfect CSI

variance. In particular, the channel vectors we use are given
by

h1 = [ 0.3802− 1.5972i 1.2968 + 0.6096i ] ,

h2 = [ 0.2254− 0.3066i −0.9247 + 0.2423i ] ,

h3 = [ 0.5303− 0.9545i 1.9583 + 2.1460i ] ,

h4 = [ 0.5129 + 0.5054i −0.0446− 0.1449i ] ,

h5 = [ 0.0878− 0.9963i 1.0534 + 1.0021i ] ,

(42)

where i
∆
=

√
−1.

Fig. 2 plots the secrecy rate regions achieved by our con-
sidered schemes with P = 20dB. The curves in Fig. 2 are the
boundary lines of the secrecy rate regions. First, let us con-
centrate on the comparison between our proposed scheme and
the no-AN scheme. As seen, secrecy rates with AN are mostly
higher than those without AN. The striking gap indicates
that AN indeed enhances the security performance without
compromising the QoMS. Nonetheless, with the increasing
demand for QoMS, the two curves tend to be coincident,
which implies that AN is prohibitive at high QoMS region. The
prohibition of AN reveals an inherent difference between PHY-
SI and PHY-security: the use of AN must be more prudent due
to the demand for QoMS. Next, we pay our attention to the
secrecy rate region achieved by the TDMA-based scheme. As
expected, our proposed scheme yields a significantly larger
region than the TDMA-based one, which implies the inher-
ent advantage of PHY-SI over traditional service integration.
Finally, we can observe that the performance gap between
the power splitting suboptimal scheme and the real secrecy
rate region is negligible. This observation demonstrates that
the power splitting scheme can achieve a near-optimal perfor-
mance with higher implementation efficiency.

Next, we pay our attention to the effect of transmit power
on the achievable secrecy rate regions. Meanwhile, we plot
the secrecy rate region achieved by the no-AN scheme as a
benchmark. We examine four cases, namely, P = 5, 10, 15 and
20dB. From Fig. 3, we can have some useful observations.
First, our AN-aided scheme achieves a secrecy rate region
larger than the no-AN one, even under low transmit power.
However, the gap between these two strategies dramatically
reduced when P diminishes. This is due to AN’s dual role
in PHY-SI, i.e., in order to guarantee the QoMS, AN must
decrease to reduce the interference at all receivers. The second
observation is that the secrecy rate regions with AN expand
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more strikingly when P increases. On the contrary, the secrecy
rate regions without AN practically expand in the horizontal
direction. That is, for the no-AN scheme, the increasing
transmit power mainly contributes to the multicast message
transmission, rather than the confidential message transmis-
sion. This phenomenon can be interpreted from the transmit
degree of freedom (d.o.f.). The total d.o.f. of unauthorized
receivers is K−1 = 4, higher than the transmit d.o.f. Nt = 2.
The lack of transmit d.o.f. is the reason for the unsatisfactory
security performance of the no-AN SRRM design.

B. The Imperfect CSI Case

The simulation settings in the imperfect CSI case are
generally the same as those in the perfect CSI case. The

estimated channel vectors {h̃k}k∈K are set identical to the
deterministic complex channel vectors adopted in the last
subsection. Without loss of generality, we set εk = ε = 0.2
for all k. In the imperfect CSI case, we consider a nonrobust
transmit design, and plot its achieved secrecy rate regions. Its

idea is to apply the presumed CSI, {h̃k}k∈K, to perform the
transmit design (cf. SRRM problem (9)).

We still first evaluate the resultant worst-case secrecy rate
regions achieved by different schemes in Fig. 4. We can
clearly observe that the existence of channel uncertainty
dramatically diminishes the achievable secrecy rate regions
by comparing Fig. 4 with Fig. 2. The basic observations from
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Fig. 4 is virtually similar to those from Fig. 2, for example,
the best performance of our proposed AN-aided scheme and
the coincidence of the AN-aided scheme and the no-AN
scheme at high QoMS region. Particularly, our proposed AN-
aided scheme outperforms the nonrobust scheme, though the
nonrobust scheme achieves a larger secrecy rate region than the
no-AN one. This confirms that incorporating AN is a powerful
means to combat channel uncertainties, even with integrated
services. Also, we should mention that our proposed two
suboptimal schemes achieve good approximation accuracies to
the optimal secrecy rate region. Especially, the lower bound
based scheme even yields higher secrecy rates at high QoMS
region than the power splitting scheme.

Fig. 5 plots the worst-case secrecy rate regions against the
transmit power. As seen, the gaps between the AN-aided and
no-AN schemes have been more remarkable than those in the
perfect CSI case. Besides, the d.o.f. bottleneck suffered by
the no-AN design still exists in the imperfect CSI case, and
becomes even more severe. Specifically, in the low QoMS
region, the no-AN scheme can only attain a maximum secrecy
rate of 0.8 bps/Hz with P = 20dB. As a reminder, the robust
scheme outperforms the nonrobust one over the whole range
of powers tested.

Finally, we investigate the relation between the worst-case
secrecy rate regions and the CSI uncertainty level by fixing
P = 20dB. Our benchmark is the nonrobust scheme. The
results are shown in Fig. 6. As expected, the basic trend is

that the larger CSI uncertainties are, the smaller the worst-case
secrecy rate regions are. Besides, when the channel uncertainty
level ε increases, the robustness of the AN-aided scheme
becomes more obvious. When ε = 0.2, the nonrobust scheme
achieves a maximum multicast rate comparable to the AN-
aided one. However, when ε = 0.3, its maximum achievable
multicast rate becomes smaller than the AN-aided one, and the
performance gap between these two schemes expands. This
phenomenon reveals the sensitivity of the nonrobust scheme
to channel uncertainties, since its design can only guarantee
the optimality to the presumed CSI, but not to the actual CSI.

VII. CONCLUSION

In this paper, we considered an AN-aided transmit design
for multiuser MISO broadcast channel with amalgamating
confidential service and multicast service, with both perfect
and imperfect CSI. The input covariances for confidential
message, multicast message and AN were designed to max-
imize the achievable secrecy rate region, which is a vector
maximization problem. Since the vector optimization problem
is inherently complex to solve, we proved that this SRRM
problem is equivalent to a standard scalar maximization prob-
lem, essentially an SRM problem with QoMS constraints.
Even so, this scalar maximization problem was still hard to
solve due to its non-convexity. We therefore developed an
SDP-based approach to solve the problem by first introducing
a two-stage reexpression. Then we showed that, for the perfect
CSI case and its worst-case robust counterpart, the equivalent
SRM problem can be efficiently tackled by solving a sequence
of SDPs. Moreover, we proved the optimality of transmit
beamforming to the confidential message transmission, and
gave the complexity analysis of our proposed optimization
methods. To mitigate the computational complexity, two sub-
optimal schemes were also proposed.

Numerical results demonstrated that our proposed AN-
aided scheme always achieves larger secrecy rate regions
than some other existing schemes. These observations verified
the efficacy of AN in expanding the secrecy rate region, as
well as the inherent advantage of PHY-SI over traditional
service integration. Moreover, the results also indicated that
our proposed suboptimal schemes could achieve near-optimal
performance, with significant time saving. As a future di-
rection, it would be interesting to study the combination of
confidential broadcasting and multicast services.

APPENDIX

A. Proof of Proposition 1

The proof is composed of two steps. First, given a feasible
α of (12), defining the optimal objective value of (13) as η̄α,
we show that (13) has identical optimal solutions to a power
minimization problem given by

min
Q0,Qa,Qc

Tr(Q0 +Qa +Qc)

s.t.
1 + h1(Qc +Qa)h

H
1

α(1 + h1Qah
H
1 )

≥ η̄α, (43a)

(13a), (13b) and (13d) satisfied. (43b)

Second, we show rank(Q∗
c) = 1 by studying the Karush-

Kuhn-Tucker (KKT) conditions of (43).
Step 1: Assume that the optimal solutions of (13) and (43)

are denoted as (Q̄0, Q̄c, Q̄a) and (Q̃0, Q̃c, Q̃a), respectively.
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One can easily verify that (Q̄0, Q̄c, Q̄a) is a feasible solution
of (43), which yields

Tr(Q̃0 + Q̃a + Q̃c) ≤ Tr(Q̄0 + Q̄a + Q̄c) ≤ P. (44)

The first inequality is due to the fact that any feasible solution
of (43) is doomed to consume no less power than that con-
sumed by the optimal solution of (43); the second inequality
is owing to the fact that (Q̄0, Q̄c, Q̄a) should follow the sum
power constraint in the inner maximization problem of (13).

The inequality in (44) implies that (Q̃0, Q̃c, Q̃a) is a
feasible solution of (13). Hence, we have

1 + h1(Q̃c + Q̃a)h
H
1

α(1 + h1Q̃ah
H
1 )

≤ η̄α. (45)

Combining (43a) with (45), we obtain

1 + h1(Q̃c + Q̃a)h
H
1

α(1 + h1Q̃ah
H
1 )

= η̄α, (46)

which proves (Q̃0, Q̃c, Q̃a) is also an optimal solution of (13).
Step 2: Rewrite (43a) as h1(Qc+µQa)h

H
1 +µ ≥ 0, where

µ
∆
= 1− αη̄α. The Lagrangian of (43) is

L(Q0,Qa,Qc, λ, η, σ,A,B,C) =

Tr(Q0 +Qa +Qc)− λ[h1(Qc + µQa)h
H
1 + µ]

−
K
∑

k=2

ηk[(α− 1)(1 + hkQah
H
k )− hkQch

H
k ]

−
K
∑

k=1

σk[hkQ0h
H
k − τ ′hk(Qa +Qc)h

H
k − τ ′]

− Tr(AQa)− Tr(BQ0)− Tr(CQc),

(47)

where A � 0,B � 0,C � 0, λ > 0, ηk ≥ 0, ∀k ∈ Ke

and σk ≥ 0, ∀k ∈ K are dual variables pertaining to primal

constraints in (43). To prove rank(Q̃c) = 1, we pick up the
following KKT conditions to check.

T− λhH
1 h1 = C, (48a)

CQ̃c = 0, (48b)

ηk ≥ 0, ∀k ∈ Ke, (48c)

σk ≥ 0, ∀k ∈ K, (48d)

in which T
∆
= I+

K
∑

k=2

ηkh
H
k hk + τ ′

K
∑

k=1

σkh
H
k hk. Combining

(48a) with (48b) yields TQ̃c = λhH
1 h1Q̃c, and we know

T ≻ 0 from (48c) and (48d), one can obtain

rank(Q̃c) = rank(λhH
1 h1Q̃c) ≤ 1, (49)

which implies that rank(Q̃c) ≤ 1 holds for any feasible α
of (12). Eliminating the trivial solution Q̃c = 0, we obtain

rank(Q̃c) = 1.

B. Proof of Proposition 3

Suppose that α∗ is an optimal solution of problem (12), and
that (Z∗,Γ∗,Φ∗, ξ∗) is an optimal solution of problem (15).

For any ∆ > 0 such that α∗ +∆ ∈ [1, 1+P‖h1‖2], we must
have

log (η(τ ′, α∗)) ≥ log (η(τ ′, α∗ +∆)) . (50)

For ease of exposition, the dependence of η on τ ′ will be
omitted in the following proof of Proposition 3.

Consider the function η(α∗ +∆), that is,

η(α∗ +∆) = max
Z,Γ,Φ,ξ

ξ + h1(Z+ Γ)hH
1

s.t. ξ + h1Γh
H
1 = (α∗ +∆)−1, (51a)

(α∗ +∆− 1)(ξ + hkΓh
H
k ) ≥ hkZh

H
k , ∀k ∈ Ke.

(51b)

(15c)-(15e) satisfied. (51c)

Let p = α∗

α∗+∆ , and (Ẑ, Γ̂, Φ̂, ξ̂) = p (Z∗,Γ∗,Φ∗, ξ∗). One

can easily check that (Ẑ, Γ̂, Φ̂, ξ̂) is feasible to (51). Accord-
ingly, we obtain

pη(α∗) = p(ξ∗ + h1(Z
∗ + Γ∗)hH

1 )

= ξ̂ + h1(Ẑ+ Γ̂)hH
1

≤ η(α∗ +∆),

(52)

in which the first inequality is due to the optimality of
(Z∗,Γ∗,Φ∗, ξ∗) to (15), while the last inequality is resulted

from the feasibility of (Ẑ, Γ̂, Φ̂, ξ̂) to (51).
Our next step is to characterize the rate gap between

log (η(α∗)) and log (η(α∗ +∆)), i.e.,

log (η(α∗))− log (η(α∗ +∆)) = log

(

η(α∗)

η(α∗ +∆)

)

,

≤ log

(

1

p

)

,

(53)

in which the last inequality is derived from (52). In order to
obtain an ǫ-suboptimal solution α∗ +∆, we set

log

(

1

p

)

< ǫ, (54)

which can be simplified as ∆ < α∗(2ǫ − 1), and we choose

∆ = 2ǫ − 1. (55)

Therefore, when uniform sampling search is adopted, the
maximum number of searches for one boundary point is

T1 =
(1 + P‖h1‖2)− 1

∆
=

P‖h1‖2
2ǫ − 1

. (56)

Regarding the inner SDP problem (15), it involves 3 LMI
constraints of size Nt, and 2K + 1 LMI constraints of size
1. As a consequence, when a standard interior-point method
(IPM) is used, the resultant arithmetic computation cost of
solving (15) should be on the order of ln (1/ǫ)

√
γζ [46,

Lecture 6], where γ and ζ is given in (18). This fact completes
the proof.

C. Proof of Proposition 4

The proof is composed of two steps. First, given a feasible
β of (30), defining the optimal objective value of (31) as η̄β ,
we consider the following power minimization problem, i.e.,

min
Q0,Qa,Qc,

{tk}k∈Ke
,{δk}k∈K

Tr(Q0 +Qa +Qc)

s.t. min
h1∈B1

1 + h1(Qc +Qa)h
H
1

β(1 + h1Qah
H
1 )

≥ η̄β , (57a)

Tk(β,Qc,Qa, tk) � 0, tk ≥ 0, ∀k ∈ Ke, (57b)

Sk(τ
′,Qc,Qa,Q0, δk) � 0, δk ≥ 0, ∀k ∈ K, (57c)

Q0 � 0,Qa � 0,Qc � 0. (57d)
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Following the same procedures in the proof of Proposition 1,
it is easy to verify that the optimal solution of (57), denoted

by (Q̃0, Q̃c, Q̃a), must be optimal for (31). Second, we will

prove that rank(Q̃c) ≤ 1 by checking the KKT conditions of
(57).

Define ĥk = [I, h̃H
k ]H , ∀k ∈ K. By using S-procedure, we

first reformulate (57a) as

U(β,Qc,Qa, ρ)
∆
= ĥ1(Qc + (1− βη̄β)Qa)ĥ

H
1 +Ξ, (58)

in which Ξ =

[

ρI 0

0 1− ρε21 − βη̄β

]

and ρ ≥ 0, and then

rewrite Tk and Sk in (57) as the following form.

Tk = ĥk((β − 1)Qa −Qc)ĥ
H
k +Υ,

Sk = ĥk(Q0 − τ ′(Qa +Qc))ĥ
H
k +Ω, (59)

where

Υ =

[

tkI 0

0 −tkε
2
k + β − 1

]

,Ω =

[

δkI 0

0 −δkε
2
k − τ ′

]

.

The Lagrangian associated with (57) is therefore given by

L(X) = Tr(Q0 +Qa +Qc)− Tr(ΦU(β,Qc,Qa, ρ))

−
∑

k∈Ke

Tr(ΨkTk(β,Qc,Qa, tk))

−
∑

k∈K

Tr(ΛkSk(τ
′,Qc,Qa,Q0, δk))

− Tr(AQa)− Tr(BQ0)− Tr(CQc)

−
∑

k∈Ke

ηktk −
∑

k∈K

υkδk − σρ,

(60)

where X denotes a collection of all primal and dual variables:
A ≻ 0,B ≻ 0,C ≻ 0,Φ ≻ 0, σ ≥ 0,Ψk ≻ 0, ηk ≥ 0, ∀k ∈
Ke and Λk ≻ 0, υk ≥ 0, ∀k ∈ K are dual variables pertaining

to primal constraints in (59). To prove rank(Q̃c) = 1, we pick
up the following KKT conditions to check, where we define

R = I+
∑

k∈Ke

ĥH
k Ψkĥk + τ ′

∑

k∈K

ĥH
k Λkĥk.

R− ĥH
1 Φĥ1 = C, (61a)

CQ̃c = 0, (61b)

ΦU(β, Q̃c, Q̃a, ρ) = 0, (61c)

Ψk � 0, ∀k ∈ Ke, (61d)

Λk,Φ � 0, ∀k ∈ K. (61e)

Combining (61a) with (61b) yields

RQ̃c = ĥH
1 Φĥ1Q̃c, (62)

and we know R ≻ 0 from (61d) and (61e), one can obtain

rank(Q̃c) = rank(ĥH
1 Φĥ1Q̃c) ≤ rank(ĥH

1 Φĥ1). (63)

If we can prove rank(ĥH
1 Φĥ1) = 1, then we will obtain

rank(Q̃c) ≤ 1 from (63). Therefore, in the remaining part

of the proof, we will focus on the rank of ĥH
1 Φĥ1.

Substituting (58) into the KKT condition (61c), we obtain

Φĥ1Q̃ĥH
1 +ΦΞ = 0, (64)

where Q̃
∆
= Q̃c + (1 − βη̄β)Q̃a. Premultiplying (64) by ĥH

k ,
we obtain

ĥH
k Φĥ1Q̃ĥH

1 + ĥH
k ΦΞ = 0. (65)

One can easily check that

Ξ

[

INt

0

]

= ρ

(

ĥ1 −
[

0

h̃1

])

ĥH
1

[

INt

0

]

=
[

INt
h̃H
1

]

[

INt

0

]

= INt
, (66)

and we then postmultiply the both sides of (65) by the matrix

[ INt
0 ]

H
to get

ĥH
1 Φĥ1Q̃+ ĥH

1 Φρ

(

ĥ1 −
[

0

h̃1

])

= 0, (67)

or equivalently,

ĥH
1 Φĥ1(Q̃+ ρINt

) = ρĥH
1 Φ

[

0

h̃1

]

. (68)

Lemma 1 ( [47]): If a block hermitian matrix P =
[

P1 P2

P3 P4

]

� 0, then the main diagonal matrices P1 and

P4 are always PSD matrices.
With Lemma 1 and U(β, Q̃c, Q̃a, ρ) � 0, we can claim

Q̃+ρINt
is a PSD matrix and nonsingular. Since multiplying

(left/right) by a nonsingular matrix (of appropriate dimension)
does not change the matrix rank, the following rank relation
holds, i.e.,

rank
(

ĥH
1 Φĥ1

)

= rank
(

ĥH
1 Φĥ1(Q̃+ ρINt

)
)

= rank

(

ρĥH
1 Φ

[

0

h̃1

])

≤ rank

([

0

h̃1

])

≤ 1.

(69)

With (63) and (69), it is immediate to get

rank(Q̃c) ≤ rank(ĥH
1 Φĥ1) ≤ 1. (70)

Eliminating the trivial solution Q̃c = 0, we obtain

rank(Q̃c) = 1.

η(τ ′, β) = max
Z,Γ,Φ,ξ

{λk}k∈Ke
,{µk}k∈K

min
h1∈B1

ξ + h1(Z+ Γ)hH
1

β(ξ + h1Γh
H
1 )

s.t. T̃k(β,Z,Γ, λk) =

[

λkI+ (β − 1)Γ− Z ((β − 1)Γ− Z)h̃H
k

h̃k((β − 1)Γ− Z) h̃k((β − 1)Γ− Z)h̃H
k − λkε

2
k + (β − 1)ξ

]

� 0, (73a)

S̃k(Z,Γ,Φ, µk) =

[

µkI+Φ− τ ′(Γ+ Z) (Φ− τ ′(Γ+ Z))h̃H
k

h̃k(Φ− τ ′(Γ+ Z)) −µkε
2
k − τ ′ξ + h̃k(Φ− τ ′(Γ+ Z))h̃H

k

]

� 0, ∀k ∈ K, (73b)

Tr(Φ+ Γ+ Z) ≤ Pξ, (73c)

Z � 0,Γ � 0,Φ � 0, λk ≥ 0, ∀k ∈ Ke, µk ≥ 0, ∀k ∈ K. (73d)
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D. Proof of Proposition 5

First, for the quasiconcave problem in (31), its searching
lower bound and upper bound can be chosen as 1/β and
βmax/β, respectively (cf. (29)). Therefore, for a given β and
a preset convergence tolerance ǫb, the maximum number of
bisection search is determined by [33, p146]

Mβ = log

(

βmax − 1

βǫb

)

. (71)

Next, we introduce the following transformation, i.e.,

ξ > 0,Qc = Z/ξ,Qa = Γ/ξ,Q0 = Φ/ξ,

tk = λk/ξ, ∀k ∈ Ke, δk = µk/ξ, ∀k ∈ K (72)

to convert the inner quasiconcave problem (31) into the
optimization problem (73) shown at the bottom of this page.
Problem (73) is still a quasiconcave maximization problem.
Our purpose of introducing the transformation (72) is to make
the methods used in the proof of Proposition 3 applicable to
the proof of Proposition 5.

Suppose that β∗ is the optimal solution of problem (30),
and that

(

Z∗,Γ∗,Φ∗, ξ∗, {λ∗
k}k∈Ke

, {µ∗
k}k∈K

)

is the optimal
solution of problem (73). For any ∆ > 0 such that β∗ +∆ ∈
[1, βmax], we must have

log (η(τ ′, β∗)) ≥ log (η(τ ′, β∗ +∆)) . (74)

Again, the dependence of η on τ ′ will be omitted thereinafter
for brevity.

Consider the function η(β∗ +∆), that is,

η(β∗ +∆) = max
Z,Γ,Φ,ξ

{λk}k∈Ke
,{µk}k∈K

min
h1∈B1

ξ + h1(Z+ Γ)hH
1

(β∗ +∆)(ξ + h1Γh
H
1 )

s.t. T̃k(β
∗ +∆,Z,Γ, λk) � 0, ∀k ∈ Ke, (75a)

(73b)-(73d) satisfied. (75b)

Let p = β∗

β∗+∆ , and (Ẑ, Γ̂, Φ̂, ξ̂, {λ̂k}k∈Ke
, {µ̂k}k∈K) =

p(Z∗,Γ∗,Φ∗, ξ∗, {λ∗
k}k∈Ke

, {µ∗
k}k∈K). One can check that

(Ẑ, Γ̂, Φ̂, ξ̂, {λ̂k}k∈Ke
, {µ̂k}k∈K) is feasible to (75). Accord-

ingly, we obtain

pη(β∗) = p min
h1∈B1

ξ∗ + h1(Z
∗ + Γ∗)hH

1

β∗(ξ∗ + h1Γ∗hH
1 )

= p min
h1∈B1

ξ̂ + h1(Ẑ+ Γ̂)hH
1

β∗(ξ̂ + h1Γ̂h
H

1 )

= min
h1∈B1

ξ̂ + h1(Ẑ+ Γ̂)hH
1

(β∗ +∆)(ξ̂ + h1Γ̂h
H

1 )

≤ η(β∗ +∆).

(76)

in which the first equality is due to the optimality of
(Z∗,Γ∗,Φ∗, ξ∗) to (73), and the last inequality is due to the

feasibility of (Ẑ, Γ̂, Φ̂, ξ̂) to (75). Because of the use of the
bisection method, the real output of η(β∗ +∆) should be no
less than η(β∗ +∆)− ǫb.

Our next step is to characterize the rate gap between
log (η(β∗)) and log (η(β∗ +∆)− ǫb), i.e.,

0 < log (η(β∗))− log (η(β∗ +∆)− ǫb)

= log

(

η(β∗)

η(β∗ +∆)− ǫb

)

,

(a)

≤ log

(

η(β∗)
β∗

β∗+∆η(β∗)− ǫb

)

,

(b)

≤ log

(

β∗ +∆

β∗ − (β∗ +∆)ǫb

)

,

(77)

in which the inequality (a) is derived from (75), and the
inequality (b) is derived from the fact log η(β∗) ≥ 0. In order
to obtain an ǫ-suboptimal solution β∗ +∆, we set

log

(

β∗ +∆

β∗ − (β∗ +∆)ǫb

)

< ǫ, (78)

which can be satisfied by choosing

∆ =
2ǫ(1− ǫb)− 1

1 + 2ǫǫb
. (79)

If ∆ > 0, i.e., ǫb < 1 − 2−ǫ is ensured, then the maximum
number of uniform sampling searches could be determined by

Mu =
βmax − 1

∆
=

(1 + 2ǫǫb)P (‖h̃1‖ − ε1)
2

2ε(1− ǫb)− 1
. (80)

Combining with the searching times of the bisection method,
we arrive at the maximum total number of searches for one
boundary point, i.e.,

M1 =

Mu
∑

i=1

log

(

P (‖h̃1‖ − ε1)
2

(1 + ∆i)ǫb

)

. (81)

Regarding the inner fractional SDP problem (31), for each
bisection iteration, the computational complexity comes from
solving a feasibility problem with LMI constraints. This feasi-
bility problem involves 2K LMI constraints of size Nt +1, 3
LMI constraints of size Nt and 2K LMI constraints of size 1.
If the standard IPM is used, the arithmetic computation cost of
solving such a problem should be on the order of ln (1/ǫ)

√
γζ,

where γ and ζ is given in (35). This fact completes the proof.
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