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Abstract
This work investigates the parameter estimation performance of super-resolution line spectral estimation using atomic
norm minimization. The focus is on analyzing the algorithm’s accuracy of inferring the frequencies and complex
magnitudes from noisy observations. When the Signal-to-Noise Ratio is reasonably high and the true frequencies are
separated by O( 1

n
), the atomic norm estimator is shown to localize the correct number of frequencies, each within a

neighborhood of size O(
√

logn/n3σ) of one of the true frequencies. Here n is half the number of temporal samples
and σ2 is the Gaussian noise variance. The analysis is based on a primal-dual witness construction procedure. The
obtained error bound matches the Cramér-Rao lower bound up to a logarithmic factor. The relationship between
resolution (separation of frequencies) and precision or accuracy of the estimator is highlighted. Our analysis also
reveals that the atomic norm minimization can be viewed as a convex way to solve a `1-norm regularized, nonlinear
and nonconvex least-squares problem to global optimality.

Keywords: atomic norm, line spectral estimation, primal-dual witness construction, super-resolution, support recovery

1 Introduction
Line spectral estimation, which aims at approximately inferring the frequency and coefficient parameters from a su-
perposition of complex sinusoids embedded in white noise, is one of the fundamental problems in statistical signal
processing. When the temporal and frequency domains are exchanged, this classical problem was reinterpreted as the
problem of mathematical super-resolution recently [1–3]. This line of work promotes the use of a convex sparse regu-
larizer to solve inverse problems involving spectrally sparse signals, distinguishing them from classical methods based
on root finding and singular value decompositions (e.g., Prony’s method, MUSIC, ESPIRIT, Matrix Pencil, etc.). The
convex regularizer, a particular instance of the general atomic norms, has been shown to achieve optimal performance
in signal completion [4], denoising [5], and outlier removal [6, 7]. For these signal processing tasks, either one can
recover the spectral signal exactly (and hence extract the true frequencies precisely), or the error metric is defined
using the signal instead of the frequency parameters. The most relevant question of the accuracy of noisy frequency
estimation has been elusive. This work investigates the parameter estimation performance of super-resolution line
spectral estimation using atomic norm minimization. More precisely, given noisy observations

y(t) = x?(t) + w(t), t = −n, . . . , n (1.1)

of a spectrally sparse signal

x?(t) =

k∑
`=1

c?` exp(i2πf?` t), t = −n, . . . , n (1.2)
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with unknown frequencies T ? = {f?` }
k
`=1 and complex amplitudes {c?`}

k
`=1, we will derive conditions under which

the atomic norm formulation will return the correct number of frequencies, and establish bounds on the frequency and
coefficient estimation errors. An informal version of our main result is given in the following theorem, while a formal
statement is presented in Theorem 2.1.

Theorem 1.1 (Informal). Suppose we observe 2n+1 noisy consecutive samples y(t) = x?(t)+w(t) of the signal (1.2)
with w(t) being i.i.d. complex Gaussian variables of mean zero and variance σ2. If the unknown frequencies are
well-separated, the Signal-to-Noise Ratio (SNR) is large, and the dynamic range of the coefficients is small, then
with probability at least 1 − 1

n2 , solving an atomic norm regularized least-squares problem with a large enough
regularization parameter will return exactly k estimated frequencies {fglob

` }k`=1 and coefficients {cglob
` }k`=1 that, when

properly ordered, satisfy

max
1≤`≤k

|c?` ||f
glob
` − f?` | = O(

√
log n

n3/2
σ), (1.3)

max
1≤`≤k

|cglob
` − c?` | = O(

√
log n

n
σ). (1.4)

We would like to first point out that this frequency estimator {fglob
` } given by the atomic norm regularized least-

squares is asymptotically unbiased. The `1 norm minimization (atomic norm minimization is an extension of it) is
usually considered biased because it pushes down the solution using the `1 norm. In the context of atomic norm
minimization, the estimator for the coefficient vector is indeed biased for the same reason. However, the frequency
estimator, which is of more interest, might still be unbiased since it is not pushed down by the atomic norm formulation.
Indeed, our result shows that the frequency estimator is at least asymptotically unbiased.

Corollary 1.1. Under the same setup as in Theorem 1.1, with probability at least 1 − 1
n2 , the frequency estimator

obtained by the atomic norm regularized minimization is asymptotic unbiased.

Proof. To see this, we note that for any i,

E[fglob
i ]− f?i ≤ E{|fglob

i − f?i |} =

∫
Ω

|fglob
i (ω)− f?i (ω)|dω +

∫
Ωc
|fglob
i (ω)− f?i (ω)|dω

≤ O(

√
log n

c?minn
3/2

σ) +
2

n2

= o(
1

n
).

Here Ω is the high-probability sample space where our main result (1.3) holds, Ωc is its complement space, and c?min

is defined as the smallest magnitude of {c?`}. The second inequality follows from Eq. (1.3),
∫

Ω
dω ≤ 1,

∫
Ωc

dω ≤ 1
n2 ,

and the fact that any frequency is defined in T = [0, 1]. Therefore, the frequency estimator is at least asymptotically
unbiased.

By the asymptotic unbiasedness of our atomic frequency estimator and considering that the Cramér-Rao bound
(CRB) [8] can be viewed as the best squared error bound for any unbiased frequency estimators, we now compare
our main result (1.3) (after taking the square) with the CRB, as well as the two most famous classical line spectral
estimation methods, i.e., the MUSIC and Maximum Likelihood Estimation (MLE), in Table 1. We conclude that the
squared error bound of the atomic frequency estimator matches the CRB up to a logarithmic factor. We also note that
the MUSIC and the MLE only have asymptotic mean squared error in the sense that the number of snapshots T has to
be infinitely large [8]. We emphasize that our results are non-asymptotic, which hold for finite-length, single-snapshot
signals (i.e., T = 1), while classical methods such as MUSIC and MLE are not efficient (i.e., approaching CRB) even
with an infinite number of snapshots, as long as the signal length n is finite.
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Method Squared-Error Bound

CRB [8] O( σ2

c?2
minn

3 )

MUSIC [8] O( σ2

Tc?2
minn

3 + σ4

Tc?4
minn

4 )

MLE [8] O( σ2

Tc?2
minn

3 + σ4

Tc?4
minn

4 )

This work (1.3) O(σ
2 logn
c?2
minn

3 )

Table 1: Comparison with the classical line spectral estimation methods.

2 Signal Model and Atomic Norm Regularization
This paper considers the spectral estimation problem: given noisy temporal samples, how well can we estimate the
locations and determine the magnitudes of spectral lines? The signal of interest x?(t) as expressed in (1.2) is composed
of only a small number of spectral spikes located in a normalized interval T = [0, 1]. We abuse notation and call
T ? = {f?` }k`=1 the support of x?. The number of frequencies, k, is referred to as the model order. The goal is to
approximately localize these parameters from a small number 2n+ 1 of equispaced noisy samples given in (1.1). For
technical simplicity, we assume n = 2M is an even number. The noise components w(t) are i.i.d. centrally symmetric
complex Gaussian variables with variance σ2. To simplify notation, we stack the temporal samples into vectors and
write the observation model as

y = x? + w, (2.1)

where x? := [x?(−n), . . . , x?(n)]T , y := [y(−n), . . . , y(n)]T and w? := [w?(−n), . . . , w?(n)]T .
To estimate the frequency vector f? := [f?1 , . . . , f

?
k ]T and the complex coefficient vector c? := [c?1, . . . , c

?
k]T , we

assume k is small and treat x? as a sparse combination of atoms a(f) := [ei2π(−n)f , . . . , ei2πnf ]T parameterized by
frequency f ∈ T, that is,

x? =

k∑
`=1

c?`a(f?` ). (2.2)

To exploit the structure of x? encoded in the set of atoms A := {a(f), f ∈ T}, we follow [4, 9] and define the
associated atomic norm as

‖x‖A = inf

{∑
`

|c`| : x =
∑
`

c`a(f`),∀f` ∈ T, c` ∈ C

}
. (2.3)

The dual norm of the atomic norm, which is useful both algorithmically and theoretically, is defined for any vector z
as ‖z‖∗A = supf∈T |a(f)Hz|, where H denotes the Hermitian (conjugate transpose) operation. To solve atomic norm
minimizations numerically, the authors of [5, 10] (see also [1]) first proposed to reformulate the atomic norm (2.3) as
an equivalent semidefinite program. Other numerical schemes are studied in [11–14].

Given the noisy observation model (2.1), it is natural to denoise x? by solving the atomic norm regularized mini-
mization program [5, 10]:

xglob = argmin
x

1

2
‖y − x‖2Z + λ‖x‖A. (2.4)

For technical reasons, we used a weighted `2 norm, ‖z‖Z :=
√

zHZz, to measure data fidelity. Here Z = diag( gM (`)
M ) ∈

R(4M+1)×(4M+1) with gM (`), ` = −2M, . . . , 2M defined in [4] as the discrete convolution of two triangular func-
tions. We remark that, in practice, both a standard `2 norm ‖ · ‖2 and a weighted `2 norm ‖ · ‖Z achieve similarly
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satisfying performance. In this work, we use ‖ · ‖Z with Z = diag( gM (`)
M ) mainly for the purpose of introducing the

Jackson kernel K(f2 − f1) := a(f1)HZa(f2) so that we can exploit the beautiful decaying properties of the Jackson
kernel (see Section A.3 for more details). When we exchange the frequency and temporal domains, this weighting
scheme trusts low-frequency samples more than high-frequency ones, even though the noise levels are the same. The
second term is a regularization term that penalizes solutions with large atomic norms, which typically correspond
to spectrally dense signals. The regularization parameter λ, whose value will be given later, controls the trade-off
between data fidelity and sparsity.

Once xglob was solved, we can extract estimates of the frequencies either from the primal optimal solution xglob

or from the corresponding dual optimal solution. Our goal is to characterize conditions such that i) we obtain exactly k
estimated frequencies; ii) there is a natural correspondence between the estimated frequencies and the true frequencies,
whose distances can be explicitly controlled; iii) the distances between the corresponding coefficients can also be
explicitly bounded.

To formally present the main theorem, we need to define a few more quantities. It is known that there is a resolution
limit of the atomic norm approach in resolving the atoms, or the frequency parameter f?, even from the noiseless
data [15]. Therefore, to recover the support of the line spectral signal x?, we need to impose certain separation
condition on the distances of the true frequencies. For this purpose, we define ∆(T ) = min{f`,fm}⊂T :f` 6=fm |f`−fm|,
where | · | is understood as the wrap-around distance in T. For example, |0.1− 0.9| = 0.2 under this distance. We also
define 1) the dynamic range of the coefficients B? :=

c?max

c?min
, where c?max and c?min denote the maximal and minimal

modules of {c?`}k`=1; 2) the normalized noise level γ0 := σ
√

logn
n ; 3) the Noise-to-Signal Ratio γ := γ0/c

?
min and 4)

the regularization parameter λ = 0.646X?γ0 for some positive constant X? to be determined later. Now we are ready
to present our main result.

Theorem 2.1. Suppose we observe 2n + 1 noisy consecutive samples y` = x?` + w` of the signal (1.2) or (2.2) with
w` being i.i.d. complex Gaussian valuables of mean zero and variance σ2. We assume n ≥ 130 and

∆(T ?) ≥ 2.5009/n, (2.5)

X?B?γ ≤ 10−3 and B?/X? ≤ 10−4. (2.6)

Then with probability at least 1− 1
n2 , the optimal solution of (2.4) has a decomposition xglob =

∑k
`=1 c

glob
` a(fglob

` )
involving exactly k atoms, whose frequencies and coefficients, when properly ordered, satisfy

max
1≤`≤k

|c?` ||f
glob
` − f?` | ≤ 0.4(X? + 35.2)γ0/n, (2.7)

max
1≤`≤k

|cglob
` − c?` | ≤ (X? + 35.2)γ0. (2.8)

Several remarks on the conditions follow. Because of the weighting scheme we use in (2.4), our choice of λ differs
from the standard one in [10] by a factor 1/n and ensures that the weighted dual atomic norm of the noise, ‖Zw‖∗A,
is less than λ with high probability. For technical reasons, our separation condition (2.5) is stronger compared with
the previous works [1,2,5,16–19]1. The conditions (2.6) wrap several requirements on the problem parameters for the
conclusions to hold: the dynamic range of the coefficients B?, the Noise-to-Signal Ratio γ, and the normalized noise
γ0 should all be small while the regularization parameter λ should be large enough as measured by X?.

It is worth noting that (2.6) implicitly imposes a strong assumption on the Noise-to-Signal Ratio

γ ≤ 10−7/B?2

1Note that our separation condition is a bit larger when comparing to these recent works in super-resolution, while there are two other things
to be considered. One thing is that most of these works require strong assumptions on the noise in their models (e.g., the noise is bounded), while
our work removes such assumptions and hence can deal with the more general Gaussian noise. To make this possible, we have to develop a new
proof strategy involving the two-step construction process of the dual certificate. Another thing is that although some prior works achieve small
resolution limit (even comparable to the Relay diffraction limit [19]), they study a different problem. For example, [19] considers the signal
denoising problem, that is, stable recovery of the whole signal x rather than the parameter estimation (i.e., the source location recovery). While
the focus of our work is the accuracy of parameter estimation in Gaussian noise, which might be more significant for practical applications such as
Radar and single-molecule microscopy, where precisely locating each target/point source is extremely important. Since the parameter estimation
problem is much harder than the denoising problem, we have to relax a bit the separation condition for ease of analysis.
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implying a sufficiently large n (but still finite). For high-level ideas, there might be two reasons to account for this
phenomenon. One is that the problem of line spectral estimation is known to be sensitive to noise. Another is inherently
from our proof regime, which makes the constants in Eq. (2.6) a bit conservative. More precisely, the ultimate objective
is to show the boundedness and interpolation property of the target polynomial (see Proposition 4.1 for more details).
Our method is using an “existing” dual polynomial in [1] satisfying this property and showing the distance between
these two polynomials is sufficiently small. So, we require the noise level to be small, since we will see in Lemma 4.2
that the noise level will influence this distance.

One more remark is that the quantity 35.2γ0 in our results is related to the expected dual atomic norm of the
weighted Gaussian noise E‖Zw‖∗A. By noting the definition λ = 0.646X?γ0, we can rewrite the error bounds (2.7)
and (2.8) in a more concise way:

max
1≤`≤k

|c?` ||f
glob
` − f?` | = O (λ+ E‖Zw‖∗A) /n, (2.9)

max
1≤`≤k

|cglob
` − c?` | = O (λ+ E‖Zw‖∗A) . (2.10)

Eq. (2.9) and (2.10) imply that the error bounds are determined jointly by the regularization parameter λ and the ex-
pected dual atomic norm of the weighted Gaussian noise E‖Zw‖∗A. Since the regularization parameter λ has the same
order as E‖Zw‖A, the estimated frequencies and coefficients are guaranteed to have errors of orders O (E‖Zw‖∗A/n)
and O (E‖Zw‖∗A), respectively. Remarkably, using atomic dual norm strategy allows us to deal with the Gaussian
noise, while most prior works [2, 16–18] in approximate support recovery have to build their theoretical foundations
on the bounded-noise assumption, which dramatically narrow down the applications.

Now we summarize the above comparisons of our result with those state-of-the-art modern support recovery meth-
ods in the Table 2.

Paper Bounded
Noise

Positive
Measure

Support
Condition SNR

Support
Recovery

[1, Theorem 1.5] Yes No ∆ ≥ 2
n Finite None

[2, Theorem 1.2] No No ∆ ≥ 2
n Finite None

[19, Theorem 1] No Yes RRC Finite None
[16, Theorem 1.2] Yes No ∆ ≥ 2

n Finite Exist
[5, Theorem 2] No No ∆ ≥ 2

n Finite Exist
[17, Theorem 2] Yes No NDSC Infinite Unique
[18, Theorem 2] Yes Yes NDSC Infinite Unique
Theorem 1.2 No No ∆ ≥ 2.5009

n Finite Unique

Table 2: Comparison with other modern line spectral estimation/super-resolution methods. The Positive Measure
column refers to whether the result requires the ground-truth measure to be positive. RRC is short for Rayleigh
Regularity condition [19, Definition 1.1], which generalizes the standard separation condition to clustered support.
NDSC stands for the non-degenerate source condition [17, Definition 5]. In the Support Recovery column, None
indicates that the work considers signal recovery instead of support recovery; Existence means that the work shows the
existence of at least one recovered parameter around each ground-true parameter, but fails to theoretically eliminate
the possibility of spurious recovered parameters; Uniqueness shows that around each true parameter there is one and
only one recovered parameter.

Finally, our proof for Theorem 2.1 also reveals the connection between the atomic norm minimization (2.4) and
the following `1-norm regularized, nonlinear and nonconvex least-squares program:

minimize
f ,c

1

2
‖A(f)c− y‖2Z + λ‖c‖1, (2.11)

where f := [f1, . . . , fk]T , c := [c1, . . . , ck]T , and A(f) := [a(f1), . . . ,a(fk)]. The program (2.11) is highly noncon-
vex, with numerous local minima and saddle points, so solving it to global optimality is very difficult. Our analysis
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shows that, under the conditions of Theorem 2.1, the convex program (2.4) shares the same global optimum as the
nonconvex program (2.11), implying that the atomic norm minimization provides a new convex way to solve the non-
convex program to global optimality. We summarize the result in the following corollary, with the formal proof listed
in Appendix J.

Corollary 2.1. Under the same setup as in Theorem 2.1, with probability at least 1− 1
n2 , the frequencies and coeffi-

cients estimated by the atomic norm regularized minimization (2.4) constitute a global optimum of the `1-regularized
nonlinear least-squares program (2.11).

3 Prior Art and Inspirations
Classical line spectral estimation techniques can be broadly classified into two camps: non-parametric and parametric
methods. Non-parametric methods are mainly based on Fourier analysis [20, 21]. Such approaches have low compu-
tational complexities and no need for signal models. These methods have limited frequency resolution due to spectral
leakage. Parametric methods, however, can achieve high resolution for parameter estimation. For example, Prony’s
method based on polynomial root-finding [22,23] can resolve arbitrarily close frequencies in the noiseless setting. Yet
this method is highly sensitive to noise and would fail even in the small noise regime. As stable versions of Prony’s
method, the subspace methods recast the noise-sensitive polynomial root-finding problem into more robust matrix
eigenvalue problems. For instance, the matrix pencil method [24] arranges the observations into a matrix pencil whose
generalized eigenvalues and eigenvectors contain information about the frequencies; the MUSIC algorithm [25] and
the ESPRIT method [26] decompose the autocorrelation matrix into noise-subspace and signal subspace using eigen-
value decomposition and extract frequency estimates from the signal subspace. Both algorithms were shown to achieve
CRB asymptotically [8, 27] when the signal length 2n + 1 and the number of snapshots approach infinite. However,
these classical methods are not efficient (i.e., approaching the CRB) even with an infinite number of snapshots, as long
as the signal length is finite. Also, all classical parametric methods require knowledge of the model order.

Modern convex optimization based methods formulate line spectral estimation as a linear inverse problem and
exploit signal sparsity using `1-type regularizations. Such methods are modular, robust, and do not require knowledge
of model orders. To apply the `1 regularization techniques, the continuous frequency domain is divided into a grid
of discrete frequencies. When the true frequencies fall onto the discrete Fourier grid, work in compressive sensing
guarantees optimal recovery performance [28–30]. When the frequencies do not fall onto the Fourier grid, however,
the performance of `1 minimization degrades significantly due to basis mismatch [31]. The basis mismatch issue can
be mitigated by employing finer grids [32, 33], which unfortunately often leads to numerical instability.

Atomic norm regularization avoids basis mismatch by enforcing sparsity directly in the continuous frequency do-
main. Given a set of atoms, possibly indexed by continuous parameters, one constructs an atomic norm in a principled
way as a generalization of the `1-norm to promote signals with parsimonious representations. Using the notion of
descent cones, the authors of [9] argued that the atomic norm is the best possible convex proxy for recovering sparse
models. For the special line spectral estimation problem, where the atomic norm is induced by the set of parameter-
ized complex exponentials, atomic regularizations have been shown to achieve optimal performance for several signal
processing tasks. For instance, atomic norm minimization recovers a spectrally sparse signal from a minimal number
of random signal samples [4], identifies and removes a maximal number of outliers [6,7], and performs denoising with
an error approaching the minimax rate [5]. When multiple measurement vectors are available, a method of exploiting
the joint sparsity pattern of different signals to further improve estimation accuracy is proposed in [34–36]. All these
works draw inspirations from the dual polynomial construction strategy developed in the pioneer work [1]. This paper
adds to this line of work by showing that the atomic framework produces optimal noisy frequency estimators.

Several closely related works also studied conditions for approximate support recovery from noisy observations.
The work [16] developed error bounds on spectral support recovery for bounded noise. In [5], the authors derived
suboptimal bounds for the Gaussian noise model. In [37], the authors extended this line of research to general mea-
surement schemes beyond Fourier samples using the Beurling-LASSO (B-LASSO) program. The B-LASSO program,
which minimizes a least-squares term plus the measure total variation norm, is mathematically equivalent to the atomic
norm formulation. All these works [5, 16, 37] cannot guarantee the recovery of exactly one frequency in each neigh-
borhood of the true frequencies. In this regard, the work by Duval and Peyré [17] showed that as long as the SNR
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is large enough and the sources are well-separated and satisfy a non-degenerate source condition, then total variation
norm regularization can recover the correct number of the Diracs with both the coefficient error and the frequency
error scale as the `2 norm of the noise. Compared with their work, our result uses the (weighted) dual atomic norm
of the noise in place of the `2 norm, which differ by order of

√
n, allowing our bound to match the CRB up to a

logarithmic factor. In addition, their work relies on a non-degenerate source condition [17, Definition 5] that is not
proven to hold in the spectral super-resolution setting. In this sense, the present paper is the first to rigorously establish
that in a high SNR regime this approach yields the right number of frequencies. Further our proof technique based on
the primal-dual witness construction is also very different from that employed in [17] based on a perturbation analysis
of the dual certificate in the noise-free case. In particular, our analysis reveals the connection between the convex
approach and a natural nonlinear least-squares method for spectral estimation. More recently, [18] studies the support
recovery for positive measures. For a comparison, there are several major differences worth remarking here: 1) in [18]
more emphasis is put on the asymptotic analysis, while the presented work instead deals with non-asymptotic settings
with finite signal length; 2) [18] requires the underlying noise to have finite `2 norm, which severely restricts the scope
of noises satisfying such a property, excluding the well-known and most common Gaussian noise, while the presented
results allow the underlying noise to be Gaussian; 3) in addition to requiring a sufficiently large signal-to-noise ra-
tio, the main result in [18] also relies on a non-degenerate source condition that is not proven to hold in the spectral
super-resolution setting.

4 Proof by Primal-Dual Witness Construction
Duality plays an important role in understanding atomic norm regularized line spectral estimation. Standard La-
grangian analysis shows that the dual problem of (2.4) has the following form:

qglob = argmax
q

1

2
‖y‖2Z −

1

2
‖y − λq‖2Z

subject to ‖Zq‖∗A ≤ 1. (4.1)

The complex trigonometric polynomial Q(f) := a(f)HZq corresponding to a dual feasible solution q is called a
dual polynomial. The dual polynomial associated with the unique dual optimal solution Qglob(f) := a(f)HZqglob

certifies the optimality of the unique primal optimal solution xglob, and vice versa. The uniqueness of primal and dual
optimal solutions is a consequence of the strong convexity of the objective functions of (2.4) and (4.1), respectively.
In particular, the primal-dual optimal solutions are related by qglob = (y − xglob)/λ. We summarize these in the
following proposition, with the proof given in Appendix I:

Proposition 4.1. Let the decomposition x̂ =
∑k̂
`=1 ĉ`a(f̂`) with distinct frequencies T̂ = {f̂`} ⊂ T and nonzero

coefficients {ĉ`} and set q̂ = (y − x̂)/λ. Suppose the corresponding dual polynomial Q̂(f) = a(f)HZq̂ satisfies the
following Bounded Interpolation Property (BIP):

Q̂(f̂`) = sign(ĉ`), ` = 1, . . . , k̂ (Interpolation);

|Q̂(f)| < 1,∀f /∈ T̂ (Boundedness);

then x̂ and q̂ are the unique primal-dual optimal solutions to (2.4) and (4.1), that is, x̂ = xglob and q̂ = qglob. Here
the operation sign(c) := c/|c| for a nonzero complex number and applies entry-wise to a vector.

Proposition 4.1 gives a way to extract the frequencies from the dual optimal solution – one can simply identify
the frequencies where the dual polynomial corresponding to the dual optimal solution achieves magnitude 1. The
uniqueness of the dual solution for (2.4) makes the construction of a dual certificate much harder compared with the
line spectral signal completion problem [4] and demixing problem [6,7]. For the latter two problems, while the primal
optimal solution is unique, the dual optimal solutions are non-unique. One usually chooses one dual solution that is
easier to analyze (e.g., the one with minimal energy). For the support recovery problem, we need to simultaneously
construct the primal and dual solutions, which witness the optimality of each other. In the compressive sensing
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literature, this construction process is called the primal-dual witness construction [38]. In sparse recovery problems, a
candidate primal solution is relatively easy to find, since when the noise is relatively small, the support of the recovered
signal would not change. So one only needs to solve a LASSO problem restricted to the true support to determine the
candidate coefficients, as was done in [38]. For the optimization (2.4), due to the continuous nature of the atoms, even
a bit of noise would drive the support away from the true one. So to construct a candidate primal solution (hence a
candidate dual solution), we need to simultaneously seek for the candidate support {f̂`} and the candidate coefficients
{ĉ`}.

4.1 Proof Outline
We use the `1-regularized, nonlinear and nonconvex program (2.11), which we copy below, to find plausible candidates
for {f̂`} and {ĉ`}:

minimize
f ,c

1

2
‖A(f)c− y‖2Z + λ‖c‖1,

where f = [f1, . . . , fk]T , c = [c1, . . . , ck]T and A(f) = [a(f1), . . . ,a(fk)]. Note that we have effectively fixed the
number of estimated frequencies k̂ in Proposition 4.1 to be k. But unlike in compressive sensing we cannot fix f = f?

to solve for c only as was done in [38]. The program (2.11) is highly nonconvex, with numerous local minima, local
maxima, and saddle points. So solving it to global optimality is hard even in theory. We are primarily interested in
its local minimum ({f̂`}, {ĉ`}) in a neighborhood of the true frequencies and coefficients (f?, c?). To find this local
minimum, we will run gradient descent to (2.11) using (f?, c?) as initialization. We will argue that under conditions
presented in Theorem 2.1, each f̂` and ĉ` stay close to f?` and c?` as given in (2.7) and (2.8), respectively. The major
tool we use is the contraction mapping theorem. As shown in Corollary 2.1, the local minimum found in this manner
is actually a global optimum of (2.11).

The rest of arguments consist of showing that x̂ =
∑k
`=1 ĉ`a(f̂`) with {f̂`} and {ĉ`} constructed as described

above satisfies the Bounded Interpolation Property of Proposition 4.1. The Interpolation property is automatically
satisfied due to the construction process and the main challenge is to show the Boundedness property |Q̂(f)| <
1,∀f /∈ T̂ . The harder part is showing the Boundedness property. For ease of interpretation we first collect the
definitions of the most important variables that will be used throughout the proof, and then introduce the main logic
and the two-step construction process of the proof.

Symbol Definition

(fλ, cλ) The local minima of minimizef ,c
1
2‖A(f)c− x?‖2Z + λ‖c‖1 that is closest to (f?, c?)

(f̂ , ĉ) The local minima of minimizef ,c
1
2‖A(f)c− y‖2Z + λ‖c‖1 that is closest to (fλ, cλ)

xλ The primal solution defined by the local minima (fλ, cλ) via xλ :=
∑k
`=1 c

λ
` a(fλ` )

x̂ The primal solution defined by the local minima (f̂ , ĉ) via x̂ :=
∑k
`=1 ĉ`a(f̂`)

qλ The dual solution corresponding to the primal solution xλ, that is, qλ := (x? − xλ)/λ
q̂ The dual solution corresponding to the primal solution x̂, that is, q̂ := (y − x̂)/λ

q? q? := lim
λ→0

qλ, satisfying the Boundedness and Interpolation property for (f?, c?)

Main Logic: Firstly, identifying that Q?(f) := a(f)HZq? satisfies the Boundedness property with some similar
arguments used in [1]. Secondly, establishing that q̂ and q? are sufficiently close (so are Q̂(f) := a(f)HZq̂ and
Q?(f) = a(f)HZq?). Therefore Q̂(f) also satisfies the Boundedness property. It turns out that directly showing the
closeness of q̂ and q? is difficult. That is why we introduce the intermediate dual variable qλ and use the two-step
construction process, i.e., first showing q? is close to qλ and then showing qλ is close to q̂.

Two-step Construction Process: We will first find a local minimum (fλ, cλ) of 1
2‖A(f)c − x?‖2Z + λ‖c‖1 around

(f?, c?), where one should note we replaced the noisy signal y in (2.11) by the noise-free signal x?. We will then
run gradient descent to (2.11) using (fλ, cλ) as initialization. The intermediate quantities (fλ, cλ) will serve as a
bridge between (f?, c?) and (f̂ , ĉ) to make the proof easier. The key is noting that Q̂(f) = a(f)HZq̂ is close to
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Qλ(f) = a(f)HZqλ, where qλ = (x?−xλ)/λ and xλ =
∑k
`=1 c

λ
` a(fλ` ), andQλ(f) is close toQ?(f) = a(f)HZq?.

Here q? = limλ→0 qλ is a dual certificate used to certify the atomic decomposition of x?. The former claim can be
showed using the closeness of (fλ, cλ) and (f̂ , ĉ). The later claim, however, must take advantage of the fact that
q? = limλ→0 qλ = − d

dλxλ|λ=0 and apply the triangle inequality to

Qλ(f)−Q?(f) =
1

λ

∫ λ

0

a(f)HZ

(
d

dt
x0 − d

dt
xt
)

dt,

where d
dtx

0 = limλ→0
d
dtx

λ := d
dtx

?. The closeness of (fλ, cλ) and (f?, c?) ensures that the derivatives in the
integrand are also close. Finally, we exploit the properties of Q?(f) which are similar to those established in [1] to
complete the proof.

4.2 A Formal Proof: Applying the Contraction Mapping Theorem
Theorem 4.1 (Contraction Mapping Theorem). Given a Banach space B equipped with a norm ‖·‖, a bounded closed
set N ⊂ B and a map Θ : N → B, if Θ(N ) ⊂ N (the non-escaping property) and there exists ρ ∈ (0, 1) such that
‖Θ(v)−Θ(w)‖ ≤ ρ‖v−w‖ for each v,w ∈ N (the contraction property), then there exists a unique v? ∈ N such
that Θ(v?) = v?.

This classical result helps to find a candidate solution for the construction of a valid dual certificate. To see this
we first choose the bounded closed set N to be a small region around the target joint frequency-coefficient vector
θ? := (f?,u?,v?) (where u? and v? denote respectively the real and imaginary parts of c?). Let the fixed point map
Θ be the gradient map of (2.11). The key is to determine the size of N in which the non-escaping and the contraction
properties of the fixed point map Θ hold. Then, the contraction mapping theorem implies that iteratively performing
the gradient map Θ from any initial point in N would produce a candidate solution that still lies in N (by the non-
escaping property) and hence is close to θ? (since N is small). Finally relating the fixed point equation to the BIP
property shows that such a candidate solution generates a valid dual certificate.

In order to apply the contraction mapping theorem to our problem, we choose the norm in Theorem 4.1 to be a
weighted `∞ norm ‖ · ‖∞̂ given by ‖(f ,u,v)‖∞̂ := ‖(Sf ,u,v)‖∞ with S :=

√
|K ′′(0)|diag(|c?|) and K(·) is the

Jackson kernel (refer to Appendix A for an introduction). This weighted `∞ norm is used as a metric function to
define the neighborhood N around θ?. The choice of the weighting matrix S ensures that the larger a coefficient c?i
is, the smaller the neighborhood in the direction of the frequency fi. In addition, since

√
|K ′′(0)| is of order O(n),

the frequency neighborhood is smaller than the coefficient neighborhood by the same order. Next, we choose the fixed
point map Θ to be a weighted gradient map of (2.11)

Θ(θ) := θ −W?∇
(

1

2
‖A(f)c− y‖2Z + λ‖c‖1

)
, (4.2)

where the gradient∇ is taken with respect to the parameter θ = (f ,u,v) and the weighting matrix

W? =

S−2

Ik
Ik

 . (4.3)

Scaling the gradient vector by W? ensures that the Jacobian matrix of the second term in (4.2) is close to the identity
matrix, which makes it easier to show the contraction property of Θ.

4.2.1 Two-step Construction Process

As discussed in Section 4.1, we divide the construction process into two steps. We first analyze the fixed point map
Θλ obtained by replacing the noisy observation vector y in (4.2) by the noise-free signal x?. We determine a region
around θ?, sayN ?, such that both the contraction and non-escaping properties of Θλ are satisfied inN ?. Then by the
contraction mapping theorem, iterating the gradient map Θλ in N ? initialized by θ? generates a unique fixed point
θλ := (fλ,uλ,vλ). These results are summarized in the following lemma:
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Lemma 4.1 (The First Fixed Point Map). Let the first fixed point map be the weighted gradient map of the nonconvex
program (2.11) with the noisy signal y replaced by the noise-free signal x?:

Θλ(θ) := θ −W?∇
(

1

2
‖A(f)c− x?‖2Z + λ‖c‖1

)
, (4.4)

where the gradient ∇ is taken with respect to the parameter θ = (f ,u,v). Let the regularization parameter λ vary
in [0, 0.646X?γ0]. Define a neighborhood N ? :=

{
θ : ‖θ − θ?‖∞̂ ≤ X?γ0/

√
2
}

. Suppose that the separation
condition (2.5) and the SNR condition (2.6) hold. Then the map Θλ has a unique fixed point θλ ∈ N ? satisfying
Θλ(θλ) = θλ. Furthermore, according to the implicit function theorem, θλ is a continuously differentiable function
of λ whose derivative is given by

d

dλ
θλ = −(∇2Gλ(θλ))−1 ∂

∂λ
∇Gλ(θλ). (4.5)

Finally, when λ turns to zero, the fixed point θλ converges to θ?, i.e., limλ→0 θ
λ = θ?, and therefore limλ→0 xλ = x?.

Proof of Lemma 4.1. See Appendix D.

We now turn to the gradient map Θ in (4.2) defined in a region N λ around θλ. Similar to the first step, we show
the contraction and non-escaping properties of Θ in N λ, which imply that iterating the gradient map Θ initialized by
θλ produces a unique fixed point θ̂ := (f̂ , û, v̂).

Lemma 4.2 (The Second Fixed Point Map). Let the second fixed point map be the weighted gradient map of the
nonconvex program (2.11):

Θ(θ) = θ −W?∇
(

1

2
‖A(f)c− y‖2Z + λ‖c‖1

)
(4.6)

and the region N λ :=
{
θ : ‖θ − θλ‖∞̂ ≤ 35.2γ0/

√
2
}

. Set the regularization parameter λ as 0.646X?γ0 in (4.6).

Suppose that the separation condition (2.5) and the SNR condition (2.6) hold. Then with probability at least 1 − 1
n2 ,

Θ(θ) has a unique fixed point θ̂ living in N λ.

Proof of Lemma 4.2. See Appendix E.

The radius of the second contraction regionN λ is determined by a high probability bound on the dual atomic norm
of the Gaussian noise and ensures thatN λ is a non-escaping set for Θ(θ). So far, we have identified the neighborhoods
where the two fixed points θλ and θ̂ live in, which is the key to show the validity of the dual certificates later. Figure 1
illustrates the main results of Lemma 4.1 and Lemma 4.2.

Road Map: Define two pre-certificates using the two fixed points as qλ := (x? − xλ)/λ and q̂ := (y − x̂)/λ

with the corresponding pre-dual polynomials denoted by Qλ(f) and Q̂(f). Here xλ =
∑k
`=1 c

λ
` a(fλ` ) and x̂ =∑k

`=1 ĉ`a(f̂`). Let q? = limλ→0 qλ. The remaining steps are to:

1) Show that q? is a valid dual certificate that certifies the atomic decomposition of x?, i.e., Q?(f) = a(f)HZq?

satisfies Q?(f?` ) = sign(c?` ), ` = 1, . . . , k and |Q?(f)| < 1,∀f /∈ T ?;

2) Use Lemma 4.1 to bound the pointwise distance between Q?(f) and Qλ(f);

3) Use Lemma 4.2 to bound the pointwise distance between Qλ(f) and Q̂(f).
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★

θ★ θλ λθ

Figure 1: Use the true parameter vector θ? as an initialization and run the first weighted gradient map (4.4) to obtain
the first fixed point θλ ∈ N ?. Run the second weighted gradient map (4.6) initialized by θλ to get the second fixed
point θ̂ ∈ N λ. The closeness of θ̂ and θ? is determined by the sizes of the two neighborhoods N ? and N λ, whose
precise forms are given in Lemmas 4.1 and 4.2, respectively.

4.2.2 Showing q? is a Dual Certificate

To show that q? is a dual certificate, it is sufficient to show that Q?(f) satisfies the Bounded Interpolation Property of
Proposition 4.1. The Interpolation property is automatically satisfied due to the construction process, and we will show
the Boundedness property using the arguments of [1]. In particular, fix an arbitrary point f?0 ∈ T ? as the reference
point, and let f?−1 be the first frequency in T ? that lies on the left of f?0 while f?1 be the first frequency in T ? that lies
on the right. Here “left” and “right” are directions on the complex circle T. We remark that the analysis depends only
on the relative locations of {f?` }. Hence, to simplify the arguments, we assume that the reference point f?0 is at 0 by
shifting the frequencies if necessary. Then we divide the region between f?0 = 0 and f?1 /2 into three parts: Near Region
N := [0, 0.24/n], Middle RegionM := [0.24/n, 0.75/n] and Far RegionF := [0.75/n, f?1 /2]. Also their symmetric
counterparts are defined as −N := [−0.24/n, 0], −M := [−0.75/n,−0.24/n], and −F := [f?−1/2,−0.75/n]. We
first show that the dual polynomial has strictly negative curvature |Q?(f)|′′ < 0 inN = [0, 0.24/n] and |Q?(f)| < 1 in
M∪F = [0.24/n, f?1 /2], implying |Q?(f)| < 1 inN ∪M∪F\{f?0 } by exploiting |Q?(f?0 )| = 1 and |Q?(f?0 )|′ = 0.
Then using the same symmetric arguments as in [1], we claim that |Q?(f)| < 1 in (−N ) ∪ (−M) ∪ (−F)\{f?0 }.
Combining these two results with the fact that the reference point f?0 is chosen arbitrarily from T ? (and shifted to 0),
we establish that the Boundedness property of Q?(f) holds in the entire T\T ?.

Lemma 4.3 (q? is a dual certificate). The dual polynomial Q?(f) satisfies both the Interpolation and Boundedness
properties with respect to the coefficients {c?`} and the frequencies {f?` }. In addition, Q?(f) satisfies first

Q?R(f) ≥ 0.887594, Q?R
′′(f) ≤ −2.24483n2,

|Q?I(f)| ≤ 0.0183836, |Q?′′I (f)| ≤ 0.113197n2,
|Q?′(f)| ≤ 0.821039n, |Q?′′(f)| ≤ 3.40320n2,

and

Q?R(f)Q?R(f)′′ + |Q?(f)′|2 + |Q?I(f)||Q?I(f)′′| ≤ −1.316313n2 < 0

for f ∈ N , implying |Q?(f)|′′ < 0 in N , and second,

|Q?(f)| ≤ 0.927615, f ∈M,

|Q?(f)| ≤ 0.734123, f ∈ F .

Here the subscriptsR and I denote respectively the real and complex parts ofQ?(f). Thus q? is a valid dual certificate
to certify the atomic decomposition x? =

∑k
`=1 c

?
`a(f?` ) such that ‖x?‖A =

∑k
`=1 |c?` |.

Proof of Lemma 4.3. See Appendix F.

Next lemma, with the proof given in Appendix G, exploits the closeness of θ? and θλ shown in Lemma 4.1 to
bound the pointwise distance between Q?(f) and Qλ(f).
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Lemma 4.4 (Qλ(f) is close to Q?(f)). Under the settings of Lemma 4.1, let Qλ(f) and Q?(f) be the dual poly-
nomials corresponding to θλ and θ?, respectively. Then the distances between Qλ(f) and Q?(f) and their various
derivatives are uniformly bounded:

|Q?(f)−Qλ(f)| ≤ 28.7343X?B?γ, f ∈ N , |Q?(f)−Qλ(f)| ≤ 39.3557X?B?γ, f ∈M,

|Q?′(f)−Qλ′(f)| ≤ 44.4648nX?B?γ, f ∈ N , |Q?(f)−Qλ(f)| ≤ 66.1596X?B?γ, f ∈ F ,
|Q?′′(f)−Qλ′′(f)| ≤ 140.808n2X?B?γ, f ∈ N .

In the following, we will control the pointwise distance between Qλ(f) and Q̂(f) by taking advantage of the
closeness of θλ and θ̂ given by Lemma 4.2. The key is to observe that

q̂− qλ =
(y − x̂)− (x? − xλ)

λ
=

w

λ
+

xλ − x̂

λ

implying

|Qλ(f)− Q̂(f)| ≤ |a(f)HZw|
λ

+
|a(f)HZ(xλ − x̂)|

λ
. (4.7)

This separates the distance between Qλ(f) and Q̂(f) into two parts: one is |a(f)HZw/λ| determined by the dual
atomic norm of the Gaussian noise w, which is upperbounded in Appendix B; the other is |a(f)HZ(xλ − x̂)/λ| that
can be upperbounded by the dual atomic norm of xλ − x̂. We summarize the final result in Lemma 4.5, where the
proof is given in Appendix H.

Lemma 4.5 (Q̂(f) is close to Qλ(f)). Under the settings of Lemma 4.2, let Q̂ and Qλ be the dual polynomials
corresponding to θ̂ and θλ, respectively. Then the pointwise distances between Qλ(f) and Q̂(f) and their derivatives
are bounded:

|Q̂(f)−Qλ(f)| ≤ 82.5975B?/X?, f ∈ N , |Q̂(f)−Qλ(f)| ≤ 114.323B?/X?, f ∈M,

|Q̂(f)′ −Qλ′(f)| ≤ 180.283nB?/X?, f ∈ N , |Q̂(f)−Qλ(f)| ≤ 162.903B?/X?, f ∈ F ,
|Q̂(f)′′ −Qλ′′(f)| ≤ 758.404n2B?/X?, f ∈ N .

4.2.3 Proof of Theorem 2.1

By combining Lemmas 4.3, 4.4, and 4.5, we are now ready to prove Theorem 2.1.
Basically, we will show that θ̂ constructed from the two-step gradient descent procedure and θglob := (fglob,uglob,vglob)

are the same point. Then the error bounds follow from the closeness of θ̂ and θ?. First, we show that the signal
x̂ =

∑k
`=1 ĉ`a(f̂`) and q̂ = (y − x̂)/λ constructed from the second fixed point θ̂ form primal and dual optimal

solutions of (2.4). It suffices to show that the dual polynomial Q̂(f) = a(f)HZq̂ satisfies the Bounded Interpolation
Property of Proposition 4.1.

1) Showing the Interpolation property.

The Interpolation property has the following equivalences:

Q̂(f̂`) = sign(ĉ`), ` = 1, . . . , k ⇐⇒ a(f̂`)
HZ(y − x̂) = λ sign(ĉ`), ` = 1, . . . , k

⇐⇒ a(f̂`)
HZ(y −A(f̂)ĉ) = λ sign(ĉ`), ` = 1, . . . , k

⇐⇒ A(f̂)HZ(y −A(f̂)ĉ) = λĉ./|ĉ|. (4.8)

From Lemma 4.2, θ̂ is the fixed point solution of the map Θ(θ) = θ −W?∇G(θ), i.e., Θ(θ̂) = θ̂, implying
∇G(θ̂) = 0 due to the invertibility of W?. Invoking the explicit expression for∇G(θ) developed in Appendix C, we
get

∇G(θ̂) =

R{(A′(f̂) diag(ĉ))HZ(A(f̂)ĉ− y)}
R{A(f̂)HZ(A(f̂)ĉ− y) + λĉ./|ĉ|}
I{A(f̂)HZ(A(f̂)ĉ− y) + λĉ./|ĉ|}

 =

0
0
0

 . (4.9)
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Then the Interpolation property (4.8) follows from the last two row blocks of (4.9).

2) Showing the Boundedness property.

Following the same arguments preceding Lemma 4.3, it is sufficient to show |Q̂(f)| < 1 in N ∪M∪F\{f̂0}.
First, since f̂0 might be located in −N or N , we bound |Q̂(f)| for f ∈ (−N ) ∪ N . The second-order Taylor

expansion of |Q̂(f)| at f = f̂0 states

|Q̂(f)| = |Q̂(f̂0)|+ (f − f̂0)|Q̂(f̂0)|′ + 1

2
(f − f̂0)2|Q̂(ξ)|′′

= 1 + (f − f̂0)|Q̂(f̂0)|′ + 1

2
(f − f̂0)2|Q̂(ξ)|′′ for some ξ ∈ (−N ) ∪N , (4.10)

where for the second line we used a consequence of the interpolation property. We argue that

|Q̂(f̂0)|′ =
Q̂R(f̂0)Q̂R(f̂0)′ + Q̂I(f̂0)Q̂I(f̂0)′

|Q̂(f̂0)|
=

R{ĉ0}Q̂R(f̂0)′ + I{ĉ0}Q̂I(f̂0)′

|ĉ0||Q̂(f̂0)|
= 0.

The last equality is a consequence of the first row block of (4.9) since R{ĉ0}Q̂R(f̂0)′+I{ĉ0}Q̂I(f̂0)′ = R{ĉH0 a(f̂0)HZ(y−
A(f̂)ĉ)}. Therefore, it suffices to show that |Q̂(f)|′ has strictly negative derivative in the symmetric Near Region
f ∈ (−N ) ∪N . By the symmetric arguments, it suffices to show this in N . Since

|Q̂(f)|′′ = − (Q̂R(f)Q̂R(f)′ + Q̂I(f)Q̂I(f)′)2

|Q̂(f)|3
+
Q̂R(f)Q̂R(f)′′ + |Q̂(f)′|2 + |Q̂I(f)||Q̂I(f)′′|

|Q̂(f)|
,

we only need to show that

Q̂R(f)Q̂R(f)′′ + |Q̂(f)′|2 + |Q̂I(f)||Q̂I(f)′′| < 0,

which can be obtained by applying Lemma 4.3, Lemma 4.4, Lemma 4.5 and the triangle inequality to control these
three terms Q̂R(f)Q̂R(f)′′, |Q̂(f)′|2 and |Q̂I(f)||Q̂I(f)′′|, respectively.

More precisely, the first term can be bounded by

Q̂R(f)Q̂R(f)′′

≤Q?R(f)Q?R(f)′′ + |Q̂R(f)−Q?R(f)||Q̂R(f)′′ −Q?R(f)′′|+ |Q?R(f)||Q̂R(f)′′ −Q?R(f)′′|+ |Q̂R(f)−Q?R(f)||Q?R(f)′′|
≤(0.887594)(−2.24483n2) + (28.7343X?B?γ + 82.5975B?/X?)(140.808n2X?B?γ + 758.404n2B?/X?)

+ (1)(140.808n2X?B?γ + 758.404n2B?/X?) + (28.7343X?B?γ + 82.5975B?/X?)3.40320n2

≤− 1.64194n2, (4.11)

where we have used the SNR condition (2.6): X?B?γ ≤ 10−3, B?/X? ≤ 10−4 in the last line. We now bound the
second term

|Q̂(f)′|2 =|Q̂(f)′ −Q?′(f)|2 + |Q?′(f)|2 + 2|Q?(f)′||Q̂(f)′ −Q?′(f)|
≤(44.4648nX?B?γ + 180.283nB?/X?)2 + (0.821039n)2 + 2(0.821039n)(44.4648nX?B?γ + 180.283nB?/X?)

≤0.780629n2. (4.12)

Finally, the third term can be bounded by

|Q̂I(f)||Q̂I(f)′′|
≤(|Q?I(f)|+ |Q̂(f)−Q?(f)|)(|Q?I

′′(f)|+ |Q̂(f)′′ −Q?′′(f)|)
≤(0.0183836 + (28.7343X?B?γ + 82.5975B?/X?))0.113197n2 + (140.808n2X?B?γ + 758.404n2B?/X?)

≤0.222917n2. (4.13)
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From (4.11), (4.12) and (4.13), we have

Q̂R(f)Q̂R(f)′′ + |Q̂(f)′|2 + |Q̂I(f)||Q̂I(f)′′| ≤ (−1.64194 + 0.780629 + 0.222917)n2 < 0,

implying that |Q̂(f)|′′ < 0 in N . This completes showing |Q̂(f)|′′ < 0 in (−N ) ∪N and

|Q̂(f)| < 1, for f ∈ (−N ) ∪N\{f̂0}. (4.14)

Next, we bound |Q̂(f)| in Middle Region

|Q̂(f)| ≤|Q?(f)|+ |Q?(f)−Qλ(f)|+ |Q̂(f)−Qλ(f)|
≤0.927615 + (39.3557X?B?γ + 114.323B?/X?)

≤0.978403 < 1, for f ∈M. (4.15)

Finally, we arrive at an upper bound of |Q̂(f)| in Far Region:

|Q̂(f)| ≤|Q?(f)|+ |Q?(f)−Qλ(f)|+ |Q̂(f)−Qλ(f)|
≤0.734123 + (66.1596X?B?γ + 162.903B?/X?)

≤0.81658 < 1, for f ∈ F . (4.16)

From (4.14), (4.15) and (4.16), we obtain that Q̂(f) satisfies the BIP property and hence q̂ is a valid dual certificate
that certifies the optimality of x̂ =

∑k
`=1 ĉ`a(f̂`). The uniqueness of the decomposition as also certified by q̂ implies

that {f̂`}k`=1 = {fglob
` }k`=1 and {ĉ`}k`=1 = {cglob

` }k`=1, i.e., θ̂ and θglob are the same point.
As the final step, using Lemma 4.1, Lemma 4.2 and the triangle inequality, we have

‖θ̂ − θ?‖∞̂ ≤ ‖θ̂ − θλ‖∞̂ + ‖θλ − θ?‖∞̂ ≤ (X? + 35.2)γ0/
√

2.

Then the desired results follow from the definition of the norm ‖ · ‖∞̂ and the fact that
√
|K ′′(0)| ≥ 3.289n2 for

n ≥ 130 by (A.2) and hence 1/
√

2|K ′′(0)| ≤ 1/
√

2(3.289)/n ≤ 0.3899/n ≤ 0.4/n. �

5 Numerical Experiments
We present numerical results to support our theoretical findings. In particular, we first examine the phase transition
curve of the rate of success in Figure 2. In preparing Figure 2, k complex coefficients c?1, . . . , c

?
k were generated

uniformly from the unit complex circle such that c?min = c?max = 1 hence B? = 1. We also generated k normalized
frequencies f?1 , . . . , f

?
k uniformly chosen from [0, 1] such that every pair of frequencies are separated by at least 2.5/n.

Then the signal x? was formed according to (2.2). We created our observation y by adding Gaussian noise of mean
zero and variance σ2 to the target signal x?. Let λ = xγ0 (recall that λ = 0.646X?γ0 in Theorem 2.1 and hence
x = 0.646X?). We varied x and the Noise-to-Signal Ratio γ. For each fixed (x, γ) pair, 20 instances of the spectral
line signals were generated. We then solved (2.4) for each instance and extracted the frequencies and coefficients. We
declared success for an instance if i) the recovered frequency vector is within γ/2n `∞ distance of the true frequency
vector f?, and ii) the recovered coefficient vector is within 2λ `∞ distance of the true frequency vector c?. The rate of
success for each algorithm is the proportion of successful instances.

From Figure 2, we observe that solving (2.4) is unable to identify the sinusoidal parameters if x ≤ 1 and the
performance of the method is unstable when x is around 1. When x is set to be slightly larger than 1, however,
we almost always succeed in finding good estimates of the sinusoidal parameters as long as xγ ≤ c for some small
constant c. This matches the findings in Theorem 2.1. Figure 2 also shows the constants in Theorem 2.1 are a bit
conservative.

We also run simulations to compare the mean-squared error for our frequency estimate with those for MUSIC and
the MLE, as well as the CRB. The simulation results are listed in Figure 3. We emphasize that the MLE is initialized
using the true frequencies and coefficients, which are not available in practice. We focus on the case of two unknown
frequencies and examine the effect of separation. We observe that the atomic norm minimization method always
outperforms MUSIC, with increased performance gap when the frequencies become closer. While the MLE performs
the best, its initialization is not practical.
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Figure 2: Rate of success for line spectral estimation by solving the atomic norm regularized program (2.4).
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Figure 3: Performance comparison: Atomic norm minimization (2.4) (labeled as “Atom”), MUSIC, MLE initialized
by the true parameters, and the CRB.

6 Conclusions
This work considers the problem of approximately estimating the frequencies and coefficients of a superposition
of complex sinusoids in white noise. By using a primal-dual witness construction, we have established theoretical
performance guarantees for atomic norm minimization algorithm in line spectral parameter estimation. The obtained
error bounds match the Cramér-Rao lower bound up to a logarithmic factor. The relationship between resolution
(separation of frequencies) and precision or accuracy of the estimator is highlighted. Our analysis also reveals that the
atomic norm minimization can be viewed as a convex way to solve a `1-norm regularized, nonlinear and nonconvex
least-squares problem to global optimality.
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Appendices
Appendix A Jackson Kernel
For any integer M > 0, the Jackson kernel, also known as the squared Fejér kernel, is defined by [4, Eq. (IV.2)]
or [1, Eq. (2.3) with M = fc/2 + 1]

K(f) =

[
sin(πMf)

M sin(πf)

]4

. (A.1)

The Jackson kernel shows up in the construction of dual polynomials that satisfy the Boundedness and Interpolation
properties. The choice of the Jackson kernel is due to its nice properties as easily seen from its graph: it attains
one at the peak, and quickly decrease to zero. Candès and Fernandez-Granda showed in [1] that as long as the
frequencies composing a signal satisfy certain separation condition, then a dual polynomial can be constructed as a
linear combination of shifted copies of the Jackson kernel and its first-order derivative to certify that the decomposition
achieves the signal’s atomic norm.

We use K ′(f),K ′′(f),K ′′′(f) to denote respectively the first, second, and third order derivatives of the Jackson
kernel and more generally K(`)(f) the `th order derivative. We will frequently use the second order derivative of the
Jackson kernel evaluated at zero K ′′(0), whose value is [4, Above Eq. (IV.5)]

K ′′(0) = −4π2(M2 − 1)

3
= −π

2(n2 − 4)

3
.

Here we used the convention that n = 2M. Then its absolute value |K ′′(0)| (denoted by τ ) falls into the interval

|K ′′(0)| ∈
[(

π2

3
− 4π2

3(130)2

)
n2,

(
π2

3

)
n2

]
, for n ≥ 130.

For ease of exposition, we give an explicit lower bound on |K ′′(0)| (which is valid for any n ≥ 130):

τ := |K ′′(0)| ≥
(
π2

3
− 4π2

3(130)2

)
n2 ≥ 3.289n2, for n ≥ 130. (A.2)

At a high-level, the purpose of introducing τ = |K ′′(0)| is to normalize the second order derivative of the Jackson
kernel to 1 at f = 0.

A.1 Decomposing the Jackson Kernel
The Jackson kernel admits the following decomposition [4]

K(f2 − f1) =

[
sin(πM(f2 − f1))

M sin(π(f2 − f1))

]4

= a(f1)HZa(f2) =
1

M

2M∑
j=−2M

gM (j)e−i2πj(f2−f1),

where M = n/2 and Z is an n× n diagonal matrix whose diagonal entries are given by [Z]`` = gM (`)
M with

gM (`) =
1

M

min(`+M,M)∑
k=max(`−M,−M)

(
1−

∣∣∣∣ kM
∣∣∣∣)(1−

∣∣∣∣`− kM

∣∣∣∣) ≥ 0, ` = −2M, . . . , 2M, (A.3)

the convolution of two discrete triangle functions scaled by 1/M . The weighting function gM (`) attains its peak at
zero and

gM (0) =
1

M

M∑
k=−M

(
1−

∣∣∣∣ kM
∣∣∣∣)2

=
2

3
+

2

M2

¬
≤ 2

3
+

2

652
≤ 0.667,
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where ¬ holds for M ≥ 65 (or n ≥ 130) by noting that 2/M2 is a decreasing function of M . Using the definition of
Z, we bound ‖Z‖∞,∞ as

‖Z‖∞,∞ = max
−2M≤j≤2M

gM (j)

M
=
gM (0)

M
≤ 0.667

M
, for n ≥ 130. (A.4)

A.2 Decomposing the Jackson Kernel Matrices
We frequently use matrices formed by sampling the Jackson kernel and its derivatives at appropriate frequencies.
Given a finite set of frequencies T = {f`}k`=1 (or its vector form f ∈ Rk), we define

D0(f) : = [K(fm − fn)]1≤n≤k,1≤m≤k = A(f)HZA(f);

D1(f) : = [K ′(fm − fn)]1≤n≤k,1≤m≤k = A(f)HZA′(f) = −A′(f)
H

ZA(f);

D2(f) : = [K ′′(fm − fn)]1≤n≤k,1≤m≤k = −A′(f)
H

ZA′(f) = A′′(f)
H

ZA(f) = A(f)HZA′′(f),

(A.5)

where

A(f) := [a(f1), . . . ,a(fk)], A′(f) := i2π diag(n)A(f), A′′(f) := (i2π diag(n))2A(f)

with n = [−n,−n+1, . . . , 0, . . . , n−1, n]T . More generally, the kernel matrix D`(f) := [K(`)(fm−fn)]1≤n≤k,1≤m≤k
satisfies the factorization

D`(f) = (−1)jA(j)(f)HZA(`−j)(f), for j ≤ `, (A.6)

where A(`)(f) represents the `th order derivative of the matrix A(f):

A(`)(f) = (i2π diag(n))`A(f).

Similarly, we define the cross kernel matrices with respect to the frequency pair (f1, f2) or ({f1
` }, {f2

` }) as

D`(f
1, f2) = [K(`)(f2

m − f1
n)]1≤n≤k,1≤m≤k, for ` = 0, 1, 2.

We can also express D`(f
1, f2) in factorization forms

D`(f
1, f2) = (−1)jA(j)(f1)HZA(`−j)(f2), for j ≤ `. (A.7)

A.3 Bounding the Jackson Kernel
The following lemma provides a set of bounds on the `th derivative of the Jackson kernel for ` ∈ {0, 1, 2, 3, 4}.

Lemma A.1 (Bounds on |K(`)|). For ` ∈ {0, 1, 2, 3, 4}, let K(`) be the `th derivative of K (K = K(0)). Define s(f)
as a symmetric and periodic function with period 1 and s(f) = 1

Mf(3−4f2) for f ∈ (0, 1/2]. Then for f ∈ (0, 1/2],
we have

|K(0)(f)| ≤ B0(f) := s4(f),

|K(1)(f)| ≤ B1(f) := 2πMs4(f)

(
3
√

3

8
+ 2s(f)

)
,

|K(2)(f)| ≤ B2(f) := (2πM)2s4(f)

(
1 +

3
√

3

2
s(f) + 5s2(f)

)
,

|K(3)(f)| ≤ B3(f) := (2πM)3s4(f)

(
c1 + 6s(f) +

45
√

3

8
s2(f) + 15s3(f)

)
,

|K(4)(f)| ≤ B4(f) := (2πM)4s4(f)

(
5

2
+ c2s(f) + 30s2(f) +

45
√

3

2
s3(f) +

105

2
s4(f)

)
,
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where

c1 =
1

2

(
sin

(
2 tan−1

(√
1

5

(√
129 + 12

)))
− 2 sin

(
4 tan−1

(√
1

5

(√
129 + 12

))))
,

c2 = −4 sin

(
2 tan−1

(√
1

5

(√
129 + 12

)))(
4 cos

(
2 tan−1

(√
1

5

(√
129 + 12

)))
− 1

)
.

Furthermore, B`(f) is decreasing in f on (0, 1/2] and B`(Ω− f) +B`(Ω + f) is increasing in f for any positive Ω
such that Ω > f and Ω + f ≤ 1/2.

Proof. We need the following elementary bound on the sine function for f ∈ [0, 1
2 ]:

sin(πf) ≥ f(3− 4f2). (A.8)

Clearly, a consequence is 1
M | sin(πf)| ≤ s(f), f ∈ [− 1

2 ,
1
2 ]\{0}. We use this fact together with explicit expressions for

K(`)(f) to develop upper bounds.
When ` = 0,

|K(f)| =
∣∣∣∣ sin(πMf)

M sin(πf)

∣∣∣∣4 ≤ s4(f).

When ` = 1,

K(1)(f) =
2πM

(M sin(πf))4

1

M

(
−2 cot(πf) sin4(πfM) + 2 sin3(πfM) cos(πfM)M

)
implying

|K(1)(f)| ≤ 2πMs4(f)

(
3
√

3

8
+ 2s(f)

)
,

since maxf |2 cos(πfM) sin(πfM)3| ≤ 3
√

3
8 .

When ` = 2,

K(2)(f) =
(2πM)2

(M sin(πf))4

1

M2
×(

(2 cos(2πf) + 3) csc2(πf) sin4(πfM)− 8 cot(πf) sin3(πfM) cos(πfM)M + sin2(πfM)(2 cos(2πfM) + 1)M2

)
implying

|K(2)(f)| ≤ (2πM)2s4(f)

(
1 +

3
√

3

2
s(f) + 5s2(f)

)
,

where we used maxf |8 sin3(πfM) cos(πfM)| = 3
√

3
2 and maxf | sin2(πfM)(2 cos(2πfM) + 1)| = 1.

When ` = 3,

K(3)(f) =
(2πM)3

(M sin(πf))4

1

M3
×
(
− (4 cos(2πf) + 11) cot(πf) csc2(πf) sin4(πfM)

+ 6(2 cos(2πf) + 3) csc2(πf) sin3(πfM) cos(πfM)M

− 6 cot(πf) sin2(πfM)(2 cos(2πfM) + 1) sin(4πfM)M2 − 1

2
sin(2πfM)M3

)
implying

|K(3)(f)| ≤ (2πM)3s4(f)

(
c1 + 6s(f) +

45
√

3

8
s2(f) + 15s3(f)

)
,

by recognizing the following upper bounds:
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maxf∈[0,1/2] |(4 cos(2πf) + 11) cos(πf)| = 15, maxf |6 sin2(πfM)(2 cos(2πfM) + 1)| = 6,
maxf∈[0,1/2] |6(2 cos(2πf) + 3)| = 30 , maxf | sin(4πfM)− (1/2) sin(2πfM)| = c1,

maxf | sin3(πfM) cos(πfM)| = 3
√

3/16.

When ` = 4,

K(4)(f) =
(2πM)4

(M sin(πf))4

1

M4
×
(

1

2
(49 cos(2πf) + 4 cos(4πf) + 52) csc4(πf) sin4(πfM)

− 8(4 cos(2πf) + 11) cot(πf) csc2(πf) sin3(πfM) cos(πfM)M

+ 6(2 cos(2πf) + 3) csc2(πf) sin2(πfM)(2 cos(2πfM) + 1)M2

− 4 cot(πf) sin(2πfM)(4 cos(2πfM)− 1)M3

+ (2 cos(4πfM)− 1

2
cos(2πfM))M4

)
implying

|K(4)(f)| ≤ (2πM)4s4(f)

(
5

2
+ c2s(f) + 30s2(f) +

45
√

3

2
s3(f) +

105

2
s4(f)

)
,

which follows from the following upper bounds:

maxf∈[0,1/2]
1
2 (49 cos(2πf) + 4 cos(4πf) + 52) = 105/2, maxf | sin2(πfM)(2 cos(2πfM) + 1)| = 1,

maxf∈[0,1/2] |8(4 cos(2πf) + 11) cos(πf)| = 120, maxf |4 sin(2πfM)(4 cos(2πfM)− 1)| = c2,

maxf | sin3(πfM) cos(πfM)| = 3
√

3/16, maxf |2 cos(4πfM)− 1/2 cos(2πfM)| = 5/2,
maxf∈[0,1/2] |6(2 cos(2πf) + 3)| = 30.

Finally, s(f) is nonnegative and is decreasing in (0, 1/2] since s′(f) is negative on (0, 1/2). Therefore, the kth
power sk(f) is decreasing in (0, 1/2]), which further implies that B`(f), ` = 0, 1, 2, 3, 4 is decreasing in (0, 1/2]. In
addition, since s(f) is convex in (0, 1/2], sk(f) is also convex as a consequence of the composition rule of convex
and monotonic functions. Combining the convex and decreasing property of sk(f) on (0, 1/2] and then applying
arguments similar to those in [1, Lemma 2.6], we conclude that B`(Ω − f) + B`(Ω + f) is increasing in f for any
positive Ω such that Ω > f and Ω + f ≤ 1/2.

A.4 Bounding the Sums of the Jackson Kernel
Without loss of generality, we assume 0 ∈ T and develop bounds on

∑
fi∈T\{0} |K

(`)(f−fi)|, ` ∈ {0, 1, 2, 3, 4}when
f lives in a neighborhood around 0. It is easy to verify the following lemma based on the properties of |K(`)(f)|, ` =
0, 1, 2, 3, 4 in Lemma A.1. The proof parallels that of [1, Lemma 2.7] and is omitted here.

Lemma A.2. Suppose 0 ∈ T and f+ is the smallest positive frequency in T . Let ∆ := ∆(T ) ≥ ∆min and f ∈ [0, f̄ ]
where f̄ ≤ f+/2. Then for ` ∈ {0, 1, 2, 3, 4},∑

fi∈T\{0}

|K(`)(f − fi)| ≤ F`(∆, f) :=F+
` (∆, f) + F−` (∆, f) ≤ F`(∆min, f̄)

with

F+
` (∆, f) = max

{
max

∆≤ξ≤3∆min

|K(`)(f − ξ)|, B`(3∆min − f)

}
+

b 1
2∆min

c∑
j=2

B`(j∆min − f),

F−` (∆, f) = max

{
max

∆≤ξ≤3∆min

|K(`)(ξ)|, B`(3∆min)

}
+

b 1
2∆min

c∑
j=2

B`(j∆min + f).

F`(∆, f) is decreasing in ∆. When ∆ is fixed as ∆min, F`(∆min, f) is increasing in f .
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The following lemma provides bounds on
∑
fi∈T |K

(`)(f − fi)| for ` ∈ {0, 1, 2, 3, 4} and is a direct consequence
of the decreasing property of B`(·).

Lemma A.3. Suppose 0 ∈ T , f+ is the smallest positive frequency in T and f ∈ [f, f+ − f̄ ]. Then for ` ∈
{0, 1, 2, 3, 4},

∑
fi∈T

|K(`)(f − fi)| ≤W`(f, f̄) :=

b 1
2∆min

c∑
j=0

B`(j∆min + f) +

b 1
2∆min

c∑
j=0

B`(j∆min + f̄).

A.5 Numerical Bounds on the Jackson Kernel Sums
Suppose 0 ∈ T . Then by Lemma A.2 we can bound

∑
fj∈T\{0} |K

(`)(f − fj)| for f ∈ [0, f̄ ] as:∑
fj∈T\{0}

|K(`)(f − fj)| ≤ F`(∆min, f̄).

We list the values of F`(∆min, f̄) for different f̄ in Table A.5.
We can use Lemma A.3 to bound

∑
fj∈T |K

(`)(f − fj)| for f ∈ [f, f+ − f̄ ] as∑
fj∈T

|K(`)(f − fj)| ≤W`(f, f̄).

We list the values of W`(f, f̄) for different f, f̄ in Table A.5.
Finally, we list several numerical upper bounds on |K(`)(f)| and K ′′(f) over different intervals in Table A.5,

which directly follow from [1, equations (2.21)-(2.24)] and numerical computations.

f F0(2.5/n, f) F1(2.5/n, f) F2(2.5/n, f) F3(2.5/n, f) F4(2.5/n, f)

0 0.00755 0.01236n 0.05610n2 0.28687n3 1.48634n4

0.002/n 0.00755 0.01236n 0.05610n2 0.28687n3 1.48634n4

0.24/n 0.00757 0.01241n 0.05637n2 0.28838n3 1.67097n4

0.2404/n 0.00757 0.01241n 0.05637n2 0.28838n3 1.67100n4

0.75/n 0.00772 0.01450n 0.12639n2 1.07987n3 6.57069n4

0.7504/n 0.00772 0.01454n 0.12675n2 1.08211n3 6.57595n4

Table 3: Numerical upper bounds on F`(2.5/n, f).

f1 f2 W0(f1, f2) W1(f1, f2) W2(f1, f2)

0.7496/n 1.25/n 0.71059 5.2265n 48.0330n2

0.75/n 1.25/n 0.70859 5.2084n 47.8388n2

Table 4: Numerical upper bounds on W`(f1, f2).

A.6 Controlling the Jackson Kernel Matrices
In this section, we derive several consequences of the joint frequency-coefficient vector θ = (f ,u,v) living in the
neighborhood N ? of the true joint frequency-coefficient vector θ? = (f?,u?,v?). Recall that N ? contains all θ that
is close to θ? in the `∞̂ norm:

N ? = {θ : ‖θ − θ?‖∞̂ ≤ X?γ0/
√

2}. (A.9)
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f |K(f)| |K ′(f)| |K ′′(f)| |K ′′′(f)| |K ′′′′(f)| K ′′(f)

[0, 0.002/n] 1 0.00658n 3.290n2 0.0649394n3

[0, 0.24/n] 1 0.789569n 3.290n2 7.79273n3 −2.35084n2

[0, 0.2404/n] 1 0.790885n 3.290n2 7.80572n3 29.2227n4

[0.2396/n, 0.7504/n] 0.90951 2.46872n 3.290n2

Table 5: Numerical upper bounds on |K(`)(f)| and K ′′(f).

Recall that the weighted `∞ norm ‖ · ‖∞̂ is defined by ‖(f ,u,v)‖∞̂ := ‖(Sf ,u,v)‖∞ with S :=
√
τ diag(|c?|).

We remark that all the results in this section still hold for the bigger neighborhood N̂ defined by replacing X? with
X̂ = X? + 35.2. Indeed, for the results to hold, the key requirement on θ is ‖f − f?‖∞ ≤ 0.002/n. This condition
holds for both regions because as we will show later

‖f − f?‖∞ ≤

{
0.4X?γ for θ ∈ N ?,

0.4X̂γ for θ ∈ N̂ .

Invoking the SNR condition (2.6), we conclude that the two upper bounds are much smaller than 0.002/n in both
cases.

Our first set of results bound the distances between the parameters in θ? and θ: for each j = 1, . . . , k

|cj − c?j |
|c?j |

¬
≤ X?γ,

|cj |
|c?j |

­
≤ 1 +X?γ,∣∣∣(|cj |/|c?j |)2 − 1
∣∣∣ ®
≤ X?γ(2 +X?γ),

|fj − f?j |
¯
≤ X?γ/

√
2τ

°
≤ 0.4X?γ/n.

(A.10)

For ¬ to hold, first note ‖u− u?‖∞ ≤ X?γ0/
√

2 and ‖v − v?‖∞ ≤ X?γ0/
√

2 by (A.9). Also note

‖c− c?‖2∞ = max
`

[(u` − u?` )2 + (v` − v?` )2]

≤ max
`

(u` − u?` )2 + max
`

(v` − v?` )2

= ‖u− u?‖2∞ + ‖v − v?‖2∞ ≤ 2(X?γ0/
√

2)2 = (X?γ0)2.

Finally ¬ follows since maxj |cj − c?j |/|c?j | ≤ ‖c − c?‖∞/c?min and γ = γ0/c
?
min. After we show ¬, ­ follows

from |cj |/|c?j | = |cj − c?j + c?j |/|c?j | and the triangle inequality. ® follows from |(|cj |/|c?j |)2 − 1| = |(|cj |/|c?j | +
1)(|cj |/|c?j | − 1)|. ¯ follows from the definition of the `∞̂ norm:

‖S(f − f?)‖∞ ≤ X?γ0/
√

2

=⇒‖
√
τ diag(|c?|)(f − f?)‖∞ ≤ X?γ0/

√
2

=⇒|fj − f?j | ≤ X?γ0/|c?j |/
√

2τ , ∀j

=⇒|fj − f?j | ≤ X?γ0/c
?
min/
√

2τ = X?γ/
√

2τ , ∀j.

Finally ° holds due to the fact that τ ≥ 3.289n2 for n ≥ 130 by (A.2) and hence

1/
√

2τ ≤ 1/
√

2(3.289)/n ≤ 0.3899/n ≤ 0.4/n.
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Next, we present the second class of results that quantify the well-conditionedness of the Jackson kernel matrices
D`(f), ` = 0, 1, 2. Such results are instrumental to dual certificate construction [1]. Since the minimal separation
∆(T ) is a key quantity affecting the well-conditionedness, we first show that those frequencies Tλ := {fλ` } and
T̂ := {f̂`} in Lemma 4.1 and Lemma 4.2 satisfy a separation condition, provided T ? = {f?` } satisfy a slightly
stronger separation condition. The proof is given in Appendix K.

Lemma A.4. Let the separation condition (2.5) and the SNR condition (2.6) hold. Then both the frequencies Tλ =
{fλ` } returned by the first fixed point map (4.4) and the frequencies T̂ = {f̂`} generated by the second fixed point
map (4.6) have minimal separations at least 2.5/n. Furthermore, the intermediate frequencies defined by T̃ = {f̃`}k`=1

with each f̃` ∈ [f?` , f
λ
` ] or [fλ` , f

?
` ] and the second intermediate frequencies T̃λ := {f̃`}k`=1 with each f̃` ∈ [fλ` , f̂`]

or [f̂`, f
λ
` ] also have minimal separations at least 2.5/n:

min{∆(Tλ),∆(T̃ ),∆(T̂ ),∆(T̃λ)} ≥ 2.5/n.

Now we are ready to provide numerical bounds related to the well-conditionedness of the Jackson kernel matrices
D`(f), ` = 0, 1, 2:

‖I−D0(f)‖∞,∞
¬
≤ F0(2.5/n, 0)

¯
≤ 0.00755,∥∥D1(f)/

√
τ
∥∥
∞,∞

­
≤ F1(2.5/n, 0)/

√
τ

°
≤ 0.01236n/

√
τ ≤ 0.00682,

‖I− (−D2(f)/τ)‖∞,∞
®
≤ F2(2.5/n, 0)/τ

±
≤ 0.05610n2/τ ≤ 0.0171,

(A.11)

where ¬, ­ and ® follow because the diagonal entries of these kernel matrices are given by [D0(f , f)]`,` = K(0) = 1,
[D1(f , f)]`,` = K ′(0) = 0 and [D2(f , f)]`,` = K ′′(0) = −τ [4, Section IV.A]. Hence, it suffices to compute∑
fi∈T\{ζ} |K

(`)(ζ − fi)| for ζ ∈ T which can be bounded by F`(2.5/n, 0) according to Lemma A.2 since ∆(T ) ≥
2.5/n by Lemma A.4. The inequalities ¯, ° and ± follow from the upper bounds on F`(2.5/n, 0) in Table A.5 and
the fact that τ ≥ 3.289n2 for n ≥ 130 by (A.2).

To control the `∞,∞ distance between two kernel matrices, say D0(f) and D0(f , f?), we apply the mean value
theorem and Lemma A.2:

‖D0(f)−D0(f , f?)‖∞,∞
¬
= ‖D0(f1, f)−D0(f1, f

?)‖1
≤
∑
`

|K(f` − f1)−K(f?` − f1)|

­
=
∑
`

|K ′(f̃` − f1)(f` − f?` )|

≤ (|K ′(f̃1 − f1)|+
∑
` 6=1

|K ′(f̃` − f1)|)‖f − f?‖∞

®
≤ (F1 (2.5/n, 0.002/n) + max

f∈[0,0.002/n]
|K ′(f)|)‖f − f?‖∞

¯
≤ (0.01236n+ 0.00658n)(0.4X?γ/n) = 0.00758X?γ,

(A.12)

where ¬ follows since by rearranging indices if necessary, we can assume without loss of generality that the maximum
absolute row sum of D0(f)−D0(f , f?) happens at the first row; ­ holds because we applied the mean value theorem
for some f̃` between f` and f?` ; ® follows from the monotonic property of F`(2.5/n, f) in Lemma A.2 by taking into
account that ∆(T̃ ) ≥ 2.5/n (by Lemma A.4) and ‖f̃ − f‖∞ ≤ ‖f? − f‖∞ ≤ 0.4X?γ/n ≤ 0.002/n. ¯ follows from
the upper bounds on F1(2.5/n, 0.002/n) in Table A.5 and maxf∈[0,0.002/n] |K ′(f)| in Table A.5.

Applying the similar arguments as the step ®, we can get a more general result as follows
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Lemma A.5. Let an arbitrary cluster of points T := {fj} satisfy the separation condition of ∆(T ) ≥ 2.5/n. Assume
f ≤ |f − fr| ≤ f̄ for an arbitrary fr ∈ T . Then,∑

j

|K(`)(fj − f)| ≤ F`(2.5/n, f̄) + max
f∈[f,f̄ ]

|K(`)(f)|. (A.13)

To control ‖D`(f , f
?) − D`(f)‖∞,∞ in a similar manner for ` = 1, 2, we note that ‖θ − θ?‖∞̂ ≤ X?γ0/

√
2

and both T and T̃ are well-separated: ∆(T ) ≥ 2.5/n and ∆(T̃ ) ≥ 2.5/n with T̃ composed of certain “middle”
frequencies f̃` ∈ [f`, f

?
` ] or [f?` , f`]. Then using Lemma A.5, we upperbound ‖D`(f , f

?)−D`(f)‖∞,∞ as follows

1√
τ
‖D1(f , f?)−D1(f)‖∞,∞

¬
≤1/
√
τ (F2(2.5/n, 0.002/n) + max

f∈[0,0.002/n]
|K ′′(f)|)‖f − f?‖∞

­
≤(1/

√
3.289n2)(0.05610n2 + 3.290n2)(0.4X?γ/n) ≤ 0.73802X?γ,

(A.14)

where ¬ follows by Lemma A.5 and ­ follows from the fact that τ ≥ 3.289n2 for n ≥ 130 in (A.2) and by
combining the upper bound on F2(2.5/n, 0.002/n) in Table A.5 and the upper bound on maxf∈[0,0.002/n] |K ′′(f)|
in Table A.5. Similarly, following from Lemma A.5 and the mean value theorem, by combining the upper bound on
F3(2.5/n, 0.002/n) in Table A.5 and the upper bound on maxf∈[0,0.002/n] |K(3)(f)| in Table A.5, we have

1

τ
‖D2(f , f?)−D2(f)‖∞,∞ ≤

1

τ
(F3(2.5/n, 0.002/n) + max

f∈[0,0.002/n]
|K ′′′(f)|)‖f − f?‖∞

≤(1/3.289n2)(0.28687n3 + 0.0649394n3)(0.4X?γ/n) = 0.04279X?γ.

(A.15)

To control ‖D`(f
?)−D`(f)‖∞,∞, we rewrite D`(f

?)−D`(f) as

D`(f
?)−D`(f) = D`(f

?)−D`(f
?, f) + D`(f

?, f)−D`(f).

Then, the desired results follow from the triangle inequality of the `∞,∞ norm:

‖D0(f?)−D0(f)‖∞,∞ ≤ ‖D0(f?)−D0(f?, f)‖∞,∞ + ‖D0(f?, f)−D0(f)‖∞,∞
¬
≤ 2(0.00758X?γ) = 0.01516X?γ,

(A.16)

where ¬ follows from(A.12) and an exchange of the roles of f and f?;

1√
τ
‖D1(f?)−D1(f)‖∞,∞ ≤

1√
τ
‖D1(f?)−D1(f?, f)‖∞,∞ +

1√
τ
‖D1(f?, f)−D1(f)‖∞,∞

¬
≤ 2(0.73802X?γ) = 1.47604X?γ,

(A.17)

where ¬ follows from (A.14);

1

τ
‖D2(f?)−D2(f)‖∞,∞ ≤

1

τ
‖D2(f?)−D2(f?, f)‖∞,∞ +

1

τ
‖D2(f?, f)−D2(f)‖∞,∞

¬
≤2(0.04279X?γ) = 0.08558X?γ,

(A.18)

where ¬ follows from (A.15).
Then following from Eq. (A.10), (A.14)-(A.15) and (A.16)-(A.18), and together with the sub-multiplicative prop-

erty of the `∞,∞ norm, we have∥∥∥∥ 1√
τ

diag(1./|c?|)[D1(f , f?)c? −D1(f)c]

∥∥∥∥
∞
≤ 1√

τ
‖D1(f , f?)−D1(f)‖∞,∞‖1./c?‖∞‖c?‖∞

+
1√
τ
‖D1(f)‖∞,∞‖1./c?‖∞‖c− c?‖∞

≤(0.73802X?γ)B? + (0.01236n/
√
τ)B?X?γ = 0.75038B?X?γ,

(A.19)
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where the last but one line follows from ‖1./c?‖∞ ≤ 1/c?min and γ = γ0/c
?
min. Here and throughout the rest of the

paper, we use 1./x, 1./|x|, y./x, |y|./|x|, x � y and 1
x , 1
|x| ,

y
x , |y||x| in the sense of pointwise arithmetic operations,

here x,y stand for any vectors of the same length.
We apply similar arguments to develop the following bound∥∥∥∥1

τ
diag(1./|c?|)[D2(f , f?)c? −D2(f)c]

∥∥∥∥
∞
≤1

τ
‖D2(f , f?)−D2(f)‖∞,∞‖1./c?‖∞‖c?‖∞

+
1

τ
‖D2(f)‖∞,∞‖1./c?‖∞‖c− c?‖∞

≤(0.08558X?γ)B? + (1.05610)B?(X?γ) ≤ 1.14168B?X?γ.
(A.20)

Appendix B Bounding the Dual Atomic Norm of Gaussian Noise
In this section, we develop an upper bound on the dual atomic norm of the weighted Gaussian noise Zw ∼ N (0, σ2Z2)

for the positive definite diagonal matrix Z with [Z]`,` = gM (`)
M . First following [10, C.4 with N ≥ 4π(2n + 1)], we

get

sup
f∈T

∣∣a(f)HZw
∣∣ ≤ 2 max

m=0,...,N−1
|Sm|, (B.1)

where {Sm}N−1
m=0 are N equispaced samples of the continuous function a(f)HZw defined on T = [0, 1]:

Sm : = a(
m

N
)HZw =

n∑
`=−n

gM (`)

M
w`e
−i2π`mN .

Since {w`} are i.i.d. Gaussian variables with mean zero and variance σ2, we have that each Sm is a Gaussian variable

with mean zero and variance given by Var(Sm) :=
∑n
`=−n

(
gM (`)
M

)2

σ2. The main idea next is first to compute an

upper bound (denoted by Π) on the variance Var(Sm) and then apply the Gaussian upper deviation inequality [39, Eq.
(7.8)]

P
[
|Sm| ≥ t

√
Π
]
≤ e−t

2/2 (B.2)

to get a high-probability upper bound on |Sm|. To evaluate Π, it is instructive to first note

gM (`) =
1

M

min(`+M,M)∑
k=max(`−M,−M)

(
1−

∣∣∣∣ kM
∣∣∣∣)(1−

∣∣∣∣`− kM

∣∣∣∣) ,
with ` = −2M, . . . , 2M, which is the convolution of two triangle functions:

gM (`) =
1

M
TriM (`) ∗ TriM (`), ` = −2M, . . . , 2M. (B.3)

Here the triangle function is defined by TriM (`) := 1− |`|M , ` = −M, . . . ,M and ∗ represents the convolution operator.
Apparently Var(Sm) is the squared `2 norm of the vector gM := [gM (−2M), . . . , gM (2M)]T scaled by σ2/M2.
Since by Eq. (B.3), gM is the convolution of two (the same) triangular vectors hM := [TriM (−M), . . . ,TriM (M)]
and then scaled by 1/M , we obtain an upper bound on Var(Sm) by applying Young’s inequality ‖f ∗g‖r ≤ ‖f‖p‖g‖q
where r−1 = p−1 + q−1 − 1 and setting r = 2, p = 2, q = 1:

Var(Sm) =

n∑
`=−n

(
gM (`)

M

)2

σ2=
σ2

M2
‖gM‖22=

σ2

M4
‖hM ∗ hM‖22≤

σ2

M4
‖hM‖21‖hM‖22. (B.4)
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Therefore, to bound Var(Sm), it remains to bound ‖hM‖21 and ‖hM‖22 :

‖hM‖21 =

(
M∑

`=−M

(
1− |`|

M

))2

= M2 and ‖hM‖22 =

M∑
`=−M

(
1− |`|

M

)2

=
2M

3
+

1

3M
. (B.5)

Then plug (B.5) into (B.4), we obtain an upper bound on Var(Sm) as

Var(Sm) ≤ σ2

M4
M2

(
2M

3
+

1

3M

)
= σ2

(
2

3M
+

1

M3

)
¬
= σ2

(
4

3n
+

8

n3

)
­
≤ 1.334σ2/n, for n ≥ 130,

(B.6)
where ¬ follows from n = 2M and ­ follows since 8/n2 is a decreasing sequence of n implying the maximal happens
at n = 130. Thus we can choose Π = 1.334σ2/n. Plugging Π = 1.334σ2/n into the Gaussian tail bound (B.2), we
get

P
[
|Sm| ≥ t

√
1.334σ/

√
n
]
≤ e−t

2/2 (B.7)

for all m = 0, . . . , N − 1.
Applying the union bound yields

P

[
sup
f∈T

∣∣a(f)HZw
∣∣ ≥ 2t

√
1.334σ/

√
n

]
≤ P

[
max

m=0...N−1
|Sm| ≥ t

√
1.334σ/

√
n

]
≤ Ne−t

2/2, (B.8)

where the first inequality follows from (B.1). Setting t =
√

8 log n in the above gives

P

sup
f∈T

∣∣a(f)HZw
∣∣ ≥ 4

√
2
√

1.334︸ ︷︷ ︸
≤6.534

√
log n/nσ

 ≤ 8π(2n+ 1)

n4
≤ 1

n2
, (B.9)

where the last inequality holds for n ≥ 130. Therefore, we obtain that

P

[
sup
f∈T

∣∣a(f)HZw
∣∣ ≤ 6.534

√
log n/nσ

]
≥ 1− 1

n2
, for n ≥ 130. (B.10)

To bound supf∈T
∣∣a′(f)HZw

∣∣ and supf∈T
∣∣a′′(f)HZw

∣∣, a natural approach is to exploit the relations between
a(f) and its derivatives a′(f), a′′(f):

a′(f) = (i2π diag(n)))a(f) and a′′(f) = (i2π diag(n))2a(f).

Similarly, define S′m and S′′m as the mth equispaced sample of a′(f)HZw and a′′(f)HZw, respectively:

S′m = a′(m/N)HZw = a(m/N)H(−i2π diag(n))Zw,

S′′m = a′′(m/N)HZw = a(m/N)H(−i2π diag(n))2Zw.

Hence S′m ∼ N (0,Var(S′m)) and S′′m ∼ N (0,Var(S′′m)) with

Var(S′m) =

n∑
`=−n

(2π`gM (`)/M)
2
σ2) ≤ (2πn)2

(
n∑

`=−n

(gM (`)/M)
2
σ2

)
¬
≤ (2πn)21.334σ2/n,

Var(S′′m) =

n∑
`=−n

(
(2π`)2gM (`)/M

)2
σ2) ≤ (2πn)4

(
n∑

`=−n

(gM (`)/M)
2
σ2

)
­
≤ (2πn)41.334σ2/n,
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where ¬ and ­ follow from (B.6). Applying the Gaussian deviation inequality to S′m, S
′′
m yields

P
[
|S′m| ≥ t2π

√
1.334

√
nσ
]
≤ 2e−t

2/2 and P
[
|S′′m| ≥ t4π2

√
1.334n

√
nσ
]
≤ 2e−t

2/2.

Then applying the same arguments as (B.8), we get for n ≥ 130,

P

sup
f∈T

∣∣a′(f)HZw
∣∣ ≤ 8

√
2π
√

1.334︸ ︷︷ ︸
≤41.052

√
n log nσ

 ≥ 1− 1

n2
,

P

sup
f∈T

∣∣a′′(f)HZw
∣∣ ≤ 16

√
2π2
√

1.334︸ ︷︷ ︸
≤257.94

n
√
n log nσ

 ≥ 1− 1

n2
.

(B.11)

Finally, we invoke that

A(f) = [a(f1), . . . ,a(fk)], A′(f) = [a′(f1), . . . ,a′(fk)], A′′(f) = [a′′(f1), . . . ,a′′(fk)],

and recognize that supf∈T
∣∣a(`)(f)HZw

∣∣ is an upper bound on ‖A(`)(f)HZw‖∞ to get

‖A(`)(f)HZw‖∞= max
f∈{fj}

|a(`)(f)HZw|≤ sup
f∈T
|a(`)(f)HZw|.

Together with (B.10), (B.11) and the definition γ0 = σ
√

logn
n , we obtain that the following inequalities hold for

n ≥ 130 with probability at least 1− 1
n2 :

‖A(f)HZw‖∞ ≤ sup
f∈T

∣∣a(f)HZw
∣∣ ≤ 6.534γ0,

‖A′(f)HZw‖∞ ≤ sup
f∈T

∣∣a′(f)HZw
∣∣ ≤ 41.052nγ0,

‖A′′(f)HZw‖∞ ≤ sup
f∈T

∣∣a′′(f)HZw
∣∣ ≤ 257.94n2γ0.

(B.12)

As a consequence, we claim that the following inequalities hold for n ≥ 130 with probability at least 1− 1
n2 :

‖ diag(1./|c?|)A′(f)HZw‖∞/
√
τ

¬
≤ ‖diag(1./|c?|)‖∞,∞‖A(f)HZw‖∞/

√
τ

≤ 1√
3.289n2

1

c?min

(41.052nγ0) ≤ 22.64γ, (B.13)

‖ diag(c./|c?|2)A′′(f)HZw‖∞/τ
­
≤ ‖diag(c./|c?|)‖∞,∞‖diag(1./|c?|)‖∞,∞‖A′′(f)HZw‖∞/τ

≤ 1

3.289n2
(1 +X?γ)

1

c?min

(257.94n2γ0) ≤ 78.43(1 +X?γ)γ, (B.14)

where ¬ follows from that ‖Ax‖∞ ≤ ‖A‖∞,∞‖x‖∞ by the definition of the `∞,∞ norm and the fact τ ≥ 3.289n2 for
n ≥ 130 by (A.2). ­ follows from the sub-multiplicative property of the `∞,∞ norm that ‖ABx‖∞ ≤ ‖A‖∞,∞‖B‖∞,∞‖x‖∞
and ‖ diag(c./|c?|)‖∞,∞ = max` |c`|/|c?` | ≤ (1+X?γ) which follows from the assumption ‖θ−θ?‖∞̂ ≤ X?γ0/

√
2

and the derived results (A.10).

Appendix C Gradient and Hessian for the Nonconvex Program (2.11)
Recall that the objective function G of the program (2.11) is

G(f , c) =
1

2
‖A(f)c− y‖2Z + λ‖c‖1.

We denote c = u + iv for u ∈ Rk and v ∈ Rk.
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C.1 Gradient
Let the operators R{·} and I{·} take respectively the real and imaginary parts of a complex number or vector. The
gradient of G(f , c) with respect to θ := (f ,u,v) ∈ R3k is defined by

∇G(θ) =

∂G/∂f

∂G/∂u

∂G/∂v

 ¬
=

∂G/∂f

2R{∂G/∂c̄}
2I{∂G/∂c̄}

 ­
=

R
{

(A′(f) diag(c))HZ(A(f)c− y)
}

R
{
A(f)HZ(A(f)c− y) + λc./|c|

}
I
{
A(f)HZ(A(f)c− y) + λc./|c|

}


®
=

R
{

diag(c)H(−D1(f)c + D1(f , f?)c? −A′(f)HZw)
}

R
{
D0(f)c−D0(f , f?)c? −A(f)HZw + λc./|c|

}
I
{
D0(f)c−D0(f , f?)c? −A(f)HZw + λc./|c|

}
 , (C.1)

where ¬ holds for G ∈ R. ­ follows from diag(df)c = diag(c)df and d|c| = c̄dc+cdc̄
2|c| . ® follows from the kernel

matrix factorization formulas (A.6)-(A.7) and by taking into account that y = x? + w = A(f?)c? + w.

C.2 Hessian
The symmetric Hessian matrix∇2G(θ) is given by

∇2G(θ) =

 ∂2G
∂f∂f

∂2G
∂f∂u

∂2G
∂f∂v

∂2G
∂u∂f

∂2G
∂u∂u

∂2G
∂u∂v

∂2G
∂v∂f

∂2G
∂v∂u

∂2G
∂v∂v

 :=

Hff Hfu Hfv

Huf Huu Huv

Hvf Hvu Hvv


with 

Hff

Hfu

Hfv

Huu

Hvv

Huv


¬
=



R{(A′(f)Λ)HZA′(f)Λ + diag((A′′(f)Λ)HZ(A(f)c− y))}
R{(A′(f)Λ)HZA(f) + diag(A′(f)HZ(A(f)c− y))}
I{−(A′(f)Λ)HZA(f) + diag(A′(f)HZ(A(f)c− y))}
A(f)HZA(f) + λ diag(v2 � |c|.−3)

A(f)HZA(f) + λ diag(u2 � |c|.−3)

−λ diag(u� v � |c|.−3)



­
=



R{−ΛHD2(f)Λ− diag(ΛHA′′(f)HZw)− diag(ΛH(D2(f , f?)c? −D2(f)c))}
R{−ΛHD1(f)− diag(A′(f)HZw) + diag(D1(f , f?)c?)− diag(D1(f)c)}
I{ΛHD1(f)− diag(A′(f)HZw) + diag(D1(f , f?)c?)− diag(D1(f)c)}
D0(f) + λ diag(v2 � |c|.−3)

D0(f) + λ diag(u2 � |c|.−3)

−λ diag(u� v � |c|.−3)


, (C.2)

where we denoted Λ := diag(c) to simplify notation. ¬ follows from direct computation and ­ follows from the
matrix decomposition formulas (A.6)-(A.7) and by taking into account that y = x? + w = A(f?)c? + w.

Remarkably, if we replace the noisy signal y in the objective function of the nonconvex program (2.11) with the
noise-free signal x? to get

Gλ(f , c) =
1

2
‖A(f)c− x?‖2Z + λ‖c‖1,

then its gradient and Hessian matrix can be obtained from those of G(f , c) by setting the noise w to zero.

27



Appendix D Proof of Lemma 4.1
Proof. The underlying fixed point map is

Θλ(θ) = θ −W?∇Gλ(θ),

where Gλ is defined as the objective function of the nonconvex program (2.11) with the noisy signal y replaced by the
noise-free signal x?:

Gλ(θ) =
1

2
‖A(f)c− x?‖2Z + λ‖c‖1.

By Theorem 4.1, to show the existence and uniqueness of a point θλ ∈ N ? such that Θλ(θλ) = θλ, the key is to show
that Θλ satisfies the non-escaping condition and the contraction condition:

(i) Θλ(N ?) ⊂ N ?;

(ii) There exists ρ ∈ (0, 1) such that ‖Θλ(v)−Θλ(w)‖∞̂ ≤ ρ‖v −w‖∞̂ for any v,w ∈ N ?.

D.1 Showing the Contraction Property
For v,w ∈ N ?, we have

‖Θλ(v)−Θλ(w)‖∞̂
¬
=

∥∥∥∥∫ 1

0

[∇Θλ(tv + (1− t)w)](v −w)dt

∥∥∥∥
∞̂

­
≤ maximize

θ∈N?
‖∇Θλ(θ)‖∞̂,∞̂‖v −w‖∞̂,

where ¬ follows from the integral form of the mean value theorem for vector-valued functions (see [40, Eq. (A.57)]);
­ follows from the sub-multiplicative property of ‖ · ‖∞̂,∞̂ and the fact that tv + (1− t)w ∈ N ? for t ∈ [0, 1]. Thus,
it suffices to show

maximize
θ∈N?

‖∇Θλ(θ)‖∞̂,∞̂ < 1,

where the matrix `∞̂,∞̂ norm is defined by (following from the definition of the `∞̂ norm)

‖A‖∞̂,∞̂ =

∥∥∥∥∥∥
A11 A12 A13

A21 A22 A23

A31 A32 A33

∥∥∥∥∥∥
∞̂,∞̂

:=

∥∥∥∥∥∥
SA11S

−1 SA12 SA13

A21S
−1 A22 A23

A31S
−1 A32 A33

∥∥∥∥∥∥
∞,∞

,

with S =
√
τ diag(|c?|). Together with

W? =

S−2

Ik
Ik

 ,
we therefore obtain that

‖W?A‖∞̂,∞̂ =

∥∥∥∥∥∥
S−1A11S

−1 S−1A12 S−1A13

A21S
−1 A22 A23

A31S
−1 A32 A33

∥∥∥∥∥∥
∞,∞

= ‖W? 1
2 AW? 1

2 ‖∞,∞ := ‖Υ(A)‖∞,∞, (D.1)

where the linear operator Υ(·) := W? 1
2 (·)W? 1

2 . The Jacobian of the fixed point map Θλ is given by

∇Θλ(θ) = I−W?∇2Gλ(θ), (D.2)
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where the symmetric Hessian matrix∇2Gλ(θ) can be obtained from∇2G(θ) by setting the noise w to zero:

∇2Gλ(θ) =

Hff Hfu Hfv

Huf Huu Huv

Hvf Hvu Hvv

 .
Due to the symmetric structure of the Hessian matrix, it suffices to know the expressions for the following block
matrices (see Eq. (C.2)):

Hff = R{−ΛHD2(f)Λ− diag(ΛH(D2(f , f?)c? −D2(f)c))}; Huu = D0(f) + λ diag(v � v./
∣∣c∣∣3);

Hfu = R{−ΛHD1(f) + diag(D1(f , f?)c?)− diag(D1(f)c)}; Hvv = D0(f) + λ diag(u� u./
∣∣c∣∣3);

Hfv = I{ΛHD1(f) + diag(D1(f , f?)c?)− diag(D1(f)c)}; Huv = −λ diag(u� v./
∣∣c∣∣3),

where Λ = diag(c).
Next we compute the weighed `∞̂,∞̂ norm of the Jacobian of the fixed point map Θλ:

‖∇Θλ(θ)‖∞̂,∞̂
¬
= ‖W?∇2Gλ(θ)− I‖∞̂,∞̂

­
= ‖Υ(∇2Gλ(θ)−W?−1)‖∞,∞

®
= ‖Υ(∇2Gλ(θ))− I‖∞,∞,

where ¬ follows from (D.2), ­ follows from (D.1) by noting that W?∇2Gλ(θ)− I = W?(∇2Gλ(θ)−W?−1) and
® from the linearity of Υ(·) and Υ(W?−1) = W? 1

2 W?−1W? 1
2 = I. Direct computation gives

Υ(∇2Gλ(θ))− I =


−1
τ R{ΦHD2(f)Φ} − I −1√

τ
R{Φ}D1(f) −1√

τ
I{Φ}D1(f)

1√
τ
D1(f)R{Φ} D0(f)− I

1√
τ
D1(f)I{Φ} D0(f)− I

+

diag(dff ) diag(dfu) diag(dfv)
diag(dfu) diag(duu) diag(duv)
diag(dfv) diag(duv) diag(dvv)


where Φ := diag(c./|c?|) and

dff = −R{diag(c./|c?|2)H [D2(f , f?)c? −D2(f)c]/τ}; duu = λ diag(u� u./
∣∣c∣∣3);

dfu = R{diag(1./|c?|)[D1(f , f?)c? −D1(f)c]/
√
τ}; duv = λ diag(u� v./

∣∣c∣∣3);

dfv = I{diag(1./|c?|)[D1(f , f?)c? −D1(f)c]/
√
τ}; dvv = λ diag(v � v./

∣∣c∣∣3).

Clearly,

‖Υ(∇2Gλ(θ))− I‖∞,∞ = max
{

Πλ
1 ,Π

λ
2 ,Π

λ
3

}
with Πλ

1 ,Π
λ
2 ,Π

λ
3 being the first, second and third absolute row sums of Υ(∇2Gλ(θ))− I, respectively.

Bounding Πλ
1 .

Πλ
1 ≤

∥∥−R{diag(c./|c?|)HD2(f)/τ diag(c./|c?|)} − I
∥∥
∞,∞ + 2

∥∥diag(c./|c?|)D1(f)/
√
τ
∥∥
∞,∞

+ 2
∥∥diag(1./|c?|)[D1(fλ, f?)c? −D1(f)c]/

√
τ
∥∥
∞ +

∥∥diag(c./|c?|2)[D2(fλ, f?)c? −D2(f)c]/τ
∥∥
∞

¬
≤(0.05610n2/τ + 2.12X?γ) + 2(1 +X?γ)(0.01236n/

√
τ) + 2(0.75038B?X?γ) + 1.14168B?X?γ

≤0.08561, (D.3)

where ¬ follows from Eq. (A.11), (A.19), (A.20) and the following bound

∥∥−R{diag(c./|c?|)HD2(f)/τ diag(c./|c?|)} − I
∥∥
∞,∞ ≤max

i

∣∣∣∣ |ci|2|c?i |2
− 1

∣∣∣∣+ (0.05610n2/τ) max
i,j

|ci||cj |
|c?i ||c?j |

≤X?γ(2 +X?γ) + (0.05610n2/τ)(1 +X?γ)2

≤1.05610(X?γ)2 + 2.113X?γ + 0.05610n2/τ

≤0.05610n2/τ + 2.12X?γ.

(D.4)
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Bounding Πλ
2 and Πλ

3 .
Note Πλ

2 and Πλ
3 are of the same form. Thus we can bound them together:

max{Πλ
2 ,Π

λ
3} ≤‖D1(f)R{diag(c./|c?|)}‖∞,∞ /

√
τ + ‖diag(1./|c?|)[D1(f , f?)c? −D1(f)c]‖∞,∞ /

√
τ

+ ‖D0(f)− I‖∞,∞ + 2‖λ diag(u� v./
∣∣c∣∣3)‖∞,∞

¬
≤(1 +X?γ)(0.01236n/

√
τ) + (0.75038B?X?γ) + (0.00755) + 2(0.646X?γ)

<Πλ
1 (since B?X?γ ≤ 10−3),

where ¬ follows from Eq. (A.11), (A.19)-(A.20) and λ ≤ 0.646X?γ0. Therefore,

maximize
θ∈N?

∥∥Υ(∇2Gλ(θ))− I
∥∥
∞,∞ ≤ 0.08561 < 1, (D.5)

implying the contraction property of Θλ(θ).

D.2 Showing the Non-escaping Property
By the definition of the neighborhood N ?, it suffices to bound the distance between Θλ(θ) and θ?:

‖Θλ(θ)− θ?‖∞̂
¬
≤‖Θλ(θ)−Θλ(θ?)‖∞̂ + ‖Θλ(θ?)− θ?‖∞̂
­
=‖
∫ 1

0

[∇θΘλ((1− t)θ? + tθ)](θ − θ?)dt‖∞̂ + ‖Θλ(θ?)− θ?‖∞̂

®
≤maximize

z∈N?
‖∇θΘλ(z)‖∞̂,∞̂‖θ − θ?‖∞̂ + ‖W?∇Gλ(θ?)‖∞̂

¯
≤(0.08561)(X?γ0/

√
2) + λ

°
≤ X?γ0/

√
2,

where ¬ follows from the triangle inequality, ­ follows from the integral form of the mean value theorem for vector-
valued functions (see [40, Eq. (A.57)]), ® follows from sub-multiplicative property of ‖ · ‖∞̂,∞̂ and the fact that
(1− t)θ? + tθ) ∈ N ? for t ∈ [0, 1], ¯ follows from

‖W?∇Gλ(θ?)‖∞̂ =

∥∥∥∥∥∥
 0
R{λc?./

∣∣c?∣∣}
I{λc?./

∣∣c?∣∣}
∥∥∥∥∥∥
∞̂

≤ λ,

and ° holds for λ ≤ 0.646X?γ0 since (0.08561)(X?γ0/
√

2) + 0.646X?γ0 ≤ 0.9992X?γ0/
√

2.
In sum, Θλ satisfies both the contraction and the non-escaping properties in N ?. Therefore, by the contraction

mapping theorem, the map Θλ has a unique fixed point θλ ∈ N ? satisfying Θλ(θλ) = θλ.
We continue to show that θλ is a differentiable function of λ. Define a function F : R3k×R 7→ R3k as F (θ, λ) =

∇Gλ(θ) and recognize F (θ, λ) is continuously differentiable since it has a continuous Jacobian given by

∂F (θ, λ) =
[
∂
∂θF (θ, λ) ∂

∂λF (θ, λ)
]

=

∇2Gλ(θ)

 0
R{c./|c|}
I{c./|c|}

 ,
with ∂

∂θF (θ, λ) nonsingular in N ? by (D.5). Then according to the implicit function theorem (see [41, Proposition
A.25]), there is a continuously differentiable function g(·) such that F (g(λ), λ) = ∇Gλ(g(λ)) = 0 and

d

dλ
g(λ) = −(

∂

∂θ
F (g(λ), λ))−1 ∂

∂λ
F (g(λ), λ) = −(∇2Gλ(g(λ)))−1 ∂

∂λ
∇Gλ(g(λ)). (D.6)
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Since ∇Gλ(g(λ)) = 0 is equivalent to Θλ(g(λ)) = g(λ), we conclude that θλ = g(λ) due to the uniqueness of the
fixed point of Θλ. Therefore, θλ is a differentiable function of λ and

d

dλ
θλ = −(∇2Gλ(θλ))−1 ∂

∂λ
∇Gλ(θλ). (D.7)

Finally, let limλ→0 θ
λ = θ0. Taking limit as λ goes to 0 in the equation ∇Gλ(θλ) = 0 yields ∇G0(θ0) = 0 due

to the continuity of ∇Gλ(θ) in λ and θ and the continuity of θλ. Since ∇G0(θ?) = 0 by direct computation and the
solution is unique in N ?, we conclude that limλ→0 θ

λ = θ0 = θ?.

Appendix E Proof of Lemma 4.2
Proof. The main idea is again to apply the contraction mapping theorem 4.1 to the fixed point map:

Θ(θ) = θ −W?∇G(θ),

where G is the objective function of (2.11):

G(θ) =
1

2
‖A(f)c− y‖2Z + λ‖c‖1

with λ = 0.646X?γ0. By Theorem 4.1, showing the existence of a unique point θ̂ ∈ N λ such that Θ(θ̂) = θ̂ can be
reduced to showing that Θ satisfies both the non-escaping property and the contraction properties:

(i) Θ(N λ) ⊂ N λ;

(ii) There exists ρ ∈ (0, 1) such that ‖Θ(v)−Θ(w)‖∞̂ ≤ ρ‖v −w‖∞̂ for any v,w ∈ N λ.

E.1 Showing the Contraction Property
Recall that N ? is a neighborhood centered at θ? and N λ is a neighborhood centered at θλ defined respectively via

N ? =

{
θ : ‖θ − θ?‖∞̂ ≤

X?

√
2
γ0

}
and N λ =

{
θ : ‖θ − θλ‖∞̂ ≤

35.2√
2
γ0

}
.

Keep in mind that θλ is the unique point inN ? that satisfies∇Gλ(θλ) = 0. To show the contraction of Θ inN λ, our
strategy is to show Θ is contractive in a larger set N̂ that contains N λ:

N̂ =

{
θ : ‖θ − θ?‖∞̂ ≤

X? + 35.2√
2

γ0 :=
X̂√

2
γ0

}
.

Recognize that N̂ is a neighborhood centered at θ? but with a radius 35.2γ0/
√

2 larger than that ofN ?. Such a choice
is made for the purpose of showing the closeness between the final fixed point solution θ̂ and θ?. We remark that
the quantity 35.2γ0/

√
2 corresponds to the dual atomic norm of the weighted Gaussian noise. Adding such a noise

norm term to the radius of the original neighborhood N ? ensures that the region N̂ is large enough for Θ(θ) to be
non-escaping. This is reasonable because the second fixed point map (4.6) involves an additive Gaussian noise and we
have shown that the first fixed point map (4.4) (the one constructed in the noise-free setting) satisfies the non-escaping
property in N ?.

Next, we apply arguments similar to those of showing the contraction of Θλ inN ?. In particular, we first compute
the expression of Υ(∇2G(θ))− I:

Υ(∇2G(θ))− I =


−1
τ R{ΦHD2(f)Φ} − I −1√

τ
R{Φ}D1(f) −1√

τ
I{Φ}D1(f)

1√
τ
D1(f)R{Φ} D0(f)− I 0

1√
τ
D1(f)I{Φ} 0 D0(f)− I

+

diag(d̂ff ) diag(d̂fu) diag(d̂fv)

diag(d̂fu) diag(d̂uu) diag(d̂uv)

diag(d̂fv) diag(d̂uv) diag(d̂vv)


with Φ = diag(c./|c?|) and
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d̂ff = −R{diag(c./|c?|2)H [A′′(f)HZw + D2(f , f?)c? −D2(f)c]/τ}; d̂uu = λ diag(u� u./
∣∣c∣∣3);

d̂fu = R{diag(1./|c?|)[−A′(f)HZw + D1(f , f?)c? −D1(f)c]/
√
τ}; d̂uv = λ diag(u� v./

∣∣c∣∣3);

d̂fv = I{diag(1./|c?|)[−A′(f)HZw + D1(f , f?)c? −D1(f)c]/
√
τ}; d̂vv = λ diag(v � v./

∣∣c∣∣3).

Comparing the expressions for [Υ(∇2Gλ(θ)) − I] and [Υ(∇2G(θ)) − I] shows that the latter differs in have
additional noise terms in the first row and the first column blocks. We have shown that the first absolute row sum
Πλ

1 of [Υ(∇2Gλ(θ)) − I] dominates the other row sums. Having additional noise terms will only increase the final
bounds due to the application of the triangle inequality. Therefore, the first absolute row sum (denoted by Π̂1) of
[Υ(∇2G(θ))− I] also dominates and hence achieves the `∞,∞ norm. Direct computation gives

Π̂1 ≤ Πλ
1 + 2‖ diag(1./|c?|)A′(f)HZw‖∞/

√
τ + ‖ diag(c./|c?|2)A′′(f)HZw‖∞/τ

¬
≤ 0.08561 + 2(22.64γ) + 78.43(1 + X̂γ)γ

­
≤ 0.08563,

where ¬ follows from Πλ
1 ≤ 0.08561 and Eq. (B.12)-(B.14), ­ follows from X̂ = X? + 35.2 and the SNR condi-

tion (2.6) that X?B?γ ≤ 10−3 and B?/X? ≤ 10−4 hence 2(22.64γ) + 78.43(1 + X̂γ)γ ≤ 0.00002. Hence,

maximize
θ∈N̂

‖∇Θ(θ)‖∞̂,∞̂ ≤ 0.08563 < 1. (E.1)

This implies the contraction of Θ in N λ, since

maximize
θ∈Nλ

‖∇Θ(θ)‖∞̂,∞̂ ≤ maximize
θ∈N̂

‖∇Θ(θ)‖∞̂,∞̂.

E.2 Showing the Non-escaping Property

‖Θ(θ)− θλ‖∞̂ =‖(Θ(θ)−Θ(θλ)) + (Θ(θλ)− θλ)‖∞̂
¬
≤‖∇Θ(θ̃)T (θ − θλ)‖∞̂ + ‖W?∇G(θλ)‖∞̂
≤max

θ̃∈N̂
‖∇Θ(θ̃)‖∞̂,∞̂‖θ − θλ‖∞̂ + ‖W?∇G(θλ)‖∞̂

­
≤(0.08563)

(
35.2γ0/

√
2
)

+ 22.7γ0

≤35.117γ0/
√

2 < 35.2γ0/
√

2,

where ¬ follows from the mean value theorem for some θ̃ on the line segment joining θ and θλ and ­ follows
from (E.1) and (E.2). Eq. (E.2) is given as follows

∥∥∥W?∇G(θλ)
∥∥∥
∞̂

=

∥∥∥∥∥∥W?

R{−diag(cλ)H(A′(fλ)HZw + D1(fλ, f?)c? −D1(fλ)cλ)}
R{−A(fλ)HZw −D0(fλ, f?)c? + D0(fλ)cλ + λcλ./

∣∣cλ∣∣}
I{−A(fλ)HZ(λw −D0(fλ, f?)c? + D0(fλ)cλ + λcλ./

∣∣cλ∣∣}
∥∥∥∥∥∥
∞̂

¬
=

∥∥∥∥∥∥
R{−diag(cλ./|c?|)HA′(fλ)HZw}/

√
τ

R{−A(fλ)HZw}
I{−A(fλ)HZw}

∥∥∥∥∥∥
∞

­
≤

∥∥∥∥∥∥
41.052n/

√
τ(1 +X?γ)γ0

6.534γ0

6.534γ0

∥∥∥∥∥∥
∞

≤ 22.7γ0,

(E.2)
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where ¬ holds since∇Gλ(θ) vanishes at θλ:

∇Gλ(θλ) =

R{− diag(cλ)H(D1(fλ, f?)c? −D1(fλ)cλ)}
R{−D0(fλ, f?)c? + D0(fλ)cλ + λcλ./

∣∣cλ∣∣}
I{−D0(fλ, f?)c? + D0(fλ)cλ + λcλ./

∣∣cλ∣∣}
 = 0.

­ holds with probability at least 1− 1
n2 by (B.12)-(B.14).

Hence both the contraction and the non-escaping properties are satisfied by Θ in N λ. Then by the contraction
mapping theorem, we conclude the proof of Lemma 4.2.

Appendix F Proof of Lemma 4.3
Proof. To show that q? is a valid dual certificate, it is instructive to first relate q? to the derivative of xλ with respect
to λ (where we treat xλ as a function of λ):

q? = lim
λ→0

qλ = lim
λ→0

x? − xλ

λ
= − d

dλ
xλ
∣∣
λ=0

, (F.1)

where we used the fact that limλ→0 xλ = limλ→0 A(fλ)cλ = A(f?)c? = x? by Lemma 4.1. Since xλ = A(fλ)cλ =∑
` c
λ
` a(fλ` ), we compute the derivative d

dλxλ using the chain rule as:

d

dλ
xλ =

∑
`

(
d

dλ
uλ` + i

d

dλ
vλ`

)
a(fλ` ) +

∑
`

cλ`

(
dfλ`
dλ

a′(fλ` )

)
=
[
A′(fλ) diag(cλ) A(fλ) iA(fλ)

] d

dλ
θλ,

(F.2)

where A′(f) =
[
a′(f1) · · · a′(fk)

]
. Therefore, using Eq. (F.1) and (F.2) we obtain:

q? = − lim
λ→0

[
A′(fλ) diag(cλ) A(fλ) iA(fλ)

] d

dλ
θλ

= − [A′(f?) diag(c?) A(f?) iA(f?)] lim
λ→0

d

dλ
θλ

= [A′(f?) diag(c?) A(f?) iA(f?)] (∇2G0(θ?))−1 ∂

∂λ
∇G0(θ?), (F.3)

where in the second line we again used the fact that limλ→0 θ
λ = θ? by Lemma 4.1, and in the last line we used the

expression for dθλ/dλ given in (4.5).
We next compute ∂

∂λ∇G
0(θ?) explicitly. Let K(`)(·) denote the `-order derivative of the Jackson kernel K(·)

(see Appendix A for more details). Recall that D`(f
1, f2) := [K(`)(f2

m − f1
n)]1≤n≤k,1≤m≤k and D`(f) := D`(f , f)

are matrices formed by sampling the Jackson kernel and its derivatives. Then we have the following expression for
∇Gλ(θ) (see Appendix C for more details)

∇Gλ(θ) =

R{diag(c)(D1(f , f?)c? −D1(f)c)}
R{−D0(f , f?)c? + D0(f)c + λc./

∣∣c∣∣}
I{−D0(f , f?)c? + D0(f)c + λc./

∣∣c∣∣}
 . (F.4)

Therefore, the partial derivative of (F.4) with respect to λ is the expanded complex sign vector:

∂

∂λ
∇Gλ(θλ) =

 0
R{sign(cλ)}
I{sign(cλ)}

 :=

 0
sλR
sλI

 =⇒ ∂

∂λ
∇G0(θ?) =

 0
R{sign(c?)}
I{sign(c?)}

 :=

 0
s?R
s?I

 . (F.5)

Here sλ = cλ./|cλ|, s? = c?./|c?| and the subscript R and I indicate the real and imaginary parts respectively.
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Combining Eq. (F.3) and (F.5), we get

q? = [A′(f?) A(f?) iA(f?)]

diag(c?)
I

I

 (∇2G0(θ?))−1

 0
s?R
s?I


︸ ︷︷ ︸

:=[βT αTR αTI ]T

, (F.6)

where we have defined the coefficient vectors αR,αI and β in (F.6). These coefficient vectors satisfy

∇2G0(θ?)

diag(c?)−1β
αR
αI

 =

 0
s?R
s?I

 . (F.7)

By denoting α = αR + iαI and α = [α1, . . . , αk]T , β = [β1, . . . , βk]T , we obtain an explicit form for the dual
polynomial Q?(f):

Q?(f) = a(f)HZq? =

k∑
`=1

α`K(f?` − f) +

k∑
`=1

β`K
′(f?` − f). (F.8)

To show that q? certifies the atomic decomposition x? =
∑k
`=1 c

?
`a(f?` ), we need to establish that

1) Q?(f) satisfies Q?(f?` ) = sign(c?` ), ` = 1, . . . , k (Interpolation);

2) |Q?(f)| < 1,∀f /∈ T ? (Boundedness).

F.1 Showing the Interpolation Property
The Interpolation property follows from the construction process and is also easy to verify directly by noting

∇2G0(θ?) =

−R{diag(c?)HD2(f?) diag(c?)} R{−diag(c?)HD1(f?)} I{diag(c?)HD1(f?)}
−R{D1(f?)

H
diag(c?)} D0(f?) 0

−I{D1(f?)
H

diag(c?)} 0 D0(f?)

 .
Indeed, the Interpolation property is a result of (F.7): since D1(f?) ∈ Rk×k and D1(f?)T = −D1(f?) (see Ap-
pendix A), the last two row blocks in (F.7) read

[
D1(f?)R{diag(c?)} D0(f?) 0
D1(f?)I{diag(c?)} 0 D0(f?)

]diag(c?)−1β
αR
αI

 =

[
s?R
s?I

]
⇐⇒ D1(f?)(R{diag(c?)}+ iI{diag(c?)}) diag(c?)−1β + D0(f?)(αR + iαI) = R{sign(c?)}+ iI{sign(c?)}
⇐⇒ D1(f?)β + D0(f?)α = sign(c?)

⇐⇒ Q?(f?` ) = sign(c?` ), ` = 1, . . . , k. (F.9)

Furthermore, the first row block of (F.7) is equivalent to

− R{diag(c?)HD2(f?) diag(c?)} diag(c?)−1β + R{−diag(c?)HD1(f?)}αR + I{diag(c?)HD1(f?)}αI = 0

⇐⇒ R{diag(c?)H (D2(f?)β + D1(f?)α)} = 0

⇐⇒ R{c?H` Q?(f`)
′} = 0, ` = 1, . . . , k. (F.10)
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F.2 Showing the Boundedness Property
It remains to show that Q?(f) satisfies the Boundedness property, for which we follow the arguments of [1]. We start
with estimating the coefficient vectors α and β by rewriting (F.6) asdiag(c?)

I
I

Φ
(
Φ∇2G0(θ?)Φ

)−1
Φ

 0
s?R
s?I

 =

 β
αR
αI

 , (F.11)

where Φ = diag
([

diag
(

1
|c?|

)
, I, I

])
. Denoting Φ := diag(s?), we further simplify (F.11) as−R{ΦHD2(f?)Φ} R{−ΦHD1(f?)} I{ΦHD1(f?)}

−R{D1(f?)
H

Φ} D0(f?) 0

−I{D1(f?)
H

Φ} 0 D0(f?)

Φ−1β
αR
αI

 =

 0
s?R
s?I

 . (F.12)

Denote

D̃2 = −R{diag(s?)HD2(f?) diag(s?)};
D̃1 = diag(s?)HD1(f?);

β̃ = diag(s?)−1β.

The last two row blocks of (F.12) give

αR = D0(f?)
−1

[s?R + R{D1(f?)
H

diag(s?)}β̃];

αI = D0(f?)
−1

[s?I + I{D1(f?)
H

diag(s?)}β̃]

implying

α = D0(f?)
−1

[s? + D1(f?)
H

diag(s?)β̃] (F.13)

= D0(f?)
−1

[s? + D1(f?)
H
β]

= s? − (I−D0(f?)
−1

)s? + D0(f?)
−1

D1(f?)
H
β.

Without loss of generality, we assume eT1 s? = 1. Then

α1 = 1−
[
(I−D0(f?)

−1
)s? −D0(f?)

−1
D1(f?)

H
β
]

1
, (F.14)

where [·]1 stands for the first entry of a vector. The first row block of (F.12) leads to

D̃2β̃ = R{D̃1αR} − I{D̃1αI} = R{D̃1(αR + iαI)} = R{D̃1α}.

Combining this with (F.13), we get

D̃2β̃ = R{D̃1D0(f?)
−1

[s? + D?H
1 β]}

= R{D̃1D0(f?)
−1

s?}+ R{D̃1D0(f?)
−1}D?H

1 β

= R{D̃1D0(f?)
−1

s?}+ R{D̃1D0(f?)
−1}D?H

1 diag(s?)β̃

= R{D̃1D0(f?)
−1

s?}+ R{D̃1D0(f?)
−1}D̃H

1 β̃.

This implies

(D̃2 − R{D̃1D0(f?)
−1}D̃H

1 )β̃ = R{D̃1D0(f?)
−1

s?}. (F.15)
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F.2.1 Bounding ‖β̃‖∞

First invoke (A.11) to get

‖D0(f?)
−1‖∞,∞ ≤

1

1− 0.00755
,

{‖D1(f?)‖∞,∞, ‖D̃1‖∞,∞}/
√
τ ≤ 0.01236n/

√
τ ≤ 0.00682,

‖I− D̃2/τ‖∞,∞ ≤ 0.0171.

(F.16)

These inequalities (F.16) immediately lead to

‖τI− D̃2 + R{D̃1D0(f?)
−1}D̃H

1 ‖∞,∞
¬
≤τ
(
‖I− D̃2/τ‖∞,∞ + ‖D̃1/

√
τ‖2∞,∞‖D0(f?)

−1‖∞,∞
)

­
≤τ
(
0.0171 + 0.006822/(1− 0.00755)

)
≤ 0.01715τ<τ,

(F.17)

where ¬ follows from the triangle inequality and the sub-multiplicative property of `∞,∞ norm and ­ follows
from (F.16). This implies that D̃2 − R{D̃1D0(f?)

−1}D̃H
1 is nonsingular and well-conditioned. In particular,

‖(D̃2 − R{D̃1D0(f?)
−1}D̃H

1 )−1‖∞,∞
¬
≤ 1

τ(1− 0.01715)
≤ 1.0175

τ
,

where ¬ follows from (F.17). Then from (F.15), we have∥∥∥β̃∥∥∥
∞
≤‖(D̃2 − R{D̃1D0(f?)

−1}D̃H
1 )−1‖∞,∞‖R{D̃1D0(f?)

−1
s?}‖∞

¬
≤‖(D̃2 − R{D̃1D0(f?)

−1}D̃H
1 )−1‖∞,∞‖D̃1‖∞,∞‖D0(f?)

−1‖∞,∞‖s?‖∞
­
≤1.0175

τ

0.00682
√
τ

1− 0.00755
≤ 0.00700√

τ
,

(F.18)

where ¬ follows from sub-multiplicative property of the operator norm ‖ · ‖∞,∞, and ­ follows from Eq. (F.16) and
‖s?‖∞ = 1. This indicates that

‖β‖∞ ≤ ‖diag(s?)‖∞,∞ ‖β̃‖∞ ≤ 0.00700/
√
τ ≤ 0.00386/n := β∞, (F.19)

where the last inequality follows because τ ≥ 3.289n2 for n ≥ 130 by (A.2).

F.2.2 Bounding ‖α‖∞ and R{α1} and |I{α1}|

From (F.13), we have

‖α‖∞
¬
≤‖D0(f?)

−1‖∞,∞‖s?‖∞ + ‖D0(f?)
−1‖∞,∞‖D1(f?)‖∞,∞‖β‖∞

­
≤ 1

1− 0.00755
+

0.00682
√
τ

1− 0.00755

0.00700√
τ

≤1.00766 := α∞,

(F.20)

where ¬ follows from the triangle inequality and the fact that ‖ABx‖∞ ≤ ‖A‖∞,∞‖B‖∞,∞‖x‖∞. ­ holds since
‖s?‖∞ = 1.

Second, recognizing that α1 = 1− [(I−D0(f?)
−1

)s?−D0(f?)
−1

D1(f?)
H
β]1 by Eq. (F.14), we have R{α1} =
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1− [R{(I−D0(f?)
−1

)s? −D0(f?)
−1

D1(f?)
H
β}]1. We further get an upper bound as follows∣∣[R{(I−D0(f?)

−1
)s? −D0(f?)

−1
D1(f?)

H
β
}]

1

∣∣
¬
≤‖(I−D0(f?)

−1
)s? −D0(f?)

−1
D1(f?)

H
β‖∞

­
≤‖D0(f?)

−1‖∞,∞‖I−D0(f?)‖∞,∞‖s?‖∞ + ‖D0(f?)
−1‖∞,∞‖D1(f?)‖∞,∞‖β‖∞

≤ 0.00755

1− 0.00755
+

0.00682
√
τ

1− 0.00755

0.00700√
τ

≤0.00766,

where ¬ follows from the real part of the first entry of a vector is no larger than the infinity norm of this vector and
­ follows from the triangle inequality and the sub-multiplicative property of infinity operator norm that ‖ABx‖∞ ≤
‖A‖∞,∞‖B‖∞,∞‖x‖∞. The last inequality follows from Eq. (F.16) and (F.19). Combining the above arguments
yields

R{α1} ≥1− 0.00766 and |I{α1}| ≤ 0.00766. (F.21)

We are ready to show the Boundedness property following the simplifications used in [1]. In particular, fix an
arbitrary point f?0 ∈ T ? as the reference point and let f?−1 be the first frequency in T ? that lies on the left of f?0 while
f?1 be the first frequency in T ? that lies on the right. Here “left” and “right” are directions on the complex circle T. We
remark that the analysis depends only on the relative locations of {f?` }. Hence, to simplify the arguments, we assume
that the reference point f?0 is at 0 by shifting the frequencies if necessary. Then we divide the region between f?0 = 0
and f?1 /2 into three parts: Near Region N := [0, 0.24/n], Middle Region M := [0.24/n, 0.75/n] and Far Region
F := [0.75/n, f?1 /2]. Also their symmetric counterparts: −N := [−0.24/n, 0], −M := [−0.75/n,−0.24/n], and
−F := [f?−1/2,−0.75/n]. We first show that the dual polynomial has strictly negative curvature |Q?(f)|′′ < 0 in
N = [0, 0.24/n] and |Q?(f)| < 1 in M ∪ F = [0.24/n, f?1 /2], implying |Q?(f)| < 1 in N ∪ M ∪ F\{f?0 }
by exploiting |Q?(f?0 )| = 1 and |Q?(f?0 )|′ = 0. Then using the same symmetric arguments in [1], we claim that
|Q?(f)| < 1 in (−N )∪ (−M)∪ (−F)\{f?0 }. Combining these two results with the fact that the reference point f?0 is
chosen arbitrarily from T ? (and shifted to 0), we establish that the Boundedness property of Q?(f) holds in the entire
T\T ?.

F.2.3 Controlling Q?(f) in Near Region

For f ∈ N , the second-order Taylor expansion of |Q?(f)| at f?0 = 0 states

|Q?(f)| = |Q?(f?0 )|+ (f − f?0 )|Q?(f?0 )|′ + 1

2
(f − f?0 )2|Q?(ξ)|′′

= 1 + (f − f?0 )|Q?(f?0 )|′ + 1

2
(f − f?0 )2|Q?(ξ)|′′ for some ξ ∈ N , (F.22)

with the second line following from the Interpolation property. We argue that

|Q?(f?0 )|′ =
Q?R(f?0 )Q?R(f?0 )′ +Q?I(f

?
0 )Q?I(f

?
0 )′

|Q?(f?0 )|
=

R{c?0}Q?R(f?0 )′ + I{c?0}Q?I(f?0 )′

|c?0||Q?(f?0 )|
=

R{c?H0 Q?(f?0 )′}
|c?0||Q?(f?0 )|

= 0.

The last equality is due to (F.10). Together with (F.22), to bound |Q?(f)| strictly below 1, we only need to show the
concavity of |Q?(f)| in Near Region (i.e., |Q?(f)|′′ < 0 for f ∈ N ). Since

|Q?(f)|′′ = − (Q?R(f)Q?R(f)′ +Q?I(f)Q?I(f)′)2

|Q?(f)|3
+
Q?R(f)Q?R(f)′′ + |Q?(f)′|2 + |Q?I(f)||Q?I(f)′′|

|Q?(f)|
,

we only need to show that

Q?R(f)Q?R(f)′′ + |Q?(f)′|2 + |Q?I(f)||Q?I(f)′′| < 0.
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Recall the expression for Q?(f) given in Eq. (F.8)

Q?(f) =
∑
f?` ∈T?

α`K(f?` − f) +
∑
f?` ∈T?

β`K
′(f?` − f).

To bound the real part of Q?(f) in N = [0, 0.24/n], we observe

Q?R(f) ≥ R{α1K(f)} − α∞
∑

f?` ∈T?\{0}

|K(f − f?` )| − β∞|K ′(f)| − β∞
∑

f?` ∈T?\{0}

|K ′(f − f?` )|

≥ R{α1}min
f∈N

K(f)− α∞F0(2.5/n, f)− β∞(max
f∈N
|K ′(f)|+ F1(2.5/n, f))

≥ (1− 0.00766)(0.905252)− (1.00766)0.00757− (0.00386/n)(0.789569n+ 0.01241n)

≥ 0.887594,

where the first inequality follows from an application of the triangle inequality, and the second is from Lemma A.2.
The third inequality follows from evaluating F0(2.5/n, f) and F1(2.5/n, f) at f = 0.24/n, the numerical bounds in
Tables A.5 and A.5 of Appendix A.5 and Eq. (F.19), (F.20), (F.21), as well as minf∈N K(f) ≥ 0.905252. This last
bound follows from [1, Eq. (2.20), set fc = n− 2] that K(f) ≥ 1− π2

6 (n− 2)(n+ 2)f2. Hence

min
f∈N

K(f) ≥ min
f∈N

1− π2

6
(n− 2)(n+ 2)f2 ≥ 1− π2

6
(n− 2)(n+ 2)(0.24/n)2 ≥ 0.905252.

Similarly, combining Eq. (F.19), (F.20), (F.21), the upper bounds on F`(2.5/n, 0.24/n) in Table A.5 and the
upper bounds for maxf∈N |K(`)(f)| and maxf∈N K

′′(f) in Table A.5, we get

Q?R
′′(f) ≤R{α1}max

f∈N
K ′′(f) + α∞F2(2.5/n, 0.24/n) + β∞(max

f∈N
|K ′′′(f)|+ F3(2.5/n, 0.24/n))

≤(1− 0.00766)(−2.35084n2) + (1.00766)(0.05637n2) + (0.00386/n)(7.79273n3 + 0.28838n3)

≤− 2.24483n2;

|Q?I(f)| ≤|I{α1}|max
f∈N

K(f) + α∞F0(2.5/n, 0.24/n) + β∞(max
f∈N
|K ′(f)|+ F1(2.5/n, 0.24/n))

≤(0.00766)× 1 + (1.00766)0.00757 + (0.00386/n)(0.789569n+ 0.01241n)

≤0.0183836;

|Q?I
′′(f)| ≤|I{α1}|max

f∈N
|K ′′(f)|+ α∞F2(2.5/n, 0.24/n) + β∞(max

f∈N
|K ′′′(f)|+ F3(2.5/n, 0.24/n))

≤(0.00766)(3.290n2) + (1.00766)(0.05637n2) + (0.00386/n)(7.79273n3 + 0.28838n3)

≤0.113197n2;

|Q?′(f)| ≤α∞(max
f∈N
|K ′(f)|+ F1(2.5/n, 0.24/n)) + β∞(max

f∈N
|K ′′(f)|+ F2(2.5/n, 0.24/n))

≤(1.00766)(0.789569n+ 0.01241n) + (0.00386/n)(3.290n2 + 0.05637n2)

≤0.821039n;

|Q?′′(f)| ≤α∞(max
f∈N
|K ′′(f)|+ F2(2.5/n, 0.24/n)) + β∞(max

f∈N
|K ′′′(f)|+ F3(2.5/n, 0.24/n))

≤(1.00766)(3.290n2 + 0.05637n2) + (0.00386/n)(7.79273n3 + 0.28838n3)

≤3.40320n2.

Combining the lower bound on Q?R(f) and the upper bounds on Q?R(f)′′, |Q?(f)′|, |Q?I(f)| and |Q?I(f)′′|, we arrive
at

|Q?(f)|′′ = Q?R(f)Q?R(f)′′ + |Q?(f)′|2 + |Q?I(f)||Q?I(f)′′| ≤ −1.316313n2 < 0 in N .
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F.2.4 Bounding |Q?(f)| in Middle Region

For upperbounding |Q?(f)| for f ∈M = [0.24/n, 0.75/n], we firstly apply the triangle inequality

|Q?(f)| = |
∑
f?` ∈T?

α`K(f?` − f) +
∑
f?` ∈T?

β`K
′(f?` − f)|

≤ ‖α‖∞
(
|K(f)|+

∑
f?` ∈T?\{0}

|K(f − f?` )|
)

+ ‖β‖∞
(
|K ′(f)|+

∑
f?` ∈T?\{0}

|K ′(f − f?` )|
)

≤ α∞|K(f)|+ β∞|K ′(f)|+ α∞F0(2.5/n, f) + β∞F1(2.5/n, f), (F.23)

where the last inequality is from Lemma A.2. We then follow [1, Eq. (2.29)] to upperbound the first two terms in the
last line

|K(f)| ≤ 1− π2(n2 − 4)f2

6
+
π4n4f4

72
and |K ′(f)| ≤ π2(n2 − 4)f

3
, for f ∈ [−1/2, 1/2].

The rest of argument consists of defining

L1(f) = α∞
(

1− 1

6
π2(n2 − 4)f2 +

1

72
π4n4f4

)
+ β∞

1

3
π2(n2 − 4)f ;

L2(f) = α∞F0(2.5/n, f) + β∞F1(2.5/n, f)

with the derivative of L1(f) given by

L′1(f) = −α∞
(
π2(n2 − 4)f

3
− π4n4f3

18

)
+ β∞

π2(n2 − 4)

3
< 0, for f ∈M,

implying that L1(f) is decreasing. Also, L2(f) is increasing inM by Lemma A.2. Hence, by the monotonic property,
we have

|Q?(f)| ≤L1(0.24/n) + L2(0.75/n) ≤ 0.919779 + 0.007836 = 0.927615 < 1.

F.2.5 Bounding |Q?(f)| in Far Region.

Recall that f?0 = 0 is the reference point. To simplify notation, we re-index the frequencies such that . . . ≤ f?−1 <
f?0 = 0 < f?1 < . . .. For f ∈ F = [0.75/n, f?1 /2] = [0.75/n, f?1 − f?1 /2], by Lemma A.3, we have∑

j

|K(`)(f − f?j )| ≤W`(0.75/n, f?1 /2)
¬
=
∑
j≥0

B`(j(2.5/n) + 0.75/n) +
∑
j≥0

B`(j(2.5/n) + f?1 /2)

­
≤
∑
j≥0

B`(j(2.5/n) + 0.75/n) +
∑
j≥0

B`(j(2.5/n) + 1.25/n)

®
= W`(0.75/n, 1.25/n), (F.24)

where ¬ follow from the definition of W (f, f̄) in Lemma A.3, ­ follows f?1 /2 = (f?1 − f?0 )/2 ≥ ∆min/2 = 1.25/n

and decreasing property of B`(·), and ® follows from the definition of W (f, f̄).
Finally, applying (F.24), (F.19) and (F.20) to (F.8), we arrive at

|Q?(f)| ≤α∞
∑
`

|K(f − f?` )|+ β∞
∑
`

|K ′(f − f?` )|

≤1.00766W0(0.75/n, 1.25/n) + (0.00386/n)W1(0.75/n, 1.25/n)

≤1.00766(0.70859) + (0.00386/n)(5.2084n)

=0.734123.

This concludes the proof of Lemma 4.3.
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Appendix G Proof of Lemma 4.4

Proof. We exploit the closeness of θ? and θλ (see Lemma 4.1) to bound the pointwise distance between Q?(f) and
Qλ(f). Note

Qλ(f)−Q?(f) = a(f)HZ(qλ − q?) = a(f)HZ

(
x? − xλ

λ
+

d

dλ
xλ
∣∣
λ=0

)
=

1

λ

∫ λ

0

a(f)HZ

(
d

dt
x? − d

dt
xt
)

dt,

which implies that

|Qλ(f)−Q?(f)| ≤ max
0≤t≤λ

∣∣∣∣a(f)HZ(
d

dt
x? − a(f)HZ(

d

dt
xt
∣∣∣∣ . (G.1)

We can also obtain similar bounds on the pointwise distances between derivatives of Qλ(f) and Q?(f).
Recall from Eq. (F.2), (4.5), and (F.5) that

d

dλ
xλ = −[A′(fλ) diag(cλ) A(fλ) iA(fλ)](∇2Gλ(θλ))−1ρλ, (G.2)

d

dλ
x? = −[A′(f?) diag(c?) A(f?) iA(f?)](∇2G0(θ?))−1ρ?, (G.3)

where ρ? =
[
0T R{sign(c?)}T I{sign(c?)}T

]T
and ρλ =

[
0T R{sign(cλ)}T I{sign(cλ)}T

]T
.

Multiplying both sides of Eq. (G.2) and (G.3) by −a(f)HZ( and then inserting W? 1
2 W?− 1

2 (which equals I) into
the spaces before and after (∇2G0(θ?))−1 (and (∇2Gλ(θ?))−1) yield

− a(f)HZ(
d

dλ
xλ = νλ(f)Ξλρλ,

− a(f)HZ(
d

dλ
x? = ν?(f)Ξ?ρ?.

Here
νλ(f) := [D1(f, fλ) diag(cλ)S−1 D0(f, fλ) iD0(f, fλ)],

ν?(f) := [D1(f, f?) diag(c?)S−1 D0(f, f?) iD0(f, f?)],
(G.4)

with D`(f, f
λ) a row vector defined by D`(f, f

λ) := [K`(f
λ
1 − f), . . . ,K`(f

λ
k − f)], and

Ξλ := Υ(∇2Gλ(θλ))−1,

Ξ? := Υ(∇2G0(θ?))−1,

where Υ(·) := W? 1
2 (·)W? 1

2 is a linear operator that normalizes the Hessian matrix so that it is close to the identity.
As a consequence, we bound the integrand of (G.1) as follows

|ν?(f)Ξ?ρ? − νλ(f)Ξλρλ|
≤|ν?(f)Ξ?(ρ? − ρλ)|+ |ν?(f)(Ξ? − Ξλ)ρλ|+ |(ν?(f)− νλ(f))Ξλρλ|
≤‖ν?(f)‖1‖Ξ?‖∞,∞‖ρ? − ρλ‖∞ + ‖ν?(f)‖1‖Ξ? − Ξλ‖∞,∞‖ρλ‖∞ + ‖ν?(f)− νλ(f)‖1‖Ξλ‖∞,∞‖ρλ‖∞,

(G.5)
where the first line follows from the triangle inequality and the second line follows from Hölder’s inequality and the
sub-multiplicative property of the `∞,∞ norm. We next develop upper bounds on ‖ν?(f)‖1, ‖ν?(f) − νλ(f)‖1,
‖Ξ?‖∞,∞, ‖Ξ? − Ξλ‖∞,∞, ‖Ξλ‖∞,∞, ‖ρ? − ρλ‖1 and ‖ρλ‖∞.

Bounding ‖Ξ?‖∞,∞ and ‖Ξλ‖∞,∞ and ‖Ξ? − Ξλ‖∞,∞.
We note that both Ξ?−1 = Υ(∇2G0(θ?))) and Ξλ

−1
= Υ(∇2Gλ(θλ))) are close to the identity matrix. More
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precisely, we have

‖I− Ξ?−1‖∞
¬
= ‖I−Υ(∇2G0(θ?))‖∞,∞
­
≤ [‖I− diag (c?./|c?|)H (−D2(f?)/τ) diag (c?./|c?|) ‖∞,∞ + 2‖ diag(c?./|c?|)D1(f?)/

√
τ‖∞,∞]

∨ (‖ diag(c?./|c?|)D1(f?)/
√
τ‖∞,∞ + ‖I−D0(f?)‖∞,∞)

®
≤ ‖I− (−D2(f?)/τ)‖∞,∞ + 2‖D1(f?)/

√
τ‖∞,∞

¯
≤ 0.0171 + 2× 0.00682

≤ 0.03074,

where a ∨ b := max(a, b). ¬ follows from definition of Ξ? and ­ follows from applying the triangle inequal-
ity to the expression of [I − Υ(∇2G0(θ?))]. ® follows since the infinity norm of any sign vector is 1, bounding
‖diag(c?./|c?|) D1(f?)/

√
τ‖∞,∞ is equivalent to bound ‖D1(f?)/

√
τ‖∞,∞. Finally, ¯ follows from Eq. (A.11).

This leads to
‖Ξ?‖∞,∞ ≤

1

1− ‖I− Ξ?−1‖∞,∞
≤ 1

1− 0.03074
≤ 1.03172. (G.6)

According to (D.5), we have

‖I− Ξλ
−1‖∞,∞ = ‖I −Υ(∇2Gλ(θλ))‖∞,∞ ≤ 0.08561,

yielding

‖Ξλ‖∞,∞ ≤
1

1− ‖I− Ξλ
−1‖∞,∞

≤ 1

1− 0.08561
≤ 1.09363. (G.7)

Next, note

‖Ξ?−1 − Ξλ
−1‖∞,∞ =‖Υ(∇2G0(θ?))−Υ(∇2Gλ(θλ))‖∞,∞ ≤ max{Π1,Π2,Π3},

where Π1,Π2,Π3 denote the first, second and third absolute row block sums of [Υ(∇2G0(θ?))−Υ(∇2Gλ(θλ))]. We
first bound Π1 as follows

Π1 =‖ diag(c./|c?|)HD2(f) diag(c./|c?|)− diag(c?./|c?|)HD2(f?) diag(c?./|c?|)‖∞,∞/τ
+ 2

∥∥diag(c./|c?|)HD1(f)− diag(c?./|c?|)HD1(f?)
∥∥
∞,∞ /

√
τ

+ 2 ‖diag (1./|c?|) [D1(f , f?)c? −D1(f)c]‖∞ /
√
τ

+ ‖ diag(c./|c?|2)H [D2(f , f?)c? −D2(f)c]‖∞/τ
¬
≤[2.19778X?γ + 1.14168(X?γ)2] + 2[1.48286X?γ + 1.47604(X?γ)2] + 2(0.75038)X?B?γ + 1.14168X?B?γ

≤7.81004X?B?γ (by B?X?γ ≤ 10−3), (G.8)

where ¬ follows from combining Eq. (A.19)-(A.20) and (G.9)-(G.10), where (G.9)-(G.10) are given by

‖diag(c./|c?|)HD2(f) diag(c./|c?|)− diag(c?./|c?|)HD2(f?) diag(c?./|c?|)‖∞,∞/τ
≤‖diag(c./|c?|)HD2(f) diag((c− c?)./|c?|)‖∞,∞/τ

+ ‖ diag(c./|c?|)H(D2(f)−D2(f?)) diag(c?./|c?|)‖∞,∞/τ
+ ‖ diag((c− c?)./|c?|)HD2(f?) diag(c?./|c?|)‖∞,∞/τ

≤(1 +X?γ)(1.05610)(X?γ) + (1 +X?γ)(0.08558X?γ) + (X?γ)(1.05610) (by (A.18) and (A.11))

≤2.19778X?γ + 1.14168(X?γ)2 (G.9)
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and ∥∥∥diag (c./|c?|)H D1(f)− diag (c?./|c?|)H D1(f?)
∥∥∥
∞,∞

/
√
τ

≤
∥∥∥diag (c./|c?|)H (D1(f)−D1(f?))

∥∥∥
∞,∞

/
√
τ +

∥∥∥diag ((c− c?)./|c?|)H D1(f?)
∥∥∥
∞,∞

/
√
τ

≤(1 +X?γ)(1.47604X?γ) + (X?γ)(0.00682) (by Eq. (A.17) and (A.11))

≤1.48286X?γ + 1.47604(X?γ)2. (G.10)

We next bound Π2 and Π3:

{Π2,Π3}
¬
≤‖D1(f) diag (c./|c?|)−D1(f?) diag (c?./|c?|)‖∞,∞ /

√
τ

+ ‖D0(f)−D0(f?)‖∞,∞ + ‖ diag(1./|c?|)[D1(f , f?)c? −D1(f)c]‖∞/
√
τ

+ λ‖u� u./|c|3 − u? � u?./|c?|3‖∞ + λ‖u� v./|c|3 − u? � v?./|c?|3‖∞
­
≤[1.48286X?γ + 1.47604(X?γ)2] + 0.01516X?γ + 0.75038X?B?γ + 2(0.646X?γ)(5.00701)X?γ

≤2.25636X?Bγ

<Π1 (by B?X?γ ≤ 10−3),

where ¬ follows from the triangle inequality and ­ follows by combining Eq. (G.10), (A.16), (A.19), and (G.11).
To show (G.11), we assume the norm ‖u� u./|c|3 − u? � u?./|c?|3‖∞ is achieved by the `th entry and proceed as∣∣∣∣ u2

`

|c`|3
− u?`

2

|c?` |3

∣∣∣∣ ¬
≤
∣∣∣∣ c2`|c`|3 − c?`

2

|c?` |3

∣∣∣∣
­
≤|c

2
` − c?`

2|
|c?` |3

+ |c`|2
∣∣∣∣ 1

|c`|3
− 1

|c?` |3

∣∣∣∣
®
≤X

?γ

c?min

(
(2 +X?γ) +

(X?γ)2 + 3(X?γ) + 3

1−X?γ

)
≤ X?γ

c?min

(5.00701),

(G.11)

where ¬ follows from |R{a}| ≤ |a| for all a ∈ C and ­ follows from the triangle inequality. ® follows from
Eq. (G.12) and (G.13) given below:

|c2` − c?`
2|

|c?` |3
≤ 1

|c?` |
|c` − c?` |
|c?` |

|c` + c?` |
|c?` |

≤ X?γ(2 +X?γ)

c?min

(G.12)

and

|c`|2
∣∣∣∣ 1

|c`|3
− 1

|c?` |3

∣∣∣∣ = |c`|2
∣∣∣∣ 1

|c`|
− 1

|c?` |

∣∣∣∣ ( 1

|c`|2
+

1

|c?` |2
+

1

|c?` ||c`|

)
≤|c` − c

?
` |

|c`||c?` |

(
1 +
|c`|2

|c?` |2
+
|c`|
|c?` |

)
≤ 1

|c`|
X?γ

(
1 +
|c`|2

|c?` |2
+
|c`|
|c?` |

)
≤ 1

c?min(1−X?γ)
X?γ

(
1 +
|c`|2

|c?` |2
+
|c`|
|c?` |

)
≤X

?γ

c?min

(X?γ)2 + 3(X?γ) + 3

1−X?γ
(G.13)

where the first line follows from |a3 − b3| = |(a − b)(a2 + ab + b2)| = |a − b|(a2 + ab + b2) for any positive a, b.
The second line holds since | 1

|c`| −
1
|c?` |
| = ||c`|−|c?` ||

|c`||c?` |
≤ |c`−c

?
` |

|c`||c?` |
by the triangle inequality. The third line follows from

|c` − c?` |/|c?` | ≤ X?γ by (A.10). For the fourth line to hold, note that by (A.10), |ci−c
?
i |

|c?i |
≤ X?γ, which implies that
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|ci| ≥ |c?i |− |ci− c?i | ≥ (1−X?γ|)c?min|. The last line follows from |c`|/|c?` | ≤ (1 +X?γ). Finally, we get the bound

‖Ξ?−1 − Ξλ
−1‖∞,∞ = Π1 ≤ 7.81004X?B?γ

implying

‖Ξ? − Ξλ‖∞,∞ ≤‖Ξ?‖∞,∞‖Ξ?−1 − Ξλ
−1‖∞,∞‖Ξλ‖∞,∞ ≤ (1.03172)(1.09363)(7.81004X?B?γ) = 8.81222X?B?γ.

(G.14)

Bounding ‖ρ? − ρλ‖∞ and ‖ρλ‖∞.
First recognize that ‖ρλ‖∞ = 1 since ρλ contains either signs or zeros. Assume the `∞ norm of (ρ?−ρλ) is achieved
by | sign(cλ` )− sign(c?` )|, then applying triangle inequalities gives

‖ρ? − ρλ‖∞ =

∣∣∣∣ cλ`|cλ` | − c?`
|c?` |

∣∣∣∣ =

∣∣∣∣ cλ`|cλ` | − cλ`
|c?` |

+
cλ`
|c?` |
− c?`
|c?` |

∣∣∣∣ ≤∣∣∣∣ cλ`|cλ` | − cλ`
|c?` |

∣∣∣∣+
|c?` − cλ` |
|c?` |

=|cλ` |
∣∣∣∣ 1

|cλ` |
− 1

|c?` |

∣∣∣∣+
|c?` − cλ` |
|c?` |

=
∣∣cλ` ∣∣ ∣∣∣∣ |cλ` | − |c?` ||cλ` ||c?` |

∣∣∣∣+
|c?` − cλ` |
|c?` |

≤2
|c?` − cλ` |
|c?` |

≤ 2X?γ.

(G.15)

Bounding ν?(f),ν?(f)
′
,ν?(f)

′′ and (ν?(f)− νλ(f)), (ν?(f)− νλ(f))′, (ν?(f)− νλ(f))′′.
Applying the triangle inequality and the sub-multiplicative property of the norm to (G.5) and (G.4), we get

‖ν?(f)− νλ(f)‖1 ≤‖[D1(f, fλ)−D1(f, f?)]T diag(cλ)S−1 −D1(f, fλ)TΦ‖1 + 2‖D0(f, fλ)−D0(f, f?)‖1
≤‖D1(f, fλ)−D1(f, f?)‖1‖ diag(cλ)S−1‖1,1 + ‖D1(f, fλ)‖1‖Φ‖1,1 + 2‖D0(f, fλ)−D0(f, f?)‖1;

‖ν?(f)‖1 ≤‖D1(f, f?) diag(c?)S−1‖1 + 2‖D0(f, f?)‖1 ≤ ‖D1(f, f?)‖1‖diag(c?)S−1‖1,1 + 2‖D0(f, f?)‖1,
(G.16)

where Φ := diag(c?)S−1 − diag(cλ)S−1 and D`(f, f) := [K(`)(f1 − f), . . . ,K(`)(fk − f)]. Similar bounds also
apply to various derivatives of ν?(f) and νλ(f), which we need in order to bound the distances between derivatives
of Q?(f) and Qλ(f). Using (A.10) and τ ≥ 3.289n2, we have∥∥(diag(cλ)− diag(c?))S−1

∥∥
1,1
≤(max

i
|cλi − c?i |/|c?i |)/

√
τ ≤ X?γ/

√
τ ≤ 0.552X?γ/n;∥∥diag(cλ)S−1

∥∥
1,1
≤(1 +Xγ)/

√
τ ≤ 0.552/n,

(G.17)

which we need to continue the bounds in (G.16).
Since f may lie in different regions: Near Region, Middle Region, and Far Region, we next organize our analysis

into three parts based on what region f is located in.

G.1 Near Region Analysis
We start with controlling ‖D`(f, f

λ)−D`(f, f
?)‖1 and |D`(f, f

?)‖1 for ` = 0, 1, 2, 3 in Near Region. When ` = 0,
we have

‖D0(f, fλ)−D0(f, f?)‖1 =
∑
`

|K(fλ` − f)−K(f?` − f)|
¬
≤
∑
`

|K ′(f̃` − f)|‖fλ − f?‖∞

­
≤
(
F1(2.5/n, 0.2404/n) + max

f∈N̂
|K ′(f)|

)
‖fλ − f?‖∞

®
≤ (0.01241n+ 0.790885n)(0.4X?γ/n)

≤ 0.321318X?γ, (G.18)
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where ¬ is due to the mean value theorem with f̃` located between f?` and fλ` . ­ follows from Lemma A.5. To see
this, first note that ∆({f̃`}) ≥ 2.5/n by Lemma A.4. Second, f ∈ N = [0, 0.24/n] implies that

0 ≤ |f − f̃0| ≤|f − f?0 |+ |f?0 − f̃0| ≤ 0.24/n+ 0.4(10−3)/n = 0.2404/n.

We also used the definition N̂ = [0, 0.2404/n] in ­. ® follows from the upper bound on F1(2.5/n, 0.2404/n) in
Table A.5, the upper bound on maxf∈N̂ |K ′(f)| in Table A.5, as well as the upper bound on ‖fλ−f?‖∞ in Lemma 4.1.

Applying arguments similar to those for (G.18), we can control ‖D`(f, f
λ)−D`(f, f

?)‖1 as

‖D`(f, f
λ)−D`(f, f

?)‖1 ≤(F`+1(2.5/n, 0.2404/n) + max
f∈N̂
|K(`+1)(f)|)‖fλ − f?‖∞. (G.19)

We specialize the above inequality to ` = 1, 2, 3 using the upper bounds on F`(2.5/n, 0.2404/n) in Table A.5 and
those on maxf∈N̂ |K(`)(f)| in Table A.5 to obtain

‖D1(f, fλ)−D1(f, f?)‖1 ≤(F2(2.5/n, 0.2404/n) + max
f∈N̂
|K ′′(f)|)‖fλ − f?‖∞

≤(0.05637n2 + 3.290n2)(0.4X?γ/n) = 1.338548nX?γ; (G.20)

‖D2(f, fλ)−D2(f, f?)‖1 ≤(F3(2.5/n, 0.2404/n) + max
f∈N̂
|K ′′′(f)|)‖fλ − f?‖∞

≤(0.28838n3 + 7.80572n3)(0.4X?γ/n) = 3.23764n2X?γ; (G.21)

‖D3(f, fλ)−D3(f, f?)‖1 ≤(F4(2.5/n, 0.2404/n) + max
f∈N̂
|K ′′′′(f)|)‖fλ − f?‖∞

≤(1.671n4 + 29.2227n4)(0.4X?γ/n) = 12.3575n3X?γ. (G.22)

Furthermore, we can use similar arguments and Lemma A.5 to control ‖D`(f, f)‖1 for f ∈ N :

‖D`(f, f
?)‖1 ≤ F`(2.5/n, 0.2404/n) + max

f∈N̂
|K(`)(f)|, (G.23)

which specializes to

‖D0(f, f?)‖1 ≤F0(2.5/n, 0.2404/n) + max
f∈N̂
|K(f)| ≤ 0.00757 + 1 = 1.00757; (G.24)

‖D1(f, f?)‖1 ≤F1(2.5/n, 0.2404/n) + max
f∈N̂
|K ′(f)| ≤ 0.01241n+ 0.790885n = 0.803295n; (G.25)

‖D2(f, f?)‖1 ≤F2(2.5/n, 0.2404/n) + max
f∈N̂
|K ′′(f)| ≤ 0.05637n2 + 3.290n2 = 3.34637n2; (G.26)

‖D3(f, f?)‖1 ≤F3(2.5/n, 0.2404/n) + max
f∈N̂
|K ′′′(f)| ≤ 0.28838n3 + 7.80572n3 = 8.0941n3. (G.27)

With these preparations, we are ready to control ‖ν?(f)(`) − νλ(f)(`)‖1 and ‖ν?(f)(`)‖1 for ` = 0, 1, 2 in Near
Region. Generalizing (G.16) to the `th derivative of ν?(f) and νλ(f) to get

‖ν?(f)
(`) − νλ(f)

(`)‖1 ≤‖D`+1(f, fλ)−D`+1(f, f?)‖1‖ diag(cλ)S−1‖1
+‖D`+1(f, fλ)‖1‖ diag(c?)S−1 − diag(cλ)S−1‖1 + 2‖D`(f, f

λ)−D`(f, f
?)‖1;

‖ν?(f)
(`)‖1 ≤‖D`+1(f, f?) diag(c?)S−1‖1 + 2‖D`(f, f

?)‖1.
(G.28)

Plugging Eq. (G.18), (G.20), (G.25) and (G.17) into (G.28), we obtain

‖ν?(f)− νλ(f)‖1 ≤‖D1(f, fλ)−D1(f, f?)‖1‖ diag(cλ)S−1‖1
+ ‖D1(f, fλ)‖1‖diag(c?)S−1 − diag(cλ)S−1‖1 + 2‖D0(f, fλ)−D0(f, f?)‖1

≤1.338548nX?γ
0.552

n
+ (0.803295n)

0.552X?γ

n
+ 2(0.321318X?γ) ≤ 1.82494X?γ.

(G.29)
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Plugging Eq. (G.20)-(G.21), (G.26) and (G.17) into (G.28), we obtain

‖ν?(f)
′ − νλ(f)

′‖1 ≤‖D2(f, fλ)−D2(f, f?)‖1‖ diag(cλ)S−1‖1
+ ‖D2(f, fλ)‖1‖diag(c?)S−1 − diag(cλ)S−1‖1 + 2‖D1(f, fλ)−D1(f, f?)‖1

≤3.23764n2X?γ
0.552

n
+ (3.34637n2)

0.552X?γ

n
+ 2(1.338548nX?γ)

≤6.31147nX?γ.

(G.30)

Plugging Eq. (G.21)-(G.22), (G.27) and (G.17) into (G.28), we obtain

‖ν?(f)
′′ − νλ(f)

′′‖1 ≤‖D3(f, fλ)−D3(f, f?)‖1‖ diag(cλ)S−1‖1
+ ‖D3(f, fλ)‖1‖ diag(c?)S−1 − diag(cλ)S−1‖1 + 2‖D2(f, fλ)−D2(f, f?)‖1

≤12.3575n3X?γ
0.552

n
+ (8.0941n3)

0.552X?γ

n
+ 2(3.23764n2X?γ)

≤17.7646n2X?γ.

(G.31)

Similarly, plugging Eq. (G.24)-(G.25) and (G.17) into (G.28), we have

‖ν?(f)‖1 ≤‖D1(f, f?) diag(c?)S−1‖1 + 2‖D0(f, f?)‖1 ≤ (0.803295n)
0.552

n
+ 2(1.00757) ≤ 2.45856. (G.32)

Plugging Eq. (G.25)-(G.26) and (G.17) into (G.28), we obtain

‖ν?(f)
′‖1 ≤ ‖D2(f, f?) diag(c?)S−1‖1 + 2‖D1(f, f?)‖1 ≤ (3.34637n2)

0.552

n
+ 2(0.803295n) ≤ 3.4538n.

(G.33)

Finally, plugging Eq. (G.26)-(G.27) and (G.17) into (G.28), we arrive at

‖ν?(f)
′′‖1 ≤ ‖D3(f, f?) diag(c?)S−1‖1 + 2‖D2(f, f?)‖1 ≤ (8.0941n3)

0.552

n
+ 2(3.34637n2) ≤ 11.1607n2.

(G.34)

We are now ready to control the pointwise distance between Q?(`)(f) and Qλ(`)
(f) using

|Q?(`)(f)−Qλ(`)
(f)| ≤ |νλ(f)

(`)
Ξλρλ − ν?(f)

(`)
Ξ?ρ?|, ` = 0, 1, 2. (G.35)

Plugging Eq. (G.29)-(G.30), (G.6)-(G.14) and (G.15) to (G.35) with ` = 0, we obtain for f ∈ N

|Q?(f)−Qλ(f)|
≤‖ν?(f)‖1‖Ξ?‖∞,∞‖ρ? − ρλ‖1 + ‖ν?(f)‖1‖Ξ? − Ξλ‖∞,∞‖ρλ‖∞ + ‖ν?(f)− νλ(f)‖1‖Ξλ‖∞,∞‖ρλ‖∞
≤(2.45856)(1.03172)(2X?γ) + (2.45856)(8.81222X?B?γ) + (1.82494X?γ)(1.09363) ≤ 28.7343X?B?γ.

Plugging Eq. (G.31)-(G.32), (G.6)-(G.14) and (G.15) to (G.35) with ` = 1, we obtain for f ∈ N

|Q?(f)′ −Qλ(f)′|

≤‖ν?(f)
′‖1‖Ξ?‖∞,∞‖ρ? − ρλ‖1 + ‖ν?(f)

′‖1‖Ξ? − Ξλ‖∞,∞‖ρλ‖∞ + ‖ν?(f)
′ − νλ(f)

′‖1‖Ξλ‖∞,∞‖ρλ‖∞
≤(3.4538n)(1.03172)(2X?γ) + (3.4538n)(8.81222X?B?γ) + (6.31147nX?γ)(1.09363) ≤ 44.4648nX?B?γ.

Finally, plugging Eq. (G.33)-(G.34), (G.6)-(G.14) and (G.15) to (G.35) with ` = 2, we get for f ∈ N

|Q?(f)′′ −Qλ(f)′′|

≤‖ν?(f)
′′‖1‖Ξ?‖∞,∞‖ρ? − ρλ‖1 + ‖ν?(f)

′′‖1‖Ξ? − Ξλ‖∞,∞‖ρλ‖∞ + ‖ν?(f)
′′ − νλ(f)

′′‖1‖Ξλ‖∞,∞‖ρλ‖∞
≤(11.1607n2)(1.03172)(2X?γ) + (11.1607n2)(8.81222X?B?γ) + (17.7646n2X?γ)(1.09363) ≤ 140.808n2X?B?γ.
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G.2 Middle Region Analysis
We continue with bounding the pointwise distance betweenQ?(f) andQλ(f) in Middle RegionM = [0.24/n, 0.75/n].
We start with controlling ‖D`(f, f

λ) − D`(f, f
?)‖1 and |D`(f, f

?)‖1 for ` = 0, 1. First note when f ∈ M =
[0.24/n, 0.75/n], we have

(a) |f − f̃0| ≤|f − f?0 |+ |f?0 − f̃0| ≤ 0.75/n+ 0.0004/n = 0.7504/n,

(b) |f − f̃0| ≥|f − f?0 | − |f?0 − f̃0| ≥ 0.24/n− 0.0004/n = 0.2396/n.

Denote M̂ = [0.2396/n, 0.7504/n]. We combine the upper bounds on F`(2.5/n, 0.7504/n) in Table A.5 and the
upper bounds on maxf∈M̂ |K(`)(f)| in Table A.5 to get

‖D0(f, fλ)−D0(f, f?)‖1 ≤(F1(2.5/n, 0.7504/n) + max
f∈M̂

|K ′(f)|)‖fλ − f?‖∞

≤(0.01454n+ 2.46872n)(0.4X?γ/n) = 0.993304X?γ;
(G.36)

‖D1(f, fλ)−D1(f, f?)‖1 ≤(F2(2.5/n, 0.7504/n) + max
f∈M̂

|K ′′(f)|)‖fλ − f?‖∞

≤(0.12675n2 + 3.290n2)(0.4X?γ/n) = 1.36670nX?γ.
(G.37)

In a similar manner, we use Lemma A.5 to control ‖D`(f, f)‖1 as follows

‖D0(f, f)‖1 ≤ F0(2.5/n, 0.7504/n) + max
f∈M̂

|K(f))| ≤ 0.00772 + 0.90951 = 0.91723; (G.38)

‖D1(f, f)‖1 ≤ F1(2.5/n, 0.7504/n) + max
f∈M̂

|K ′(f))| ≤ 0.01454n+ 2.46872n = 2.48326n. (G.39)

To control ‖ν?(f)− νλ(f)‖1 and ‖ν?(f)‖1 in the Middle Region, we plug Eq. (G.36)-(G.39) into (G.28) to get

‖ν?(f)− νλ(f)‖1 ≤‖D1(f, fλ)−D1(f, f?)‖1‖ diag(cλ)S−1‖1 + ‖D1(f, fλ)‖1‖ diag(c?)S−1 − diag(cλ)S−1‖1
+ 2‖D0(f, fλ)−D0(f, f?)‖1

≤1.36670nX?γ
0.552

n
+ (2.48326n)

0.552X?γ

n
+ 2(0.993304X?γ) ≤ 4.11179X?γ; (G.40)

‖ν?(f)‖1 ≤‖D1(f, f?) diag(c?)S−1‖1 + 2‖D0(f, f?)‖1 ≤ (2.48326n)
0.552

n
+ 2(0.91723) ≤ 3.20522.

(G.41)

Finally, we control |Q?(f) − Qλ(f)| in Middle Region by plugging Eq. (G.40)-(G.41), (G.6)-(G.14) and (G.15)
to (G.35) with ` = 0 to get

|Q?(f)−Qλ(f)| ≤‖ν?(f)‖1‖Ξ?‖∞,∞‖ρ? − ρλ‖1 + ‖ν?(f)‖1‖Ξ? − Ξλ‖∞,∞‖ρλ‖∞ + ‖ν?(f)− νλ(f)‖1‖Ξλ‖∞,∞‖ρλ‖∞
≤(3.20522)(1.03172)(2X?γ) + (3.20522)(8.81222X?B?γ) + (4.11179X?γ)1.09363

≤39.3557X?B?γ, f ∈M.

G.3 Far Region Analysis
Lastly, we bound the pointwise distance betweenQ?(f) andQλ(f) in Far RegionF = [0.75/n, f?1 /2]. Again, we start
with controlling ‖D`(f, f

λ) −D`(f, f
?)‖1 and |D`(f, f

?)‖1 for ` = 0, 1. First note when f ∈ F = [0.75/n, f?1 /2],
we have

(a) f − f̃0 ≥ f − f?0 − |f?0 − f̃0| ≥ 0.75/n− 0.0004/n = 0.74996/n,

(b) f̃1 − f ≥ −|f̃1 − f?1 |+ f?1 − f ≥ −0.0004n+ f?1 /2 ≥ −0.0004/n+ (2.5009/n)/2 ≥ 1.25/n.
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Further note that {f̃`} satisfies the separation condition that ∆({f̃`}) ≥ 2.5/n. Then, following from Lemma A.3 and
the upper bounds on W`(0.74996/n, 1.25/n) in Table A.5, we have

‖D0(f, fλ)−D0(f, f?)‖1 ≤‖D1(f̃ , f)‖1‖fλ − f?‖∞
≤W1(0.74996/n, 1.25/n)‖fλ − f?‖∞ ≤ 5.2265n(0.4X?γ/n) = 2.0906X?γ; (G.42)

‖D1(f, fλ)−D1(f, f?)‖1 ≤W2(0.74996/n, 1.25/n)‖fλ − f?‖∞ ≤ 48.033n2(0.4X?γ/n) = 19.2132nX?γ.
(G.43)

Similarly, we can use Lemma A.3 to control ‖D`(f, f)‖1 for ` = 0, 1 and f ∈ F :

‖D0(f, f?)‖1 ≤W0(0.74996/n, 1.25/n) ≤ 0.71059;

‖D1(f, f?)‖1 ≤W1(0.74996/n, 1.25/n) ≤ 5.2265n.
(G.44)

Directly plugging Eq. (G.42)-(G.44) into (G.28), we arrive at

‖ν?(f)− νλ(f)‖1 ≤‖D1(f, fλ)−D1(f, f?)‖1‖ diag(cλ)S−1‖1 + ‖D1(f, fλ)‖1‖ diag(c?)S−1 − diag(cλ)S−1‖1
+ 2‖D0(f, fλ)−D0(f, f?)‖1

≤19.2132nX?γ
0.552

n
+ (5.2265n)

0.552X?γ

n
+ 2(2.0906X?γ) ≤ 17.6720X?γ; (G.45)

‖ν?(f)‖1 ≤‖D1(f, f?) diag(c?)S−1‖1 + 2‖D0(f, f?)‖1 ≤ (5.2265n)
0.552

n
+ 2(0.71059) ≤ 4.30621.

(G.46)

As a final step, we control |Q?(f)−Qλ(f)| in Far Region by plugging Eq. (G.45)-(G.46) and (G.6)-(G.15) to (G.35)
to get

|Q?(f)−Qλ(f)| ≤‖ν?(f)‖1‖Ξ?‖∞,∞‖ρ? − ρλ‖1 + ‖ν?(f)‖1‖Ξ? − Ξλ‖∞,∞‖ρλ‖∞ + ‖ν?(f)− νλ(f)‖1‖Ξλ‖∞,∞‖ρλ‖∞
≤(4.30621)(1.03172)(2X?γ) + (4.30621)(8.81222X?B?γ) + (17.6720X?γ)(1.09363)

≤66.1596X?B?γ, f ∈ F .

This concludes the proof of Lemma 4.4.

Appendix H Proof of Lemma 4.5

Proof. The expressions qλ = x?−xλ

λ and q̂ = y−x̂
λ lead to

q̂− qλ =
(y − x̂)− (x? − xλ)

λ
=

w

λ
+

xλ − x̂

λ
,

implying

|Qλ(f)− Q̂(f)| ≤ |a(f)HZw|
λ︸ ︷︷ ︸

Π1(f)

+
|a(f)HZ(xλ − x̂)|

λ︸ ︷︷ ︸
Π2(f)

.
(H.1)

This separates the distance betweenQλ(f) and Q̂(f) into two parts: one is Π1(f) associated with the dual atomic norm
of the Gaussian noise w whose upper bounds were developed in Appendix B; the other is Π2(f) corresponding to the
dual atomic norm of xλ−x̂. The latter quantity can be bounded by similar arguments as controlling |a(f)HZ(xλ − x̂)|
in Lemma 4.4.
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Bounding Π1(f).
Combining Eq. (B.12)-(B.14), we can upperbound Π1(f),Π(f)′ and Π1(f)′′ with high probability (at least 1− 1/n2)
for all f ∈ T:

Π1(f) ≤ 6.534γ0/λ ≤ 10.115/X?;

Π1(f)′ ≤ 41.052nγ0/λ ≤ 63.458n/X?;

Π1(f)′′ ≤ 257.94n2γ0/λ ≤ 399.288n2/X?,

(H.2)

where we used λ = 0.646X?γ0.

Bounding Π2(f).

Π2(f) =
1

λ
|D0(f, fλ)cλ −D0(f, f̂)ĉ|

≤ 1

λ
‖D0(f, fλ)−D0(f, f̂)‖1‖cλ‖∞ +

1

λ
‖D0(f, f̂)‖1‖ĉ− cλ‖∞

¬
≤ 1

λ
‖D1(f, f̃)‖1‖fλ − f̂‖∞‖cλ‖∞ +

1

λ
‖D0(f, f̂)‖1‖ĉ− cλ‖∞

­
≤ cλmax

0.646X?γ0

(
0.4(35.2)γ

n
‖D1(f, f̃)‖1 + 35.2γ‖D0(f, f̂)‖1

)
®
≤ B?(1 +X?γ)

0.646X?

(
14.08

n
‖D1(f, f̃)‖1 + 35.2‖D0(f, f̂)‖1

)
,

where ¬ follows from the mean value theorem. For ­ to hold, first note that λ = 0.646X?γ0 and θ̂ ∈ Nλ by
Lemma 4.2. Then, we can upperbound ‖ĉ− cλ‖∞ as

‖ĉ− cλ‖∞ =
|ĉj − cλj |
|cλj |

|cλj |≤(35.2γ)cλmax,

where the equality follows by assuming the `∞ norm is achieved by the jth row and the inequality follows by changing
X? to 35.2 in (A.10) and defining cλmax := maxj |cλj |. ® follows from γ0 = γc?min and

cλmax

c?min

= B?
|cλj |
c?max

≤ B?
|cλj |
|c?j |
≤ B?(1 +X?γ).

As a consequence, to control Π2(f), it reduces to bounding ‖D`(f, f̃)‖1 and ‖D`(f, f̂)‖1. For this purpose, we
first note that {∆(T̃ ),∆(T̂ )} ≥ 2.5/n by Lemma A.4. Second, by

‖f̃ − f?‖∞
¬
≤ ‖f̂ − f?‖∞

­
≤ 0.4(X? + 35.2)γ

®
≤ 0.0004/n+ 1.408× 10−6/n = 0.000401408/n,

where ¬ follows from the length of subinterval is no larger than the whole one. ­ follows from Eq. (A.10) and ®
follows from the SNR condition (2.6). Thus, we can follow the same arguments that lead to Eq. (G.24)-(G.25) for
Near Region, Eq. (G.38)-(G.39) for Middle Region, and Eq. (G.44) for Far Region to develop bounds on ‖D`(f, f̂)‖1.

To have a concrete idea, we first show how to control ‖D`(f, f̂)‖1 since the upper bounds for ‖D`(f, f̃)‖1 then
follows by ‖f̃ − f?‖∞ ≤ ‖f̂ − f?‖∞. First, consider f ∈ N . Then we have

0 ≤ |f̂0 − f | ≤|f̂0 − f?0 |+ |f?0 − f | ≤ 0.000401408/n+ 0.24/n ≤ 0.240401408/n.

With some abuse of notation, we denote N̂ := [0, 0.240401408/n]. Second, consider f ∈M. Then we have

(a) |f − f̂0| ≤|f − f?0 |+ |f?0 − f̂0| ≤ 0.75/n+ 0.000401408/n = 0.750401408/n;

(b) |f − f̂0| ≥|f − f?0 | − |f?0 − f̂0| ≥ 0.24/n− 0.000401408/n. = 0.239598592/n.
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Denote M̂ = [0.2396/n, 0.7504/n]. At last, we consider f ∈ F = [0.75/n, f?1 /2]:

(a) f − f̂0 ≥f − f?0 − |f?0 − f̂0| ≥ 0.75/n− 0.000401408/n = 0.749598592/n;

(b) f̂1 − f ≥− |f̂1 − f?1 |+ f?1 − f ≥ −0.000401408/n+ f?1 /2 ≥ −0.000401408/n+ (2.5009/n)/2 ≥ 1.25/n.

Hence we can define F̂ := [0.749598592/n, 1.25/n]. Furthermore, we remark that those numerical upper bounds in
Table A.5-A.5 do not change when evaluated for the newly defined intervals N̂ , M̂ and F̂ .

Finally, by directly plugging the upper bounds of ‖D`(f, f)‖∞ in (G.24)-(G.25) for Near Region, (G.38)-(G.39)
for Middle Region, and equation(G.44) for Far Region, it follows that

Π2(f) ≤B
?

X?


1.001
0.646 ( 14.08

n (0.803295n) + 35.2(1.00757)) ≤ 72.4825B
?

X? , f ∈ N ;

1.001
0.646 ( 14.08

n (2.48326n) + 35.2(0.91723)) ≤ 104.208B
?

X? , f ∈M;

1.001
0.646 ( 14.08

n (5.2265n) + 35.2(0.71059)) ≤ 152.788B
?

X? , f ∈ F .

(H.3)

Similarly, from (G.25)-(G.27), we have an upper bound on Π2(f)′ and Π2(f)′′ as follows

Π2(f)′ ≤B
?(1 +X?γ)

0.646X?

(
14.08

n
‖D2(f, f̃)‖1 + 35.2‖D1(f, f̂)‖1

)
≤B

?

X?

1.001

0.646

(
14.08

n
(3.34637n2) + 35.2(0.803295n)

)
≤ 116.825n

B?

X?
, f ∈ N ; (H.4)

Π2(f)′′ ≤B
?(1 +X?γ)

0.646X?

(
14.08

n
‖D3(f, f̃)‖1 + 35.2‖D2(f, f̂)‖1

)
≤B

?

X?

1.001

0.646

(
14.08

n
(8.0941n3) + 35.2(3.34637n2)

)
≤ 359.116n2B

?

X?
, f ∈ N . (H.5)

Combining (H.2)-(H.5) for Π1(f) and Π2(f), we can control |Q̂(`)(f) − Qλ
(`)

(f)| in Near region f ∈ N as
follows

|Q̂(f)−Qλ(f)| ≤ (10.115 + 72.4825)B?/X? = 82.5975B?/X?, f ∈ N ;

|Q̂(f)′ −Qλ′(f)| ≤ (63.458n+ 116.825n)B?/X? = 180.283nB?/X?, f ∈ N ;

|Q̂(f)′′ −Qλ′′(f)| ≤ (399.288n2 + 359.116n2)B?/X? = 758.404n2B?/X?, f ∈ N .

For the case of Middle Region and Far Region, we can upperbound them as:

|Q̂(f)−Qλ(f)| ≤ (10.115 + 104.208)B?/X? = 114.323B?/X?, f ∈M;

|Q̂(f)−Qλ(f)| ≤ (10.115 + 152.788)B?/X? = 162.903B?/X?, f ∈ F .

This completes the proof of Lemma 4.5.

Appendix I Proof of Proposition 4.1
Proof. The uniqueness follows from the strongly convex quadratic term in (2.4). We next show the primal optimality
of x̂ and the dual optimality of q̂ by establishing strong duality. First, q̂ is feasible to the dual program (4.1) because
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of the BIP property. Second, we have the following chain of inequalities:

value of (4.1) =
1

2
‖y‖2Z −

1

2
‖y − λq̂‖2Z

=
1

2
‖λq̂‖2Z + λR{x̂HZq̂}

=
1

2
‖y − x̂‖2Z + λ‖ĉ‖1

≥ 1

2
‖y − x̂‖2Z + λ‖x̂‖A = value of (2.4),

where the second line follows by plugging y = x̂ + λq̂; the third line holds due to the Interpolation property; and
the last line holds since ‖x̂‖A ≤ ‖ĉ‖1 by (2.3). Since the weak duality theorem ensures that the other direction of
the inequality always holds, we obtain strong duality. As a consequence, x̂ and q̂ achieve primal optimality and dual
optimality, respectively. This means x̂ = xglob, q̂ = qglob due to uniqueness of the solutions.

Appendix J Proof of Corollary 2.1
Proof. Denote by F (x) the objective functions for (2.4) and G(f , c) for (2.11), respectively. Assume (fnon, cnon) is
a global optimum for (2.11) with xnon = A(fnon)cnon, and xglob = A(fglob)cglob is the global optimum of (2.4).
Then

F (xglob) ≤ F (xnon) ≤ G(fnon, cnon) ≤ G(fglob, cglob), (J.1)

where the first inequality uses the optimality of xglob to (2.4); the second inequality follows from ‖xnon‖A ≤ ‖cnon
` ‖1

by (2.3); and the last inequality follows from the optimality of (fnon, cnon) to (2.11). On the other hand, recognize that
‖xglob‖A = ‖cglob

` ‖1 since {fglob
` } satisfies the separation condition (revealed by Lemma A.4 in Appendix A). This

leads to G(fglob, cglob) = F (xglob). Therefore, all inequalities in (J.1) become equalities and hence G(fnon, cnon) =
G(fglob, cglob). This implies the global optimality of (fglob, cglob) for the nonconvex program (2.11).

Appendix K Proof of Lemma A.4

Proof. First of all, from Lemma 4.1, we have θλ ∈ N ?, implying ‖fλ − f?‖∞ ≤ 0.4X?B?γ/n by Eq. (A.10) and by
Lemma 4.2, we obtain that θ̂ ∈ N λ, which implies ‖f̂ − fλ‖∞ ≤ 0.4(35.2)B?γ/n by Eq. (A.10). More precisely, we
bound ∆(Tλ) as

∆(Tλ)
¬
= min

i6=j
|fλi − fλj |

= min
i6=j
|fλi − f?i + f?i − f?j + f?j − fλj |

­
≥ min

i6=j
|f?i − f?j | −max

i
|fλi − f?i | −max

j
|fλj − f?j |

®
≥ ∆(T ?)− 0.8X?B?γ/n

¯
≥ 2.5009/n− 0.0008/n = 2.5001/n > 2.5/n,

where ¬ follows from the definition of the separation distance and ­ follows from the triangle inequality. ® follows
from that θλ is the fixed point solution of the contraction map (4.4). Thus, θλ ∈ N ? following from the non-escaping
property by the contraction mapping theorem. This further implies that ‖fλ − f?‖∞ ≤ 0.4X?B?γ/n by (A.10).
Finally, ¯ follows from that T ? satisfies the separation condition (2.5): ∆(T ?) ≥ 2.5009/n.
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For bounding ∆(T̃ ), first identify that−maxi |f̃i−f?i | ≥ −maxi |fλi −f?i |, since the inner point f̃i is included in
the interval [f?i , f

λ
i ] and hence the length of the [f̃i, f

?
i ] is less than the entire interval [f?i , f

λ
i ]. Then we immediately

arrive at ∆(T̃ ) > 2.5/n.
For ∆(T̂ ), we have

∆(T̂ ) = min
i 6=j
|f̂i − f̂j |

= min
i 6=j
|f̂i − fλi + fλi − fλj + fλj − f̂j |

¬
≥ min

i 6=j
|fλi − fλj | −max

i
|f̂i − fλi | −max

j
|f̂j − fλj |

­
≥ ∆(Tλ)− 2‖f̂ − fλ‖∞
­
≥ ∆(Tλ)− 2(14.08)B?γ/n,

where ¬ follows from the triangle inequality and ­ follows from the definition of ‖f̂ − fλ‖∞. ® follows from that
‖f̂ − fλ‖∞ ≤ 0.4(35.2)B?γ/n = 14.08B?γ/n by (A.10). Finally following from the SNR condition (2.6) and
∆(Tλ) ≥ 2.5001/n, we then have ∆(T̂ ) ≥ 2.5001/n− 2(14.08)× 10−7/n > 2.5/n.

∆(T̃λ) ≥ 2.5/n holds by the same strategy as ∆(T̃ ) > 2.5/n.
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