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ABSTRACT

Multilayer graphs are commonly used for representing different re-
lations between entities and handling heterogeneous data processing
tasks. New challenges arise in multilayer graph clusteringfor as-
signing clusters to a common multilayer node set and for combining
information from each layer. This paper presents a theoretical frame-
work for multilayer spectral graph clustering of the nodes via convex
layer aggregation. Under a novel multilayer signal plus noise model,
we provide a phase transition analysis that establishes theexistence
of a critical value on the noise level that permits reliable cluster sepa-
ration. The analysis also specifies analytical upper and lower bounds
on the critical value, where the bounds become exact when theclus-
ters have identical sizes. Numerical experiments on synthetic multi-
layer graphs are conducted to validate the phase transitionanalysis
and study the effect of layer weights and noise levels on clustering
reliability.

1. INTRODUCTION

Multilayer graphs are useful for representing different relations be-
tween entities and handing heterogeneous multilayer data process-
ing tasks, where each layer describes a specific type of connectivity
pattern among a common node set across layers. For example, in
multi-relational social networks, each layer correspondsto one type
of social relation. In temporal networks, each layer corresponds to
the snapshot of the entire network at a sampled time instance. Mul-
tilayer graphs have been applied to many signal processing and data
mining techniques, including inference of mixture models [1,2], ten-
sor decomposition [3], information extraction [4], multi-view learn-
ing and processing [5], graph wavelet transform [6], principal com-
ponent analysis and dictionary learning [7,8], anomaly detection [9],
and community detection [10–12], among others.

In particular, the task of multilayer graph clustering is tofind
a consensus cluster assignment on each node in the common node
set by inspecting the connectivity pattern in each layer. Different
from clustering in single-layer graphs, clustering in multilayer graph
faces new challenges due to (1) information aggregation from multi-
ple layers, and (2) lack of a theoretical framework on clustering reli-
ability assessment. By viewing the connectivity pattern ineach layer
as a signal plus noise model, this paper aims to provide a theoreti-
cal framework for analyzing the performance of multilayer spectral
graph clustering (SGC) via convex layer aggregation, wherespectral
clustering is implemented on an aggregated graph via convexcom-
bination of each layer. Specifically, fixing the within-cluster edges
(signals) and varying the parameters governing the between-cluster
edges (noises), we show that the accuracy of multilayer SGC can be
separated into two regimes: a reliable regime where high clustering
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accuracy can be guaranteed, and an unreliable regime where high
clustering accuracy is impossible. Moreover, we show that the upper
and lower bounds on the critical noise level that separates these two
regimes are closed-form functions of the signal strength, the number
of clusters, the cluster size distributions, and the layer weight vector
for convex layer aggregation. In addition, the bounds become ex-
act in the case of identical cluster sizes. Numerical experiments on
synthetic multilayer graphs are conducted to validate the phase tran-
sition analysis and study the effect of layer weights and noise levels
on clustering reliability.

2. RELATED WORK

Layer aggregation has been a principal method for processing and
mining multilayer graphs [13–18], as it transforms a multilayer
graph into a single aggregated graph, facilitating application of data
analysis techniques designed for single-layer graphs. Extending
from the stochastic block model (SBM) for graph clustering in
single-layer graphs [19, 20], multilayer SBM has been proposed for
graph clustering on multilayer graphs [18, 21–25]. Under the as-
sumption of two equally-sized clusters, the authors in [18]show that
if each layer is an independent realization of a common SBM, the in-
ferential limit for cluster detectability decays withO(L− 1

2 ), where
L is the number of layers. In [25], a layer selection method based on
a multilayer SBM is proposed to improve the performance of graph
clustering. However, the multilayer SBM assumes homogeneous
connectivity structure for within-cluster and between-cluster edges
in each layer, and it assumes layer-wise independence. The multi-
layer signal plus noise model considered in this paper is a general
model that includes the multilayer SBM, as it does not imposeany
distributional assumption on the within-cluster connectivity for each
layer. More details on multilayer graph models for graph clustering
can be found in the recent survey papers [10,11].

3. MULTILAYER SIGNAL PLUS NOISE MODEL

We consider the multilayer graph model ofL layers representing dif-
ferent relationships among a common node setV of n nodes. The
graph in theℓ-th layer is an undirected graph with nonnegative edge
wights, which is denoted byGℓ = (V, Eℓ), whereEℓ is the set of
weighted edges in theℓ-th layer. Then× n binary symmetric adja-
cency matrixA(ℓ) is used to represent the connectivity structure of
Gℓ. The entry[A(ℓ)]uv = 1 if nodesu andv are connected in the
ℓ-th layer, and[A(ℓ)]uv = 0 otherwise. Similarly, then × n non-
negative symmetric weight matrixW(ℓ) is used to represent the edge
weights inGℓ, whereW(ℓ) andA(ℓ) have the same zero structure.

We assume each layer in the multilayer graph is a (possi-
bly correlated) representation of commonK clusters that par-
titions the node setV, where thek-th cluster has cluster size
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nk such that
∑K

k=1 nk = n. nmin = mink∈{1,...,K} nk and
nmax = maxk∈{1,...,K} nk denote the largest and smallest cluster
size, respectively. Specifically, the adjacency matrixA

(ℓ) of Gℓ in
theℓ-th layer can be represented as

A
(ℓ) =




A
(ℓ)
1 C

(ℓ)
12 C

(ℓ)
13 · · · C

(ℓ)
1K

C
(ℓ)
21 A

(ℓ)
2 C

(ℓ)
23 · · · C

(ℓ)
2K

...
...

. . .
...

...
...

...
...

. . .
...

C
(ℓ)
K1 C

(ℓ)
K2 · · · · · · A

(ℓ)
K




, (1)

whereA(ℓ)
k is annk × nk binary symmetric matrix denoting the

adjacency matrix of within-cluster edges of thek-th cluster in the
ℓ-th layer, andC(ℓ)

ij is anni×nj binary rectangular matrix denoting
the adjacency matrix of between-cluster edges of clustersi andj in

theℓ-th layer,1 ≤ i, j ≤ K, i 6= j, andC(ℓ)
ij = C

(ℓ)
ij

T
.

Similarly, the edge weight matrixW(ℓ) can be represented as

W
(ℓ) =




W
(ℓ)
1 F

(ℓ)
12 F

(ℓ)
13 · · · F

(ℓ)
1K

F
(ℓ)
21 W

(ℓ)
2 F

(ℓ)
23 · · · F

(ℓ)
2K

...
...

. . .
...

...
...

...
...

. . .
...

F
(ℓ)
K1 F

(ℓ)
K2 · · · · · · W

(ℓ)
K




, (2)

whereW(ℓ)
k is annk × nk nonnegative symmetric matrix denoting

the edge weights of within-cluster edges of thek-th cluster in the
ℓ-th layer, andF(ℓ)

ij is anni × nj nonnegative rectangular matrix
denoting the edge weights of between-cluster edges of clustersi and

j in theℓ-th layer,1 ≤ i, j ≤ K, i 6= j, andF(ℓ)
ij = F

(ℓ)
ij

T
.

Using the cluster-wise block representations of the adjacency
and edge weight matrices for the multilayer graph model described
in (1) and (2), we propose a signal plus noise model forA

(ℓ) and
W

(ℓ) to analyze the effect of convex layer aggregation on graph
clustering. Specifically, for each layer we assume the connectivity
structure and edge weight distributions follow the random intercon-
nection model (RIM) [26]. In RIM the signal of thek-th cluster in
theℓ-th layer is the connectivity structure and weights of the within-
cluster edges represented by the matricesA

(ℓ)
k andW

(ℓ)
k , respec-

tively. In particular, analogous to the formulation of manydetec-
tion problems in signal processing, the signal can be arbitrary in the
sense that we impose no distributional assumption for the within-
cluster edges. The noise between clustersi andj in theℓ-th layer is
the connectivity structure and weights of the between-cluster edges
represented by the matricesC(ℓ)

ij andF(ℓ)
ij , respectively.

Throughout this paper, we assume the connectivity of a between-
cluster edge (i.e., the noise) in each layer is independently drawn
from a layer-wise and block-wise independent common Bernoulli
distribution. Specifically, each entry inC(ℓ)

ij representing the exis-
tence of an edge between clustersi andj in the ℓ-layer is an inde-
pendent realization of a Bernoulli random variable with edge con-
nection probabilityp(ℓ)ij ∈ [0, 1] that is layer-wise and block-wise
independent. In addition, given the existence of an edge(u, v) be-
tween clustersi andj in theℓ-layer, the entry[F(ℓ)

ij ]uv representing
the corresponding edge weight is independently drawn from anon-

negative distribution with meanW
(ℓ)
ij and bounded fourth moment

that is layer-wise and block-wise independent.

For theℓ-th layer, the noise accounting for the between-cluster
edges is said to beblock-wise identicalif the noise parametersp(ℓ)ij =

p(ℓ) andW
(ℓ)
ij = W

(ℓ)
for every cluster pairi andj, i 6= j. Other-

wise it is said to beblock-wise non-identical.

4. MULTILAYER SPECTRAL GRAPH CLUSTERING VIA
CONVEX LAYER AGGREGATION

4.1. Notations and mathematical formulations

Let w = [w1, . . . , wL]
T ∈ WL be anL × 1 column vector repre-

senting the layer weight vector for convex layer aggregation, where
WL = {w : wℓ ≥ 0,

∑L

ℓ=1 wℓ = 1} is the set of feasible layer
weight vectors. The single-layer graph obtained via convexlayer
aggregation with layer weight vectorw is denoted byGw. The
(weighted) adjacency matrixAw and the edge weight matrixWw

of Gw satisfyAw =
∑L

ℓ=1 wℓA
(ℓ) andWw =

∑L

ℓ=1 wℓW
(ℓ).

The graph Laplacian matrixLw of Gw is defined asLw = S
w −

W
w =

∑L

ℓ=1 wℓL
(ℓ), whereSw = diag(sw) is a diagonal ma-

trix, s
w = W

w
1n is the vector of nodal strength ofGw, 1n is

then × 1 column vector of ones, andL(ℓ) is the graph Laplacian
matrix ofGℓ. Similarly, the graph Laplacian matrixLw

k accounting
for the within-cluster edges of thek-th cluster inGw is defined as
L

w

k = S
w

k −W
w

k =
∑L

ℓ=1 wℓL
(ℓ)
k , whereWw

k =
∑L

ℓ=1 wℓW
(ℓ)
k ,

S
w

k = diag(Ww

k 1nk
), andL(ℓ)

k = S
(ℓ)
k −W

(ℓ)
k . Thei-th smallest

eigenvalue ofLw is denoted byλi(L
w). Based on the definition of

L
w, the smallest eigenvalueλ1(L

w) of Lw is 0, sinceLw
1n = 0n,

where0n is then× 1 column vector of zeros.
Spectral graph clustering (SGC) [27] partitions the nodes inGw

into K (K ≥ 2) clusters based on theK eigenvectors associated
with the K smallest eigenvalues ofLw. Specifically, SGC first
transforms a node inGw to a K-dimensional vector in the sub-
space spanned by these eigenvectors, and then implements K-means
clustering [28] on theK-dimensional vector space representation to
group the nodes inGw intoK clusters based on their distances. For
analysis purposes, throughout this paper we assumeGw is a con-
nected graph. IfGw is connected, it is known thatλi(L

w) > 0
for all i ≥ 2 [29]. Furthermore, the eigenvector associated with the
smallest eigenvalueλ1(L

w) provides no information about graph
clustering since it is proportional to1n.

Let Y ∈ R
n×(K−1) denote the eigenvector matrix where itsk-

th column is the(k + 1)-th eigenvector associated withλk+1(L
w),

1 ≤ k ≤ K − 1. By the Courant-Fischer theorem [30],Y is the
solution to the minimization problem

S2:K(Lw) = min
X∈Rn×(K−1)

trace(XT
L

w
X),

subjec toXT
X = IK−1, X

T
1n = 0K−1, (3)

where the optimal valueS2:K(Lw) = trace(YT
L

w
Y) in (3) is the

partial eigenvalue sumS2:K(Lw) =
∑K

k=2 λk(L
w), IK−1 is the

(K−1)× (K−1) identity matrix, and the constraints in (3) impose
orthonormality and centrality on the eigenvectors. In summary, mul-
tilayer SGC via convex layer aggregation works by computingthe
eigenvector matrixY from L

w of Gw, and implementing K-means
clustering on the rows ofY to group the nodes intoK clusters.

4.2. Phase transitions under block-wise identical noise

Under the multilayer signal plus noise model, if we further assume
block-wise identical noise, then the noise level in theℓ-th layer



can be characterized by the parametert(ℓ) = p(ℓ) · W
(ℓ)

, where

p(ℓ) ∈ [0, 1] is the edge connection parameter andW
(ℓ)

> 0 is
the mean of the between-cluster edge weights in theℓ-th layer.
Given a layer weight vectorw ∈ WL, let tw =

∑L

ℓ=1wℓt
(ℓ)

denote the aggregated noise level of the graphGw. Theorem 1
below establishes phase transitions in the eigendecomposition of
the graph Laplacian matrixLw of Gw. We show that there exists
a critical valuetw∗ such that theK smallest eigenpairs ofLw that
are used for multilayer SGC have different characteristicswhen
tw < tw∗ and tw > tw∗. In particular, we show that the so-
lution to the minimization problem in (3), the eigenvector matrix
Y = [YT

1 ,Y
T
2 , . . . ,Y

T
K ]T ∈ R

n×(K−1) represented by the cluster
partitioned form, whereYk ∈ R

nk×(K−1) with its rows indexing
the nodes in clusterk, has cluster-wise separability whentw < tw∗

in the sense that the matrices{Yk}
K
k=1 are row-wise identical and

cluster-wise distinct, whereas whentw > tw∗ the row-wise average
of each matrixYk is a zero vector and hence the clusters are not
separable by inspecting the rows ofY.

Theorem 1 (block-wise identical noise).
Given a layer weight vectorw ∈ WL, and assuming the block-

wise identical noise model with aggregated noise leveltw =∑L

ℓ=1wℓt
(ℓ), let cw∗ = mink∈{1,2,...,K}

{
S2:K(Lw

k )

n

}
, where

L
w

k =
∑L

ℓ=1 wℓL
(ℓ)
k . There exists a critical valuetw∗ such that the

following holds almost surely asnk → ∞ ∀ k and nmin
nmax

→ c > 0:

(a)






If tw ≤ tw∗,
S2:K(Lw)

n
= (K − 1)tw;

If tw > tw∗, cw∗ + (K − 1)
(
1− nmax

n

)
tw ≤ S2:K(Lw)

n

≤ cw∗ + (K − 1)
(
1− nmin

n

)
tw;

If tw > tw∗ andc = 1, S2:K(Lw)
n

= cw∗ + (K−1)2

K
tw.

Furthermore,

(b)






If tw < tw∗, Yk = 1nk
1
T
K−1Vk

=
[
vk11nk

, vk21nk
, . . . , vkK−11nk

]
, ∀ k;

If tw > tw∗, YT
k 1nk

= 0K−1, ∀ k;
If tw = tw∗, Yk = 1nk

1
T
K−1Vk or YT

k 1nk
= 0K−1, ∀ k,

whereVk = diag(vk1 , v
k
2 , . . . , v

k
K−1) ∈ R

(K−1)×(K−1).
In particular, whentw < tw∗, Y has the following properties:
(b-1) The columns ofYk are constant vectors.
(b-2) Each column ofY has at least two nonzero cluster-wise
constant components, and these constants have alternatingsigns
such that their weighted sum equals0 (i.e.,

∑
k nkv

k
j = 0, ∀ j ∈

{1, 2, . . . , K − 1}).
(b-3) No two columns ofY have the same sign on the cluster-wise
nonzero components.
Finally, tw∗ satisfies:
(c) twLB ≤ tw∗ ≤ twUB, where

twLB =
mink∈{1,2,...,K} S2:K(Lw

k )

(K−1)nmax
; twUB =

mink∈{1,2,...,K} S2:K(Lw

k )

(K−1)nmin
.

In particular, twLB = twUB whenc = 1.

Theorem 1 (a) establishes a phase transition in the increaseof
the normalized partial eigenvalue sumS2:K(Lw)

n
with respect to the

aggregated noise leveltw. Whentw ≤ tw∗ the quantityS2:K(L)
n

is exactly(K − 1)tw. Whentw > tw∗ the slope intw of S2:K(L)
n

changes and the interceptc∗ = mink∈{1,2,...,K}

{
S2:K(Lw

k )

n

}
=

mink∈{1,2,...,K}

{∑L
ℓ=1 wℓS2:K(L

(ℓ)
k

)

n

}
depends on the cluster hav-

ing the smallest aggregated partial eigenvalue sum given a layer
weight vectorw. In particular, when all clusters have the same size
(i.e.,nmax = nmin = n

K
) so thatc = 1, S2:K(L)

n
undergoes a slope

change fromK − 1 to (K−1)2

K
at the critical valuetw = tw∗.

Theorem 1 (b) establishes a phase transition in cluster-wise sep-
arability of the eigenvector matrixY for multilayer SGC. When
tw < tw∗, the conditions (b-1) to (b-3) imply that the rows of the
cluster-wise components{Yk}

K
k=1 are coherent, and hence the row

vectors inY possess cluster-wise separability. On the other hand,
whentw > tw∗, the row sum of eachYk is a zero vector, making
Yk incoherent. This means that the entries of each column inYk

have alternating signs and hence K-means clustering on the rows of
Y yields incorrect clusters.

Theorem 1 (c) establishes upper and lower bounds on the crit-
ical threshold valuetw∗ of the aggregated noise leveltw given a
layer weight vectorw. These bounds are determined by the cluster
having the smallest aggregated partial eigenvalue sumS2:K(Lw

k ) =∑L

ℓ=1 wℓS2:K(L
(ℓ)
k ), the number of clustersK, and the largest and

smallest cluster size (nmax andnmin). When all cluster sizes are
identical (i.e.,c = 1), these bounds become tight (i.e.,twLB = twUB).
Moreover, by the nonnegativity of the layer weights we can obtain a
universal lower bound ontwLB for anyw ∈ WL, which is

t
w

LB ≥
mink∈{1,2,...,K} minℓ∈{1,2,...,L} S2:K(L

(ℓ)
k )

(K − 1)nmax
. (4)

SinceS2:K(L
(ℓ)
k ) is a measure of connectivity for clusterk in the

ℓ-th layer, the lower bound oftwLB in (4) implies that the performance
of multilayer SGC is indeed affected by the least connected cluster
among allK clusters and acrossL layers. Specifically, if the graph in
each layer is unweighted andK = 2, thenS2:K(L

(ℓ)
k ) = λ2(L

(ℓ)
k )

reduces to the algebraic connectivity [29,31] of clusterk in theℓ-th
layer.

4.3. Phase transitions under block-wise non-identical noise

Under the block-wise non-identical noise model, the noise level of
between-cluster edges between clustersi andj in the ℓ-th layer is

characterized by the parametert
(ℓ)
ij = p

(ℓ)
ij · W

(ℓ)
ij , 1 ≤ i, j ≤ K,

i 6= j, and1 ≤ ℓ ≤ L. Let t(ℓ)max = max1≤i,j≤K, i6=j t
(ℓ)
ij be the

maximum noise level in theℓ-th layer and lettwmax =
∑L

ℓ=1 wℓt
(ℓ)
max

denote the aggregated maximum noise level given a layer weight
vectorw ∈ WL.

Let Y ∈ R
n×(K−1) be the eigenvector matrix ofLw under the

block-wise non-identical noise model, and letỸ ∈ R
n×(K−1) be

the eigenvector matrix of the graph LaplacianL̃w of another ran-
dom graph generated under the block-wise identical noise model
with aggregated noise leveltw, which is independent ofL. The-
orem 2 below specifies the distance between the subspaces spanned
by the columns ofY andỸ by inspecting their principal angles [27].
Specifically, sinceY and Ỹ both have orthonormal columns, the
vectorv of K − 1 principal angles between their column spaces is
v = [cos−1 σ1(Y

T
Ỹ), . . . , cos−1 σK−1(Y

T
Ỹ)]T , whereσk(M)

is thek-th largest singular value of a real rectangular matrixM. Let
Θ(Y, Ỹ) = diag(v), and letsinΘ(Y, Ỹ) be defined entrywise.
Whentw < tw∗, Theorem 2 provides an upper bound on the Frobe-
nius norm ofsinΘ(Y, Ỹ), which is denoted by‖ sinΘ(Y, Ỹ)‖F .
Moreover, iftwmax < tw∗, wheretw∗ is the critical threshold value
for the block-wise identical noise model as specified in Theorem 1,
then‖ sinΘ(Y, Ỹ)‖F can be further bounded.

Theorem 2 (block-wise non-identical noise).
Given a layer weight vectorw ∈ WL, and assuming the block-

wise non-identical noise model with maximum noise level{t
(ℓ)
max}

L
ℓ=1



for each layer, lettw∗ be be the critical threshold value for the
block-wise identical noise model specified by Theorem 1, anddefine
δtw,n = min{tw, |λK+1(

L
w

n
)− tw|}. For a fixedtw, if tw < tw∗

and δtw,n → δtw > 0 asnk → ∞ ∀ k, the following statement
holds almost surely asnk → ∞ ∀ k and nmin

nmax
→ c > 0:

‖ sinΘ(Y, Ỹ)‖F ≤
‖Lw − L̃

w‖F
nδtw

. (5)

Furthermore, lettwmax =
∑L

ℓ=1 wℓt
(ℓ)
max. If twmax < tw∗,

‖ sinΘ(Y, Ỹ)‖F ≤ min
tw≤twmax

‖Lw − L̃
w‖F

nδtw
. (6)

Theorem 2 shows that the subspace distance‖ sinΘ(Y, Ỹ)‖F
is upper bounded by (5), wherẽY is the eigenvector matrix of
L̃

w under the block-wise identical noise model when its aggre-
gated noise leveltw < tw∗. Furthermore, if the aggregated
maximum noise leveltwmax < tw∗, then a tight upper bound on
‖ sinΘ(Y, Ỹ)‖F can be obtained by (6). Therefore, using the
cluster-wise separability of̃Y as established in Theorem 1 (b), when
twmax < tw∗, cluster-wise separability inY can be expected pro-
vided that‖ sinΘ(Y, Ỹ)‖F is small. The proofs of Theorems1
and2 are given in the supplementary file.

5. NUMERICAL RESULTS

To validate the phase transitions in the accuracy of multilayer SGC
via convex layer aggregation, we generate synthetic multilayer
graphs from a two-layer correlated multilayer graph model.Specif-
ically, we generate edge connections within and betweenK = 3
equally-sized ground-truth clusters onL = 2 layersG1 andG2. The
two layersG1 andG2 are correlated since their edge connections
are generated in the following manner. For every node pair (u, v) of
the same cluster, with probabilityq11 there is a within-cluster edge
(u, v) in G1 andG2, with probability q10 there is a within-cluster
edge (u, v) in G1 but not inG2, with probability q01 there is a
within-cluster edge (u, v) in G2 but not inG1, and with probability
q00 there is no edge (u, v) in G1 andG2. These four parameters
are nonnegative and sum to1. For between-cluster edges, we adopt
the block-wise identical noise model such that for each layer ℓ, the
edge connection between every node pair from different clusters is
an i.i.d. Bernoulli random variable with parameterp(ℓ).

5.1. Phase transitions incurred by noise levels

By varying the noise level{p(ℓ)}2ℓ=1, Fig. 1 shows the accuracy of
multilayer SGC with respect to different layer weight vector w =
[w1 w2]

T , where the accuracy is evaluated in terms of cluster de-
tectability, i.e., the fraction of correctly identified nodes in the same
cluster. Given a fixedw, as proved in Theorem 1, there is indeed a
phase transition in cluster detectability that separates the noise level
{p(ℓ)}2ℓ=1 into two regimes: a reliable regime where high cluster-
ing accuracy is guaranteed, and an unreliable regime where high
clustering accuracy is impossible. Furthermore, the critical value
of {p(ℓ)}2ℓ=1 that separates these two regimes are successfully pre-
dicted by Theorem 1 (c), which validates the phase transition anal-
ysis. The rightmost plot in Fig. 1 shows the geometric mean of
cluster detectability from different layer weight vectors. There is
an universal region of perfect cluster detectability that includes the
region specified by the universal phase transition lower bound in (4).
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Fig. 1: Phase transitions in the accuracy of multilayer SGC with
respect to different layer weight vectorw = [w1 w2]

T for the two-
layer correlated graph model, wheren1 = n2 = n3 = 1000, q11 =
0.3, q10 = 0.2, q01 = 0.1, and q00 = 0.4. From left to right,
(w1, w2) = (0.8, 0.2), (0.5, 0.5), and(0.2, 0.8), respectively. The
last plot is the geometric mean, wherew1 is uniformly drawn from
[0, 1] with unit interval0.1. The results are averaged over 10 runs.
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Fig. 2: The effect of the layer weight vectorw = [w1 w2]
T

on the accuracy of multilayer SGC with respect to difference
noise level {p(ℓ)}2ℓ=1 for the same two-layer correlated graph
model as in Fig. 1. From left to right,(p(1), p(2)) =
(0.2, 0.2), (0.2, 0.5), (0.5, 0.2), and(0.5, 0.5), respectively. The
results are averaged over 50 runs.

5.2. Phase transitions incurred by layer weights

Next we investigate the effect of layer weight vectorw on multi-
layer SGC via convex layer aggregation given fixed noise levels. In
the two-layer graph setting, since by definitionw2 = 1−w1, it suf-
fices to study the effect ofw1 on clustering accuracy. Fig. 2 shows
the clustering accuracy by varyingw1 under the two-layer correlated
graph model. As shown in Fig. 2, if each layer has low noise level
(left plot), then any layer weight vectorw ∈ W2 can lead to correct
clustering result. If one layer has high noise level (middleplots),
then there exists a critical valuew⋆

1 ∈ [0, 1] that separates the clus-
ter detectability into a reliable regime and an unreliable regime. In
particular, Theorem 1 implies that the critical valuew⋆

1 , if existed,
satisfies the conditiontw = tw

∗

whenw = [w⋆
1 , 1− w⋆

1 ]
T = w

∗,
which is equivalent to

K − 1

K

[
w

⋆
1p

(1) + (1−w
⋆
1)p

(2)
]
= w

⋆
1 · min

k∈{1,2,...,K}
S2:K

(
L

(1)
k

n

)

+ (1− w
⋆
1) · min

k∈{1,2,...,K}
S2:K

(
L

(2)
k

n

)
. (7)

It is observed that the empirical critical valuew⋆
1 matches the pre-

dicted value from (7). Lastly, if each layer has high noise level (right
plot), then no layer weight vector can lead to correct clustering re-
sult, and the corresponding cluster detectability is similar to random
guessing of clustering accuracy1

K
≈ 33.33%.

6. CONCLUSION

This paper establishes a phase transition analysis on multilayer spec-
tral graph clustering (SGC) via convex layer aggregation under a
novel multilayer signal plus noise model. By varying the noise level,
we specify the critical value that separates the clusteringperfor-
mance of multilayer (SGC) into a reliable regime and an unreli-
able regime. Numerical experiments validate the phase transitions
incurred by noise levels and layer weights, which are successfully
predicted by the developed analytical results.
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