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ABSTRACT

Multilayer graphs are commonly used for representing chffié re-
lations between entities and handling heterogeneous datagsing
tasks. New challenges arise in multilayer graph clustefamgas-
signing clusters to a common multilayer node set and for ¢oimdp
information from each layer. This paper presents a thezaidtiame-
work for multilayer spectral graph clustering of the nodesoconvex
layer aggregation. Under a novel multilayer signal pluseanodel,
we provide a phase transition analysis that establishesxikeence
of a critical value on the noise level that permits reliabiester sepa-
ration. The analysis also specifies analytical upper angiddounds
on the critical value, where the bounds become exact whecltlse
ters have identical sizes. Numerical experiments on syiothaulti-
layer graphs are conducted to validate the phase transitialysis
and study the effect of layer weights and noise levels ont@ling
reliability.

1. INTRODUCTION

Multilayer graphs are useful for representing differert&tiens be-
tween entities and handing heterogeneous multilayer daizegs-
ing tasks, where each layer describes a specific type of ctinitg
pattern among a common node set across layers. For example,
multi-relational social networks, each layer correspaiedsne type
of social relation. In temporal networks, each layer cqroesis to
the snapshot of the entire network at a sampled time instaviae
tilayer graphs have been applied to many signal processidglata
mining techniques, including inference of mixture mod@g], ten-
sor decompositiori |3], information extractidd [4], mwiew learn-
ing and processind [5], graph wavelet transfofin [6], ppaticom-
ponent analysis and dictionary learnifid [7,8], anomalgckédn [9],
and community detection [10=12], among others.

In particular, the task of multilayer graph clustering isfited

accuracy can be guaranteed, and an unreliable regime wigre h
clustering accuracy is impossible. Moreover, we show thatipper
and lower bounds on the critical noise level that separatesettwo
regimes are closed-form functions of the signal strenggganumber
of clusters, the cluster size distributions, and the layeight vector
for convex layer aggregation. In addition, the bounds becext
act in the case of identical cluster sizes. Numerical expenis on
synthetic multilayer graphs are conducted to validate tiasp tran-
sition analysis and study the effect of layer weights andetevels
on clustering reliability.

2. RELATED WORK

Layer aggregation has been a principal method for procgssid
mining multilayer graphs[[13=18], as it transforms a maitér
graph into a single aggregated graph, facilitating appticeof data
analysis techniques designed for single-layer graphs.eriglig
from the stochastic block model (SBM) for graph clusterimg
single-layer graph$119,20], multilayer SBM has been psejpiofor
graph clustering on multilayer grapHs [18] 21-25]. Under dis-
sumption of two equally-sized clusters, the author§in Et&jw that
if each layer is an independent realization of a common SBMin-

ferential limit for cluster detectability decays wifh(L*% ), where
L is the number of layers. In]25], a layer selection methoa:dam
a multilayer SBM is proposed to improve the performance apgr
clustering. However, the multilayer SBM assumes homogesneo
connectivity structure for within-cluster and betweenstér edges
in each layer, and it assumes layer-wise independence. Tite m
layer signal plus noise model considered in this paper isnemgé
model that includes the multilayer SBM, as it does not imparsg
distributional assumption on the within-cluster connattifor each
layer. More details on multilayer graph models for graptstdung
can be found in the recent survey papérs([10, 11].

a consensus cluster assignment on each node in the commen nod

set by inspecting the connectivity pattern in each layerffebant
from clustering in single-layer graphs, clustering in majter graph
faces new challenges due to (1) information aggregatian fralti-
ple layers, and (2) lack of a theoretical framework on clistereli-
ability assessment. By viewing the connectivity pattereach layer
as a signal plus noise model, this paper aims to provide adtieo
cal framework for analyzing the performance of multilaypectral
graph clustering (SGC) via convex layer aggregation, whpeetral
clustering is implemented on an aggregated graph via cotwex
bination of each layer. Specifically, fixing the within-desedges
(signals) and varying the parameters governing the betwekmter
edges (noises), we show that the accuracy of multilayer S&ade
separated into two regimes: a reliable regime where higsteting
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3. MULTILAYER SIGNAL PLUSNOISE MODEL

We consider the multilayer graph modelbfayers representing dif-
ferent relationships among a common nodeléelf n nodes. The
graph in the/-th layer is an undirected graph with nonnegative edge
wights, which is denoted by, = (V, &), where&, is the set of
weighted edges in théth layer. Then x n binary symmetric adja-
cency matrixA ¥) is used to represent the connectivity structure of
G,. The entry[A“],, = 1 if nodesu andwv are connected in the
¢-th layer, and A 9], = 0 otherwise. Similarly, the x n non-
negative symmetric weight matri (*) is used to represent the edge
weights inG,, whereW ) and A () have the same zero structure.
We assume each layer in the multilayer graph is a (possi-
bly correlated) representation of commdi clusters that par-
titions the node seV, where thek-th cluster has cluster size
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nk such thaty X\ n, = n. Nmin = mingeq1,... k3 7 and

For the/-th layer, the noise accounting for the between-cluster

Nmax = MaXe(1,.. x} 7k denote the largest and smallest clusteredges is said to Helock-wise identicaif the noise parametepéf) =

size, respectively. Specifically, the adjacency ma#i%’ of G, in
the /-th layer can be represented as
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whereA§f) is anny x ng binary symmetric matrix denoting the
adjacency matrix of within-cluster edges of theh cluster in the

£-th layer, ancCZ(f) is ann; x n; binary rectangular matrix denoting
the adjacency matrix of between-cluster edges of clustarslj in

the/-th layer,1 < i,j < K, i # j, andC\; = CE?T.
Similarly, the edge weight matri¥v‘¥ can be represented as

W
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WhereW,(f) is anny x nj; nonnegative symmetric matrix denoting
the edge weights of within-cluster edges of #hh cluster in the
£-th layer, ano[F,Ef) is ann; x m; nonnegative rectangular matrix
denoting the edge weights of between-cluster edges ofckisind
jinthet-thlayer,1 <i,j < K,i # j, andF? = 7"

Using the cluster-wise block representations of the adjace
and edge weight matrices for the multilayer graph model ritest
in (@) and [[2), we propose a signal plus noise model4d and

pto andWZ(f) — W for every cluster paif and;, i # j. Other-
wise it is said to bélock-wise non-identical

4. MULTILAYER SPECTRAL GRAPH CLUSTERING VIA
CONVEX LAYER AGGREGATION

4.1. Notations and mathematical formulations

Letw = [wi,...,wz]” € Wi be anL x 1 column vector repre-
senting the layer weight vector for convex layer aggregatichere
WL ={w :we >0, 25:1 wy = 1} is the set of feasible layer
weight vectors. The single-layer graph obtained via corleger
aggregation with layer weight vectar is denoted byG". The
(weighted) adjacency matriA™ and the edge weight matritv™
of GV satisfy A™ = & w,A® and WY = 1w, WO,
The graph Laplacian matrik™ of G% is defined ad." = S¥ —
WY = SF wL®, whereS™ = diag(s™) is a diagonal ma-
trix, s¥ = WW1, is the vector of nodal strength &%, 1,, is
then x 1 column vector of ones, anH®) is the graph Laplacian
matrix of G,. Similarly, the graph Laplacian matrix]’ accounting
for the within-cluster edges of thieth cluster inG" is defined as
Y=L wL®, wherewy = S°F w, Wi,

¥ = diagW}'1,,,), andL” = s\ — W' Thei-th smallest
eigenvalue o™ is denoted by\;(L"). Based on the definition of
LY, the smallest eigenvalue (L™) of L™ is 0, sinceL™ 1,, = 05,
where0,, is then x 1 column vector of zeros.

Spectral graph clustering (SGC)[27] partitions the nodes
into K (K > 2) clusters based on thE eigenvectors associated
with the K smallest eigenvalues di*. Specifically, SGC first
transforms a node itz" to a K-dimensional vector in the sub-
space spanned by these eigenvectors, and then implemené&aKks
clustering [28] on the<-dimensional vector space representation to
group the nodes iG'™ into K clusters based on their distances. For
analysis purposes, throughout this paper we asstfidés a con-

W _ QW
k — Pk —

W to analyze the effect of convex layer aggregation on graphmected graph. 7% is connected, it is known that; (L") > 0

clustering. Specifically, for each layer we assume the octivity

structure and edge weight distributions follow the randatericon-
nection model (RIM)[[25]. In RIM the signal of the-th cluster in
the¢-th layer is the connectivity structure and weights of théhim-

cluster edges represented by the matriAéC@ and W', respec-
tively. In particular, analogous to the formulation of maafgtec-
tion problems in signal processing, the signal can be arlyiin the
sense that we impose no distributional assumption for thkinvi
cluster edges. The noise between clustensd; in the ¢-th layer is
the connectivity structure and weights of the betweentefusdges

represented by the matricégﬁ) andFE.f), respectively.
Throughout this paper, we assume the connectivity of a l@twe
cluster edge (i.e., the noise) in each layer is indepengeindwn
from a layer-wise and block-wise independent common Beélinou
distribution. Specifically, each entry @ff) representing the exis-
tence of an edge between clusté@ndj in the ¢-layer is an inde-
pendent realization of a Bernoulli random variable with edgn-
nection probabilitypif) € [0,1] that is layer-wise and block-wise
independent. In addition, given the existence of an ddge) be-
tween clusters andj in the ¢-layer, the enterEf)]M representing

the corresponding edge weight is independently drawn frorore

negative distribution with meaWE-f) and bounded fourth moment
that is layer-wise and block-wise independent.

for all i > 2 [29]. Furthermore, the eigenvector associated with the
smallest eigenvalue.; (L™) provides no information about graph
clustering since it is proportional tb, .

LetY € R™*(X=1 denote the eigenvector matrix wherefits
th column is thgk + 1)-th eigenvector associated wity 1 (L"),
1 < k < K — 1. By the Courant-Fischer theorei [30Y, is the
solution to the minimization problem

Sa. i (LY)

trace X LV X),

min
XcRn X (K—1)

subjec taX”X = Ix_1, X" 1, = Ox_1, ®)
where the optimal valuss.x (L) = trac Y LYY in @) is the
partial eigenvalue sunS. i (L%) = S5, A\ (LY), Ix—; is the
(K —1) x (K —1) identity matrix, and the constraints [ (3) impose
orthonormality and centrality on the eigenvectors. In saryymul-
tilayer SGC via convex layer aggregation works by computhngy
eigenvector matrixy’ from LY of G*, and implementing K-means
clustering on the rows 6Y to group the nodes int& clusters.

4.2. Phasetransitionsunder block-wiseidentical noise

Under the multilayer signal plus noise model, if we furtheswame
block-wise identical noise, then the noise level in thtéh layer



can be characterized by the parametét = p® . W', where
p® € [0,1] is the edge connection parameter dd’’ > 0 is
the mean of the between-cluster edge weights in #itle layer.
Given a layer weight vectow € Wy, let t™ = S0 wet®
denote the aggregated noise level of the graph. Theorenm 1L
below establishes phase transitions in the eigendecotiposif
the graph Laplacian matrik™ of G*. We show that there exists
a critical valuet™™* such that thek” smallest eigenpairs di that
are used for multilayer SGC have different characteristiten
tY o<tV andtV > tV*. In particular, we show that the so-
lution to the minimization problem if13), the eigenvectoatnix
Y =[YF, Yy, ..., YE)T e R E-Y represented by the cluster
partitioned form, wheré(;, € R™*E~1 with its rows indexing
the nodes in clustet, has cluster-wise separability whefi < ¢™*

in the sense that the matricé¥ , } =, are row-wise identical and
cluster-wise distinct, whereas whet > t"* the row-wise average

Theorenil (b) establishes a phase transition in clustez-s@p-
arability of the eigenvector matriY’ for multilayer SGC. When
tV < tV*, the conditions (b-1) to (b-3) imply that the rows of the
cluster-wise componentSY; } =, are coherent, and hence the row
vectors inY possess cluster-wise separability. On the other hand,
whent™ > tV*, the row sum of eaclY, is a zero vector, making
Y. incoherent. This means that the entries of each colum¥i;n
have alternating signs and hence K-means clustering orotie of
Y yields incorrect clusters.

Theoren]l (c) establishes upper and lower bounds on the crit-
ical threshold valug™* of the aggregated noise levél given a
layer weight vectow. These bounds are determined by the cluster
having the smallest aggregated partial eigenvalue Sum(L} ) =
Zle wZSQ;K(L;f)), the number of cluster&’, and the largest and
smallest cluster sizenfnax andnmin). When all cluster sizes are
identical (i.e.,c = 1), these bounds become tight (i.8%5 = tz)-

of each matrixY is a zero vector and hence the clusters are noMoreover, by the nonnegativity of the layer weights we cataivba

separable by inspecting the rowst

Theorem 1 (block-wise identical noise)
Given a layer weight vectow € Wy, and assuming the block-
wise identical noise model with aggregated noise lew®l =

ZZL:lwzt(l), let ¢W* = mingeqi2,.., K}{S@ﬁif“lg)}’ where

Ly = Y F  w/L{". There exists a critical valug”* such that the

following holds almost surely as, — oo V k and ﬁ —c >0

IF ¢ < g, S @) e v

If 2% > ™, V" 4 (K — 1) (1 — Rmax) ¢% <
<V 4 (K —1) (1 — Zmin) ¢,

If £ > £ ande = 1, S2LY) — gwe y KD pw
Furthermore,

If ™ < t™* Y5 =1,,1%_, Vi
[vflnk,vglnk,. .
If % > t™* YI1,, =0x_1, Vk;
IftY =tV Y =1, 1% 1 Vi OrYl{l”k =0x-1, VF,
whereV,, = diag(v¥, v5, ... vk _;) e RE-DXE-D,

In particular, whent™ < t"*, Y has the following properties:

(b-1) The columns ok, are constant vectors.

(b-2) Each column ofY has at least two nonzero cluster-wise
constant components, and these constants have alternsigms
such that their weighted sum equalgi.e.,>", nkvf =0,Vje
{1,2,..., K —1}).

Sa. i (LY)
n

@)

(b) -7U§(711nk}7 Vk:

universal lower bound oty for anyw € Wy, which is

Mminge(1,2,... K} Milgef1,2,....L} SQ:K(L](f))
(K - 1)nmax

tg >

)

SincengK(Lgf)) is a measure of connectivity for clusterin the
¢-th layer, the lower bound df in (@) implies that the performance
of multilayer SGC is indeed affected by the least connechester
among allK clusters and acrogdslayers. Specifically, if the graphin
each layer is unweighted arfd = 2, then52:K(L§f)) = )\Q(Ll(f))
reduces to the algebraic connectivity [29, 31] of clugtém the /-th
layer.

4.3. Phasetransitionsunder block-wise non-identical noise

Under the block-wise non-identical noise model, the nogsell of
between-cluster edges between clusteasd ; in the ¢-th layer is
characterized by the parametéf) = pﬁf) ng) 1<4,j <K,
i#j,andl < ¢ < L. Let 8. = maxi<;,j<K, i#j ti-f) be the
maximum noise level in théth layer and let} . Zle wgtﬁﬁéx
denote the aggregated maximum noise level given a layerhiveig
vectorw € Wy,.

LetY € R™*(5~1 pe the eigenvector matrix &" under the

block-wise non-identical noise model, and ¥t € R™*(*~1 pe

(b-3) No two columns o have the same sign on the cluster-wise the eigenvector matrix of the graph Laplacikit of another ran-

nonzero components.
Finally, tV* satisfies:
©) s <tV < t)s, where

w _ mingery o iy S2k (LY) o
LB — (K —1)nmax » YUB

In particular, s = tJz whenc = 1.

minge (2, Kk} S2:x (LY)
(K—1)nmin :

Theorenl (a) establishes a phase transition in the inciase

the normalized partial eigenvalue suiﬁKan) with respect to the
aggregated noise level’. Whent™ < t** the quantity 224
is exactly(K — 1)t™. Whent™ > ¢V the slope in* of Sz

{ Sa. i (LY) } _

depends on the cluster hav-

changes and the intercegt = minge(12,... x}

€)
. i wy Sa. i (L)
mMiMge{1,2,... K}~ n k

ing the smallest aggregated partial eigenvalue sum givesyer |

dom graph generated under the block-wise identical noisdeino
with aggregated noise level’, which is independent okL. The-
orem[2 below specifies the distance between the subspaaasespa
by the columns oY andY by inspecting their principal angles[27].
Specifically, sinceY andY both have orthonormal columns, the
vectorv of K — 1 principal angles between their column spaces is
v =[cos ' (YTY),...,cos L ox_1(YTY)]T, whereo, (M)

is thek-th largest singular value of a real rectangular malix Let
O(Y,Y) = diagv), and letsin ©(Y,Y) be defined entrywise.
Whent™ < tW*, TheoreniR provides an upper bound on the Frobe-
nius norm ofsin ® (Y, Y), which is denoted by sin © (Y, Y)| ¢.
Moreover, ifty.,. < tV™*, wheret™ ™ is the critical threshold value
for the block-wise identical noise model as specified in Taedl,
then|| sin ©(Y, Y)||» can be further bounded.

weight vectorw. In particular, when all clusters have the same SizeTheorem 2 (block-wise non-identical noise)

(i-€. tmax = Nmin = =) s0 thate = 1, 22£®) yndergoes a slope
change fromk — 1 to =12 at the critical valug™ = ™~

Given a layer weight vectow € WWr, and assuming the block-
wise non-identical noise model with maximum noise I€#él, } =,



for each layer, lett”* be be the critical threshold value for the [y ESsss==y e
block-wise identical noise model specified by Thediem 1dafide [ v 3 =T
Sew = min{t™, |Ar41(E=2) — t%|}. For afixedt™, if t¥ < ¢¥* : S ‘ E | —
anddgw ,, — dw > 0 asng — oo V k, the following statement o s T
holds almost surely as;, — co ¥ & and % —c>0 Fig. 1: Phase transitions in the accuracy of multilayer SGC with
respect to different layer weight vecter = [w; wo]” for the two-
(5) layer correlated graph model, whete = ny = n3 = 1000, g11 =
0.3, gio = 0.2, go1 = 0.1, andgoo = 0.4. From left to right,
(w1, w2) = (0.8,0.2), (0.5,0.5), and (0.2, 0.8), respectively. The
last plot is the geometric mean, whare is uniformly drawn from

value

-

: I|L L =
<= = 7
|sin®(Y,Y)|r 0,

Furthermore, let,,. = S°5 | wetihe. If 6, < V7,

~ LY — T:WHF [0, 1] with unit interval0.1. The results are averaged over 10 runs.
[sin®(Y,Y)[|lr < min ———. (6)
W St ax ndgw

sec
predicted predicted

1= s
R e e Ty
Fig. 22 The effect of the layer weight vectow = [w; wa]”

on the accuracy of multilayer SGC with respect to difference

maximum noise levety,, < tV*, then a tight upper bound on . (012
. > max . . noise level {p'”}7_, for the same two-layer correlated graph
Isin®(Y,Y)|r can be obtained by{6). Therefore, using the 1odel as in Fig. (0. From left to right(p",p®)

cluster-wise separabilityd?as established in Theorddh 1 (b), when (0.2,0.2), (0.2,0.5), (0.5,0.2), and (0.5,0.5), respectively. The
thax < ™", cluster-wise separability ifY’ can be expected pro- o iis are averaged over 50 runs.

vided that|| sin ®(Y,Y)||» is small. The proofs of Theoreni$
and2are given in the supplementary file.
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Theoreni® shows that the subspace distande ©(Y,Y)||»
is upper bounded by[{5), whef¥ is the eigenvector matrix of

L™ under the block-wise identical noise model when its aggre
gated noise levet™ < t“*. Furthermore, if the aggregated

5.2. Phasetransitionsincurred by layer weights

Next we investigate the effect of layer weight vecteron multi-
layer SGC via convex layer aggregation given fixed noiselseva
the two-layer graph setting, since by definition = 1 — w, it suf-
fices to study the effect af; on clustering accuracy. Fifl] 2 shows
the clustering accuracy by varying under the two-layer correlated
graph model. As shown in Fidll 2, if each layer has low noisellev
(left plot), then any layer weight vectev € W, can lead to correct
clustering result. If one layer has high noise level (midpliets),
then there exists a critical valuej € [0, 1] that separates the clus-
ter detectability into a reliable regime and an unrelialelgime. In
particular, Theorerfil1 implies that the critical valug, if existed,
satisfies the condition” = t¥~ whenw = [w},1 — wi]’ = w*,
which is equivalent to

5. NUMERICAL RESULTS

To validate the phase transitions in the accuracy of mykils&8GC
via convex layer aggregation, we generate synthetic rayéil
graphs from a two-layer correlated multilayer graph mo@&sdecif-
ically, we generate edge connections within and betwker- 3
equally-sized ground-truth clusters én= 2 layersG: andG2. The
two layersG1 and G are correlated since their edge connections
are generated in the following manner. For every node pair)(of
the same cluster, with probability; there is a within-cluster edge
(u,v) in G1 and Gz, with probability g1 there is a within-cluster
edge {,v) in G1 but not in G2, with probability o, there is a
within-cluster edge«, v) in G2 but not inG1, and with probability

qoo there is no edgeu( v) in G; and G2. These four parameters 1 LM

are nonnegative and sum 1o For between-cluster edges, we adopt = — [wfp(l) (1— wf)p@)] =wj - min  So.x (—)

the block-wise identical noise model such that for eachrldy¢he ke{1,2,.... K}

edge connection between every node pair from differentetsss L®

an i.i.d. Bernoulli random variable with paramepét’. +(1—w?})- . {min o So.xc <—> @)
e{1,2,...,

5.1. Phasetransitionsincurred by noise levels It is observed that the empirical critical valuef matches the pre-

dicted value from[{[7). Lastly, if each layer has high noiseléright
plot), then no layer weight vector can lead to correct chistere-
sult, and the corresponding cluster detectability is sintib random
guessing of clustering accura%/ ~ 33.33%.

By varying the noise levefp'“}7_,, Fig. [ shows the accuracy of
multilayer SGC with respect to different layer weight vecto =

[wi w2]T, where the accuracy is evaluated in terms of cluster de
tectability, i.e., the fraction of correctly identified neslin the same
cluster. Given a fixedv, as proved in Theoref 1, there is indeed a
phase transition in cluster detectability that separdtesise level 6. CONCLUSION

{p¥12_, into two regimes: a reliable regime where high cluster-

ing accuracy is guaranteed, and an unreliable regime wtighe h This paper establishes a phase transition analysis onlayeftispec-
clustering accuracy is impossible. Furthermore, theaaitvalue  tral graph clustering (SGC) via convex layer aggregatiodenra
of {p(}2_, that separates these two regimes are successfully pr&ovel multilayer signal plus noise model. By varying theseolevel,
dicted by Theorerfil1 (c), which validates the phase tramsétival- ~ We specify the critical value that separates the clustepiegor-
ysis. The rightmost plot in Fig[11 shows the geometric mean ofnance of multilayer (SGC) into a reliable regime and an inrel
cluster detectability from different layer weight vectorShere is ~ able regime. Numerical experiments validate the phaseitrans
an universal region of perfect cluster detectability tmaiudes the incurred by noise levels and layer weights, which are sigfatg
region specified by the universal phase transition lowenton (@).  Predicted by the developed analytical results.
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