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ABSTRACT

This paper considers the recovery of group sparse signals over a
multi-agent network, where the measurements are subject tosparse
errors. We first investigate the robust group LASSO model andits
centralized algorithm based on the alternating direction method of
multipliers (ADMM), which requires a central fusion centerto com-
pute a global row-support detector. To implement it in a decentral-
ized network environment, we then adopt dynamic average consen-
sus strategies that enable dynamic tracking of the global row-support
detector. Numerical experiments demonstrate the effectiveness of
the proposed algorithms.

Index Terms— Decentralized optimization, dynamic average
consensus, group sparsity, alternating direction method of multipli-
ers (ADMM)

1. INTRODUCTION

Suppose thatL distributed agents constitute a bidirectionally con-
nected network and sense correlated signals under sparse measure-
ment errors. The measurement equation of agentl is

ml = A(l)yl + sl, (1)

whereml ∈ RM is the measurement vector,A(l) is the sensing
matrix, yl ∈ RN is the unknown signal vector, andsl ∈ RM is
the unknown sparse error vector. We are particularly interested in
a certain correlation pattern of the signal vectors, where the signal
matrixY = [y1, . . . ,yL] ∈ RN×L is group sparse, meaning thatY

is sparse and its nonzero entries appear in a small number of common
rows. DefineM ∈ RM×L as the measurement matrix andS ∈
RM×L as the sparse error matrix, the matrix form of the agents’
measurement equations is

M = [A(1)y1, · · · ,A(L)yL] + S. (2)

GivenM andA(i)’s, the goal of the network is to recoverY andS
from the linear measurement equation (2).

1.1. Robust Group LASSO Model

The recovery of group sparse (also known as block sparse [1] or
jointly sparse [2]) signals finds a variety of applications such as
direction-of-arrival estimation [3, 4], collaborative spectrum sens-
ing [5–7] and motion detection [8]. A well-known model to recover
group sparse signals is group LASSO (least absolute shrinkage and
selection operator) [9], which solves

min
Y

‖Y‖2,1 + λ‖M− [A(1)y1, · · · ,A(L)yL]‖2F . (3)

Hereλ is a nonnegative trade-off parameter. A key assumption lead-
ing to the success of such model is the sub-Gaussianity of errors.
However, in many applications, the measurements of the agents may
be seriously contaminated or even missing due to uncertainties such
as sensor failure or transmission errors. This kind of measurement
errors are often sparse [10]. Hence, a natural extension of (3) is to
exploit the structures of both the signal matrixY and the sparse error
matrixS by solving

min
Y,S

‖Y‖2,1 + λ‖S‖1, (4)

s.t. M = [A(1)y1, · · · ,A(L)yL] + S.

This model is termed as robust group LASSO, whose performance
guarantee is given in [11]. Under mild conditions, the robust group
LASSO model is able to simultaneously recover the true values of
Y andS with high probability.

1.2. Our Contributions

This paper develops efficient algorithms to solve the robustgroup
LASSO model (4). Our contributions are as follows.

(i) We propose a centralized algorithm that is based on the alter-
nating direction method of multipliers (ADMM), a powerful
operator-splitting technique. One subproblem of the central-
ized algorithm is the traditional group LASSO model, which
is approximately solved by a block coordinate descent (BCD)
approach through successively estimating the row-supportof
the signal matrixY.

(ii) We develop decentralized versions of the above algorithm that
are suitable for autonomous computation over large-scale net-
works. Since estimating the row-support of the signal matrix
Y requires collaborative information fusion of all the agents,
we propose to achieve inexact information fusion through dy-
namic average consensus techniques, which only require in-
formation exchange among neighboring agents.

1.3. Notations

Matrices are denoted by bold uppercase letters and vectors are de-
noted by bold lowercase letters. For a matrixD, di denotes its
i-th row, dj denotes itsj-th column, whiledij denotes its(i, j)-
th element. Theℓ2,1-norm of D is ‖D‖2,1 ,

∑

i(
∑

j d
2
ij)

1/2,

the ℓ1-norm is‖D‖1 ,
∑

i

∑

j |dij |, and the Frobenius norm is

‖D‖F , (
∑

i

∑

j d
2
ij)

1/2.
The multi-agent network is described as a bidirectional graph

(L, E). If two agentsr, l ∈ L are neighbors, then they can communi-
cate with each other within one hop, and(r, l) ∈ E is a bidirectional
communication edge.
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2. CENTRALIZED ROBUST GROUP LASSO

Optimally solving (4) is nontrivial since the objective function is a
weighted summation of two nonsmooth functions‖Y‖2,1 and‖S‖1,
whereY andS are entangled in the constraint. Therefore we resort
to the alternating direction method of multipliers (ADMM) to split
the two entangled variablesY andS such that the resulting subprob-
lems are easier to solve.

2.1. Using ADMM to Solve (4)

The augmented Lagrangian function of (4) is

‖Y‖2,1 + λ‖S‖1 − 〈Z, [A(1)y1, · · · ,A(L)yL] + S−M〉

+
β

2
‖[A(1)y1, · · · ,A(L)yL] + S−M‖2F ,

whereZ ∈ RM×L is the Lagrange multiplier andβ is a positive
penalty parameter. The ADMM alternatingly minimizes the aug-
mented Lagrangian function with respect toY andS, and then up-
dates the Lagrange multiplierZ [12]. At time t, the ADMM works
as follows.

First, fixing S = S(t) andZ = Z(t), we minimize the aug-
mented Lagrangian function respect toY to getY(t + 1). Simple
manipulation shows that it is equivalent to

Y(t+ 1) = argmin
Y

‖Y‖2,1 (5)

+
β

2
‖[A(1)y1, · · · ,A(L)yL] + S(t)−M− Z(t)

β
‖2F .

Note that (5) is a standard group lasso problem that generally does
not have a closed-form solution. We will develop an efficientalgo-
rithm to solve (5) later in this section.

Second, fixingY = Y(t + 1) andZ = Z(t), we minimize the
augmented Lagrangian function respect toS to getS(t+1). Again,
combining the linear term with the quadratic term ofS yields

S(t+ 1) = argmin
S

λ‖S‖1 (6)

+
β

2
‖[A(1)y1(t+ 1), · · · ,A(L)yL(t+ 1)] + S−M− Z(t)

β
‖2F .

DenotingW(t+1) = M− [A(1)y1(t+1), · · · ,A(L)yL(t+1)]−
Z(t)/β, (6) has a closed-form solution given by

sml(t+ 1) = sgn(wml(t+ 1))max
(

0, |wml(t+ 1)| − λ

β

)

, (7)

where sgn(·) is the sign function;sml(t+1) andwml(t+1) denote
the(m, l)-th entries ofS(t + 1) andW(t + 1), respectively. Note
that the term|sml(t+1)| can be viewed as the support detector of the
(m, l)-th element ofS. If |sml(t+ 1)| is smaller than the threshold
λ/β, thensml(t+ 1) is set to be zero.

Finally, givenY = Y(t+ 1) andS = S(t + 1), the Lagrange
multiplierZ is updated according to the following formula

Z(t+ 1) = Z(t) (8)

− β
(

[A(1)y1(t+ 1), · · · ,A(L)yL(t+ 1)] + S(t+ 1) −M
)

.

Since the update ofS in (7) and the update ofZ in (8) are both
simple, now we focus on the update ofY in (5) that is the bottleneck
of the ADMM. Observe that in (5) the ℓ2,1-norm term is separa-
ble with respect toyi’s but nonsmooth, while the Frobenius term is
smooth but nonseparable with respect toyi’s. Therefore, in this pa-
per we solve (5) with the block coordinate descent (BCD) algorithm
that has shown to be an efficient tool to handle this special problem
structure [13–15].

2.2. Using BCD to Solve (5)

To set up the iterative BCD algorithm that solves (5) at timet, we
divide timet intoP slots. At timet slotp (p = 0, 1, · · · , P −1), we
linearize the Frobenius norm term in (5) with respect toY(t + p

P
)

and add an extra quadratic regularization term, which gives

min
Y

‖Y‖2,1 + β〈V(t+
p

P
),Y〉+ β

2τ
‖Y −Y(t+

p

P
)‖2F , (9)

whereτ is a positive proximal parameter and thel-th column of
V(t+ p

P
) ∈ RN×L is defined as

vl(t+
p

P
) = A

T
(l)

(

A(l)yl(t+
p

P
) + sl(t)−ml −

zl(t)

β

)

. (10)

Note that (9) is equivalent to

min
Y

‖Y‖2,1 +
β

2τ
‖Y −Y(t+

p

P
) + τV(t+

p

P
)‖2F , (11)

which has a closed-form solution given by the soft-thresholding op-
erator [16]. DenoteU(t+ p

P
) = Y(t+ p

P
)− τV(t+ p

P
) ∈ RN×L

whosen-th row is given byun(t+ p
P
) = yn(t+ p

P
)−τvn(t+ p

P
).

Also denoteY(t+ p+1
P

) ∈ RN×L as the solution of (11). Then-th
row of Y(t+ p+1

P
) is

y
n(t+

p+ 1

P
) =

un(t+ p
P
)

‖un(t+ p
P
)‖2

max
(

0, ‖un(t+
p

P
)‖2 − τ

β

)

.

Again, note that the term‖un(t + p
P
)‖2 can be viewed as the

row-support detector of then-th row of Y. If ‖un(t + p
P
)‖2 is

smaller than the thresholdτ/β, thenyn(t+ p+1
P

) is set to be zero.

2.3. Implementation of Centralized Robust Group LASSO

The centralized ADMM to solve the robust group LASSO model (4)
is summarized in Table I. Each iteration of the ADMM includesan
inner-loop BCD subroutine that updatesY through solving (5), the
update ofS that has a closed-form solution (7), and the update ofZ
in (8). The ADMM parameterβ can be any positive value, though
its choice may influence the convergence rate. The BCD parameter
τ is set to be the minimum of largest eigenvalues ofAT

(l)A(l), l =
1, 2, · · · , L that guarantees the convergence of the BCD subroutine
[13–15]. As long asτ is properly chosen andP is large enough,
the BCD subroutine is able to solve the subproblem (5) with enough
accuracy such that the ADMM converges to the global minimum of
the convex program (4).

The algorithm outlined in Table I is centralized, which means
that a fusion center is necessary to gather information fromall the
agents and conduct optimization. This centralized scheme is sensi-
tive to the failure of the fusion center, requires multi-hopcommuni-
cation within the network, and is hence unscalable with respect to
the networks size. In view of the need of decentralized optimiza-
tion for large-scale networks, we discuss how to implement it in a
decentralized manner, as shown in the next section.

3. DECENTRALIZED ROBUST GROUP LASSO

Observe that Algorithm 1 is naturally distributed, except for the up-
date ofynl(t +

p+1
P

), which involves calculating the global row-
support detector‖un(t + p

P
)‖2 across agents. Hence, given the

vectorun(t + p
P
), the key to the decentralized implementation of



Table 1. Algorithm 1: Centralized Robust Group LASSO

Given: measurementM; sensing matricesA(l); parametersβ andτ
Initialize: signalY(0) = 0; errorS(0) = 0; multiplier Z(0) = 0

while not converged (t = 0, 1, · · · ) for all l do
for p = 0, 1, · · · , P − 1

vl(t+
p
P
) = AT

(l)

(

A(l)yl(t+
p
P
) + sl(t)−ml − zl(t)

β

)

unl(t+
p
P
) = ynl(t+

p
P
)− τvnl(t+

p
P
), ∀n

ynl(t+
p+1
P

) =
ynl(t+

p
P

)

‖un(t+ p
P

)‖2
max

(

0, ‖un(t+ p
P
)‖2 − τ

β

)

, ∀n
end for
wl(t+ 1) = ml −A(l)yl(t+ 1)− zl(t)

β

sml(t+ 1) = sgn(wml(t+ 1))max
(

0, |wml(t+ 1)| − λ
β

)

, ∀m
zl(t+ 1) = zl(t)− β

(

A(l)yl(t+ 1) + sl(t+ 1)−ml

)

end while

Algorithm 1 is how to calculate itsℓ2-norm‖un(t + p
P
)‖2 in a de-

centralized manner. Recall that

‖un(t+
p

P
)‖2 = L

1

2

(

1

L

L
∑

l=1

u2
nl(t+

p

P
)

)
1

2

=
(

Lhnl(t+
p

P
)
) 1

2

,

where

hnl(t+
p

P
) ,

1

L

L
∑

l=1

u2
nl(t+

p

P
)

is the average of the squares. Therefore, the problem becomes: Sup-
pose each agentl holds the value ofu2

nl(t +
p
P
), how can we de-

sign efficient strategies to (exactly or inexactly) calculate their mean
hnl(t +

p
P
) in a decentralized manner? Below we consider three

approaches to obtain the average.

3.1. Static Average Consensus

The first strategy comes from the classic average consensus algo-
rithm [17]. Calculate

h
n(t+

p

P
) = Σ

K
(

u
n(t+

p

P
)
)2

,

wherehn(t+ p
P
) ∈ R1×L is a row vector containing allhnl(t+

p
P
),

(

un(t+ p
P
)
)2

means element-wise squares ofun(t + p
P
), K is a

large iteration number, andΣ is the mixing matrix. The mixing
matrixΣ is doubly stochastic, and its(r, l)-th elementσrl is nonzero
if and only if (r, l) ∈ E or r = l. A typical choice ofΣ follows the
Metropolis-Hastings rule [17],

σrl =











min{ 1
dr

, 1
dl
}, if (r, l) ∈ E ;

∑

(r,l)∈E max
{

0, 1
dr

− 1
dl

}

, if r = l;

0, else.

(12)

Heredl is the degree of agentl.
Obviously, the graph-sparse structure of the mixing matrixΣ

enables decentralized computation ofhn(t + p
P
). According to

the theory of average consensus [17], if K goes to infinity, then
all the elements ofhn(t + p

P
) converge to the expected average

(1/L)
∑L

l=1 u
2
nl(t +

p
P
), in which the decentralized implementa-

tion is equivalent to its centralized counterpart. However, increasing
K means introducing more rounds of communication and computa-
tion, implying that settingK large is inefficient. On the other hand,
settingK small (say,K = 1) often leads to unsatisfactory result.

Table 2. Algorithm 2: Decentralized Robust Group LASSO

Given: measurementM; sensing matricesA(l); parametersβ andτ
Initialize: signalY(0) = 0; errorS(0) = 0; multiplierZ(0) = 0

while not converged (t = 0, 1, · · · ) agentl do
for p = 0, 1, · · · , P − 1

vl(t+
p
P
) = AT

(l)

(

A(l)yl(t+
p
P
) + sl(t)−ml − zl(t)

β

)

unl(t+
p
P
) = ynl(t+

p
P
)− τvnl(t+

p
P
), ∀n

hnl(t+
p
P
) is updated through an average consensus strategy

ynl(t+
p+1
P

) =
ynl(t+

p
P

)√
Lhnl(t+

p
P

)
max

(

0,
√

Lhnl(t+
p
P
)− τ

β

)

, ∀n
end for
wl(t+ 1) = ml −A(l)yl(t+ 1)− zl(t)

β
,

sml(t+ 1) = sgn(wml(t+ 1))max
(

0, |wml(t+ 1)| − λ
β

)

, ∀m
zl(t+ 1) = zl(t)− β

(

A(l)yl(t+ 1) + sl(t+ 1) −ml

)

end while

3.2. Dynamic Average Consensus

The above-mentioned dilemma motivates us to introduce a new
scheme to dynamically calculate the row-support detector.To sim-
plify the algorithmic protocol, we allow neighboring agents to
exchange only one round of information. Under this setting,ev-
ery agent holds a dynamic valueu2

nl(t +
p
P
), while all the agents

manage to track their dynamic average with one round of communi-
cation. Apparently, if the values ofu2

nl(t +
p
P
) change irregularly,

the agents have no chance to reach their exact dynamic average.
Nevertheless, observe that if the values ofu2

nl(t +
p
P
) converge

to their steady states, convergence of the dynamic average will be
possible. We consider two dynamic average consensus strategies
proposed by [18].
First-order dynamic average consensus.Calculate

hnl(t+
p

P
) =

∑

r 6=l

σrl

(

hnr(t+
p− 1

P
)− hnl(t+

p− 1

P
)

)

+hnl(t+
p− 1

P
) + u2

nl(t+
p

P
)− u2

nl(t+
p− 1

P
).

Second-order dynamic average consensus.Calculate

h̃nl(t+
p

P
) = u2

nl(t+
p

P
)− 2u2

nl(t+
p− 1

P
) + u2

nl(t+
p− 2

P
)

+h̃nl(t+
p− 1

P
)+
∑

r 6=l

σrl

(

h̃nr(t+
p− 1

P
)− h̃nl(t+

p− 1

P
)

)

,

hnl(t+
p

P
) = h̃nl(t+

p

P
)

+hnl(t+
p− 1

P
)+
∑

r 6=l

σrl

(

hnr(t+
p− 1

P
)− hnl(t+

p− 1

P
)

)

.

3.3. Implementation of Centralized Robust Group LASSO

The decentralized group LASSO algorithm is outlined in Table II.
It is very close to the centralized algorithm in Table I, except that
the row-support detector is successively approximated through static
and dynamic average consensus strategies.

If the static average consensus strategy is adopted, then attime
t slot p, the network needsK rounds of information exchange. The
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Fig. 2. Impact of connectivity ratio on the convergence of decentralized algorithms: static average consensus (Left), second-order dynamic
average consensus (Middle), and first-order dynamic average consensus (Right).
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Fig. 1. Comparison between the centralized algorithm and the three
decentralized ones. The curve of the centralized algorithmcoincides
with that using static average consensus.

number of round reduces to one in the two dynamic average con-
sensus strategies. Observe that in each round of first-orderdynamic
average consensus, agentl requireshnr from all of its neighbors
r. However, in each round of second-order dynamic average con-
sensus, agentl requires bothhnr andh̃nr from all of its neighbors
r. Therefore, the second-order strategy doubles the communication
cost per time slot, compared to its first-order counterpart.

With particular note, whenK is set to be large enough in the
static average consensus strategy, the average consensus is exact.
Therefore, the resulting decentralized algorithm enjoys the same
convergence guarantee as the centralized one, at the cost ofunaf-
fordable communication cost. Embedding the two dynamic average
consensus strategies saves remarkable communication cost, but
makes convergence analysis a challenging task. We will leave it as
our future work.

In addition, to avoid possible computational instability,we also
set safeguards to the value ofhnl(t+

p
P
). If going beyond the region

of [hmin, hmax], its value is set to the nearest boundary.

4. NUMERICAL EXPERIMENTS

In the numerical experiments, we consider a network ofL = 30
agents. The dimension of every signal vector isN = 200, while
the dimension of every measurement vector isM = 30. The group

sparse signal matrixY ∈ R200×30 has10 nonzero rows (row spar-
sity ratio is5%), whose positions are uniformly randomly chosen.
The amplitudes of the nonzero elements follow i.i.d. uniform distri-
bution within [−50, 50]. Elements of every sensing matrixA(l) ∈
R30×200 follow i.i.d. standard normal distribution. The sparse error
matrixS ∈ R30×30 has90 nonzero elements (sparsity ratio is10%),
whose positions are uniformly randomly chosen and the amplitudes
follow i.i.d. uniform distribution within[−50, 50].

In the robust group LASSO model, the weight parameterλ = 1.
The ADMM parameterβ is also set as1. The BCD parameterτ
is set to be the minimum of largest eigenvalues ofAT

(l)A(l), l =
1, 2, · · · , L. Every iteration of the ADMM algorithm is divided into
P = 50 slots so as to run the BCD subroutine. For the static average
consensus strategy, we letK = 50, meaning that each slot requires
50 rounds of communication. For the dynamic average consensus
strategies, we let the safeguardshmin = 1 andhmax = ∞. The
performance metric is relative error, defined as the Frobenius dis-
tance between the true[YT ST ] solving (4) and the estimated one
by ADMM, normalized by the Frobenius norm of[YT ST ].

We first compare the centralized algorithm and the three decen-
tralized ones, as depicted in Fig.1. The connectivity ratio of the
network (the percentage of randomly connected edges out of all pos-
sible ones) is50%. The curve of the centralized algorithm coincides
with that using static average consensus. Recall that static average
consensus incurs50 round of communications at every time slot,
and is hence expensive. In contrast, the dynamic average consensus
strategies demonstrate satisfactory convergence properties, though
yielding slightly degraded estimates. Particularly, the second-order
dynamic average consensus is close to the centralized one interms
of the relative error.

In the second set of numerical experiments, we vary the connec-
tivity ratio to observe its impact on the decentralized algorithms, as
shown in Fig. 2. When the connectivity ratio decreases, the per-
formance of the static average consensus degrades significantly. The
reason is that a lower connectivity ratio reduces the speed of network
information fusion, and hence makes the static average consensus
less accurate under a givenK. The two dynamic average consensus
strategies, on the other hand, are not very sensitive to the variation
of connectivity ratio.

The numerical experiments validate the effectiveness of using
dynamic average consensus to decentralize computation over net-
works. Though its theoretical properties in tracking problems have
been investigated [18], its interplay with the overall optimization
scheme is still unclear, and shall be our future research focus.
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