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Abstract

Consider a continuous signal that cannot be observed directly. Instead, one has access to
multiple corrupted versions of the signal. The available corrupted signals are correlated because
they carry information about the common remote signal. The goal is to reconstruct the original
signal from the data collected from its corrupted versions. Known as the indirect or remote
reconstruction problem, it has been mainly studied in the literature from an information theoretic
perspective. A variant of this problem for a class of Gaussian signals, known as the “Gaussian
CEO problem”, has received particular attention; for example, it has been shown that the problem
of recovering the remote signal is equivalent with the problem of recovering the set of corrupted
signals (separation principle).

The information theoretic formulation of the remote reconstruction problem assumes that the
corrupted signals are uniformly sampled and the focus is on optimal compression of the samples.
On the other hand, in this paper we revisit this problem from a sampling perspective. More
specifically, assuming restrictions on the sampling rate from each corrupted signal, we look at the
problem of finding the best sampling locations for each signal to minimize the total reconstruction
distortion of the remote signal. In finding the sampling locations, one can take advantage of
the correlation among the corrupted signals. The statistical model of the original signal and its
corrupted versions adopted in this paper is similar to the one considered for the Gaussian CEO
problem; i.e., we restrict to a class of Gaussian signals.

Our main contribution is a fundamental lower bound on the reconstruction distortion for any
arbitrary nonuniform sampling strategy. This lower bound is valid for any sampling rate. Further-
more, it is tight and matches the optimal reconstruction distortion in low and high sampling rates.
Moreover, it is shown that in the low sampling rate region, it is optimal to use a certain nonuni-
form sampling scheme on all the signals. On the other hand, in the high sampling rate region, it is
optimal to uniformly sample all the signals. We also consider the problem of finding the optimal
sampling locations to recover the set of corrupted signals, rather than the remote signal. Unlike
the information theoretic formulation of the problem in which these two problems were equivalent,
we show that they are not equivalent in our setting.

1 Introduction

In many applications, such as monitoring or sensing systems, one may be interested in reconstructing
a stochastic source S(t) that is not directly observable. Instead, access is provided to k correlated
signals S1(t), S2(t), · · · , Sk(t) that are corrupted versions of S(t). The goal is to reconstruct S(t) from
limited information that one can obtain from Si(t), i = 1, 2, · · · , k. While the source coding aspect
of the problem is classical in information theory (see for instance [1, Sec. 3.5]), its signal processing
and sampling aspect has not received much attention. In this paper, we study the sampling aspect of
this problem for stochastic signal S(t) and the k corrupted versions Si(t). We take into account the
fact that the correlation among the signals Si(t), i = 1, 2, · · · , k, can help decrease the sampling rate
or improve the signal reconstruction accuracy.

∗This paper has been presented in part at GlobalSIP 2016.
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A. System model

It is known that any deterministic continuous function s(t) defined on the interval [0, T ] can be
expressed in terms of sinusoids as follows:

s(t) =

∞∑
`=0

[a` cos(`ωt) + b` sin(`ωt)], t ∈ [0, T ],

where ω = 2π/T . If the number of non-zero coefficients a` and b` are limited, the signal s(t) is sparse
in the frequency domain. Herein, we consider a stochastic signal S(t), and show its Fourier coefficients
by random variables A` and B`. We assume that the coefficients A` and B` are zero when ` > N2 or
` < N1 for some natural numbers N1 ≤ N2, i.e., S(t) is a bandpass stochastic signal:

S(t) =

N2∑
`=N1

[A` cos(`ωt) +B` sin(`ωt)], t ∈ [0, T ], (1)

where the coefficients A` and B` for N1 ≤ ` ≤ N2 are mutually independent identically distributed
(i.i.d.) normal N (0, 1) variables, i.e., the original signal is white and Gaussian. We cannot observe
S(t) directly. Instead, we have S1(t), S2(t), · · · , Sk(t), also defined on t ∈ [0, T ], that are corrupted
versions of S(t). The corrupted versions of the signal can be expressed as

Si(t) =

N2∑
`=N1

[Ai` cos(`ωt) +Bi` sin(`ωt)], t ∈ [0, T ], i ∈ {1, 2, · · · , k}, (2)

where Ai` = A` + Wi` and Bi` = B` + Vi`; here Wi` and Vi` are independent perturbations that are
added to the original signal. It is assumed that the perturbations Wi` and Vi` for i ∈ {1, 2, · · · , k}
and ` ∈ {N1, N1 + 1, · · · , N2} are i.i.d. variables according to N (0, η). The perturbations are also
mutually independent of the signal coefficients A` and B` for N1 ≤ ` ≤ N2. The statistical model
assumed for the coefficients A`, B`, Vi`, Wi` parallels the one for the “Gaussian CEO problem” [5, 6].
A summary of the model parameters is given in Table 1.

We are allowed to takemi samples from the ith corrupted signal Si(·) at time instances ti1, ti2, · · · , timi ∈
[0, T ] of our choice, for i = 1, 2, · · · , k. Therefore mi/T can be viewed as the sampling rate of the Si(·).
We assume that the samples are noisy. The sampling noise can model quantization noise of an A/D
converter, or the noise incurred by transmitting the samples to a fusion center over a communication
channel. The sampling noise of each signal Si(t) is modeled by an independent zero-mean Gaus-
sian random variable with variance σ2i . We use the samples to reconstruct either the remote signal
S(t), or the collection of corrupted signals S1(t), S2(t), · · · , Sk(t). The motivation for reconstructing
{Si(t), i = 1, · · · , k} is twofold: firstly, this would parallel the literature on indirect source coding,
where the reconstruction distortion of intermediate signals is shown to be equivalent with that of the
original signal (the separation theorem [2, 3, 4]). Secondly, these individual signals Si(t) may contain
some other information of interest besides S(t), e.g., the differences S(t)− Si(t) might be correlated
with some other signal of interest.

The reconstruction of the remote signal S(t) and the corrupted signal Si(t) are denoted by Ŝ(t)
and Ŝi(t), respectively. These reconstructions are calculated using the Minimum Mean Square Error
(MMSE) criterion, i.e., Ŝ(t) is the conditional expectation of the S(t) given all the samples. The
goal is to optimize over the sampling times tij to minimize the distance between the signals and their
reconstructions. More specifically, we consider the minimization

Damin = min
{ti1,ti2,··· ,timi

}ki=1

1

T

∫ T

t=0
E{|Ŝ(t)− S(t)|2}dt, (3)

for the remote signal, or the minimization

Dbmin = min
{ti1,ti2,··· ,timi

}ki=1

1

T

∫ T

t=0

k∑
i=1

E{|Ŝi(t)− Si(t)|2}dt. (4)

for reconstruction of the k corrupted signals Si(t), i = 1, 2, · · · , k. Here tij is the jth sampling time
of the ith signal.
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Notation Description
T , ω T is signal period and ω = 2π/T
k Number of corrupted signals

S(t) and Si(t) The original signal and the ith corrupted signal, respectively.
A`, B` Fourier series coefficients of the original signal S(t)

` ∈ [N1 : N2], A`, B` ∼ N (0, 1).
Ai`, Bi` Fourier series coefficients of the ith corrupted signal Si(t)

` ∈ [N1 : N2], Ai`, Bi` ∼ N (0, 1 + η)
η Variance of the perturbation added to A`

to produce Ai` for 1 ≤ i ≤ k.
The support of the input signal in frequency

N , N1 and N2 domain is from N1ω to N2ω.
N = N2 −N1 + 1.

2N is the number of free variables of each signal
mi Number of noisy samples of the ith corrupted signal
σ2
i Variance of the sampling noise of the ith corrupted signal

{ti1, ti2, · · · , timi
} Sampling time instances of the ith corrupted signal

φi = mi

2σ2
i

+ 1
η , Φp =

∑k
i=1 φ

p
i Definitions of φi and Φp used in Theorems 1 and 2

Table 1: Definition of main parameters.

B. Related works

The problem that we defined above is novel. However, it relates to the literature on remote signal
reconstruction and distributed sampling. The former has been only studied from an information
theoretic and source coding perspective, while the latter has been mainly considered in the context
of compressed sensing and wireless sensor networks. Finally, while we consider sampling of multiple
signals, there are some previous works that study sampling rate and reconstruction distortion of a
single source, e.g. see [17, 18, 19, 7].

Remote signal reconstruction: Reconstruction distortion of correlated signals (lossy reconstruction)
is a major theme in multi-user information theory for the class of discrete i.i.d. signals. However, the
emphasis in multi-user source coding is generally on the quantization and compression rates of the
sources, and not on the sampling rates. It is assumed that the signals are all uniformly sampled at the
Nyquist rate. The indirect source coding problem was first introduced by Dobrushin and Tsyabakov
in information theory literature [4]. This work and subsequent information theoretic ones deal with
discrete sources, by assuming that we have several bandlimited signals Si(t), that are sampled at the
Nyquist rate with no distortion at the sampling phase. Then, assuming a finite quantization rate for
storing the samples, the task is to minimize the total reconstruction distortion (which is only due
to quantization). On the other hand, our work in this paper is on indirect source retrieval and not
indirect source coding, as we do not study the quantization aspect of the problem. Rather, we focus on
the distortion incurred by the sampling rate (which can be below the Nyquist rate), and the additive
noise on the samples. We also allow nonuniform sampling to decrease the distortion.

Distributed sampling: From another perspective, our problem relates to the distributed sampling
literature. In distributed compressed sensing, the structure of correlation among multiple signals is
their joint-sparsity. This problem was studied in [8], where signal recovery algorithms using linear
equations obtained by distributed sensors were given. Authors in [9] model the correlation of two
signals by assuming that one is related to the other by an unknown sparse filtering operation. The
problem of centralized reconstruction of two correlated signals based on their distributed samples
is studied, and its similarities with the Slepian-Wolf theorem in information theoretic distributed
compression are pointed out. Motivated by an application in array signal processing, the authors in
[10] consider signal recovery for a specific type of correlated signals, assuming that the signals lie in
an unknown but low dimensional linear subspace.

Spatio-temporal correlation of the distributed signals is a significant feature of wireless sensor
networks and can be utilized for sampling and data collection [11]. In [12], the spatio-temporal
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sampling rate tradeoffs of a sensor network for minimum energy usage is studied. Authors in [13]
provide a mathematical model for the spatio-temporal correlation of the signals observed by the sensor
nodes. In [14], the spatio-temporal statistics of the distributed signals are used by the Principal
Component Analysis (PCA) method to find transformations that sparsify the signal. Compressed
sensing is then used for signal recovery. In [15], a compressive wireless sensing is given for signal
retrieval at a fusion center from an ensemble of spatially distributed sensor nodes. See also [16] for a
distributed algorithm based on sparse random projections for signal recovery in sensor networks.

C. Our contributions

Having chosen a particular sampling strategy (such as uniform sampling), one obtains a value for
its reconstruction distortion. This value serves as an upper bound on the optimal reconstruction
distortion. But we are interested to know how close we come to the optimum distortion with this
particular sampling strategy. To estimate this, it is desirable to find fundamental lower bounds on the
reconstruction distortion which hold regardless of the sampling strategy. In this paper, we provide
such a lower bound for any arbitrary sampling rates (i.e., any arbitrary values for mi) for both of the
problems of reconstructing the remote signal, or the collection of the corrupted signals. Furthermore,
this lower bound is shown to coincide with the optimal distortion in the high and low sampling
regions. In other words, while our fundamental lower bound applies to any arbitrary sampling rates
(and provides information about the general behavior of the optimal distortion), it is of particular
interest in the high and low sampling regions for which it becomes tight.

High sampling rate region: this refers to the case of mi > 2N2 for all i, i.e., we are sampling
each of the signals above the Nyquist rate. Our result in the high sampling region, it is optimal to
use uniform sampling for each signal, and the lower bound matches the distortion yielded by uniform
sampling. From a practical perspective, the high sampling rate region is relevant to the case of high
sampling noise (large σi). When each of the samples taken from a signal is very noisy, we desire
to oversample. As an example, if the sampling noise is modeling the quantization noise of an A/D
converter, we can consider a Σ∆ modulator that oversamples with high quantization noise. If the
sampling noise models the channel noise incurred by transmitting the samples to a fusion center over
a wireless medium, then oversampling provides a redundancy to combat the channel noise.

Low sampling rate region: The low sampling rate region refers to the case of
∑k

i=1mi ≤ N .
Our result for the low sampling rate region states that a certain nonuniform sampling strategy is
distortion optimal, and the lower bound matches the distortion yielded by this nonuniform sampling.
In progressive or multi resolution applications, one wishes to recover a low-resolution version of a
signal, and based on that decide whether to seek a higher resolution version. The low sampling rate
region can be helpful in the low-resolution phase. We also make the following comments about the
low-sampling rate region:

• Our result allows us to quantify the difference between the following two cases: (i) not taking
any samples at all, and (ii) taking a total of N samples

∑k
i=1mi ≤ N . By showing that the

optimal distortion in case (ii) differs from the optimal distortion in case (i) by at most 3dB,
we conclude the following negative result: there is no gain beyond 3dB by using any, however
complicated, nonuniform sampling strategy.1

• If a limitation on the number of samples that we can possibly take is enforced on us as a physical
constraint, it is still of interest to know the best possible achievable distortion.

Finally, we comment on a difference between the low and high sampling rate regions. Suppose that
we have a total budget on the number of samples m =

∑k
i=1mi that we can take from the corrupted

signals. Then, (i) for low sampling rates, m ≤ N : if we want to reconstruct either the remote signal
or the collection of corrupted signals, it is best to take the samples from the signal with the smallest
sampling noise, i.e., if σ1 ≤ σi for all i, it is optimal to choose m1 = m,mi = 0 for i > 2. (ii) for high
sampling rates: for reconstructing the remote signal, taking more samples from the less noisy signals

1However, one should also note in sensitive applications, such as radar, extra sampling to improve the resolution by
3dB can be valuable.
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is advantageous, but to reconstruct the collection of corrupted signals, it is no longer true that we
should take as many sample as possible from the less noisy signal. The optimum number of samples
that we should take from each signal is an optimization problem, with a solution depending on the
parameters of the problem.

D. Proof Techniques

The Gaussian assumption implies that the MMSE and linear MMSE (LMMSE) are identical. Since
LMMSE estimator only depends on the second moments, the problem reduces to a linear algebra
optimization problem. However, this optimization problem is not easy because the variables we are
optimizing over, are sampling locations tij that show up as arguments of sine and cosine functions.
Sine and cosine functions are nonlinear, albeit structured, functions. The goal would be to exploit
their structure to solve the optimization problem.

To find fundamental lowers bounds for the reconstruction distortion, we utilize various matrix
inequalities: these include (i) an inequality in majorization theory that relates trace of a function of a
matrix to the diagonal entries of the matrix (see [22, Chapter 2]), (ii) the matrix version of the arith-
metic and harmonic means inequality (iii) the Löwner-Heinz theorem for operator convex functions,
and (iv) more importantly a new reverse majorization inequality (Theorem 3). A contribution of
this paper is this reverse majorization inequality that might be of independent interest. Majorization
inequalities state that the diagonal entries of a Hermitian matrix F are majorized by the eigenvalues
of F . Therefore, if FDiag is a diagonal matrix wherein we have kept the diagonal entries of F and set
the off-diagonals to zero, we will have

Tr
[
F−1

]
≥ Tr

[
F−1Diag

]
(5)

Our reverse majorization inequality goes in the reverse direction. For certain matrices F and G of
our interest, we show that

Tr
[
F−1G

]
≤ Tr

[
F−1DiagGDiag

]
. (6)

E. Notation and Organization

Uppercase letters are used for random variables and matrices, whereas lowercase letters show (non-
random) values. Vectors are denoted by lowercase bold letters (such as x), and random vectors are
denoted by either uppercase bold letters (such as X) or bold sans-serif letters (such as X). The
covariance of a random vector X is denoted by CX. Given a matrix A, ADiag denotes the matrix
formed by keeping the diagonal entries of A and changing the off-diagonal entries to zero. Given a
vector x, Diag(x) denotes the diagonal matrix where its diagonal entries are coordinates of x. The
symbol

⊕
is used for the direct sum and ⊗ is used for the Kronecker product of matrices. We write

A ≤ B if B−A is positive semi-definite. For a Hermitian matrix A with eigen decomposition PDP−1

and real function f , f(A) is defined as Pf(D)P−1 in which f(D) is a diagonal matrix, where function
f is applied to the diagonal entries of D.

The paper is organized as follows: In Section 2, the main results of the paper are presented. In
Section 3, the problem formulation is derived. In Section 4, the proofs of the main results are given.
Finally, in Appendices A and B, the mathematical tools and technical details which have been used
in the main proofs are given . In Appendix B, a new reverse majorization theorem is derived which
might be of independent interest in linear algebra.

2 Main Results

Let N = N2 −N1 + 1. We make the following definitions:

• We call (N2−N1+1)f0 = Nf0 the signal bandwidth (of the bandlimited signal), where f0 = 1/T .

• We call 2N2f0 the Nyquist rate (twice the maximum frequency of the signal).
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• We call mi/T = mif0 the sampling rate of the i-th corrupted signal. It is the number of total
samples from Si(t) in [0, T ], divided by period length T . If we periodically extend the mi samples
(periodic nonuniform sampling), mi/T will be the number of samples taken per unit time, hence
called the sampling rate.

To state the main result, we need a definition. For any real p, let φi = mi

2σ2
i

+ 1
η , and

Φp =
k∑
i=1

φpi . (7)

Theorem 1 (Reconstruction of the original signal) The following general lower bound on the
optimal distortion (given in (3)) holds for any given sampling rates:

Damin ≥ max

(
N −N

k∑
i=1

mi

2(1 + η)N + 2σ2i
,

N

(1 + k
η )− k2

η2
(Φ1)−1

)
, (8)

where Φ1 is defined as in (7). Furthermore, the lower bound given in (8) is tight (the inequality is an
equality) in the following cases:

• when
∑k

i=1mi ≤ N : in this case, the optimal sampling points, tij, are all distinct for 1 ≤ i ≤
k, 1 ≤ j ≤ mi, and belong to the set {0, T/N, · · · , (N − 1)T/N}.

• when mi > 2N2 for 1 ≤ i ≤ k: in this case uniform sampling of each signal Si(t) is optimal.

Remark 1 From optimality of the lower bound for large values of mi, we obtain that

lim
∀i:mi→∞

Damin =
N

1 + k
η

> 0,

is strictly positive. The reason is that mi = ∞ implies full access to the set of corrupted signals,
{Si(t)}, but even in this case we cannot perfectly reconstruct S(t) if the corruption variance η > 0.

Proof: To prove the theorem, it suffices to show that for any arbitrary choice of sampling time
instances, we have

Da ≥ N −N
k∑
i=1

mi

2(1 + η)N + 2σ2i
(9)

and moreover, equality in the above equation holds if
∑k

i=1mi ≤ N . This claim is shown in Section
4.1; in this section, the optimality of choosing tij from {0, T/N, · · · , (N − 1)T/N} is also established.
Next, we also show that

Damin ≥
N

(1 + k
η )− k2

η2
(Φ1)−1

, (10)

and furthermore equality in the above equation holds if mi > 2N2. The proof of this claim is given
in Section 4.2; in this section, the optimality of uniform sampling is also established. This completes
the proof. �

Theorem 2 (Reconstruction of the set of corrupted signals) The following general lower bound
on the optimal distortion (given in (4)) holds:

Dbmin ≥ max

(
Nk(1 + η)−N

(
(1 + η)2 + (k − 1)

) k∑
i=1

mi

2(1 + η)N + 2σ2i
, NΦ−1 +

N

η(η + k)− Φ−1
Φ−2

)
,

(11)

where Φ−1,Φ−2 are defined as in (7). Furthermore, the lower bound given in (11) is achieved in the
following two cases:
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Figure 1: The the lower bound versus the distortion obtained by the uniform sampling strategy. It is assumed that
mi = m for all i. The parameters for this figure are (k,N1, N,N2, σ

2
i , η) = (3, 5, 15, 19, 1, 0.1).

• when m =
∑k

i=1mi ≤ N : in this case, the optimal sampling points, tij, are all distinct for
1 ≤ i ≤ k, 1 ≤ j ≤ mi, and belong to the set {0, T/N, · · · , (N − 1)T/N}.

• when mi > 2N2 for 1 ≤ i ≤ k: in this case uniform sampling of each signal Si(t) is optimal.

Proof: We first show that

Dbmin ≥ Nk(1 + η)−N
(
(1 + η)2 + (k − 1)

) k∑
i=1

mi

2(1 + η)N + 2σ2i
. (12)

The proof of this claim is given in Section 4.3. There, we also prove that when
∑k

i=1mi ≤ N , the
equality in the above equation holds and the optimal time instances are distinct tij chosen from
{0, T/N, · · · , (N − 1)T/N}. Next, we show that

Dbmin ≥ NΦ−1 +
N

η(η + k)− Φ−1
Φ−2, (13)

and furthermore, equality in the above equation holds if mi > 2N2. The proof is given in Section 4.4
where we show that the optimal points are uniform samples of the corrupted signals. �

Finally, as a technical result, we also derive a new reverse majorization inequality, given in Theorem
3 (Appendix B), which might be of interest in linear algebra.

In Fig. 1, the lower bounds are plotted assuming that mi = m for all i, for k = 3, N1 = 5, N =
15, N2 = 19, σ2i = 1, η = 0.1. Also, the distortion of the uniform sampling strategy is also plotted,
and serves as an upper bound for the optimal distortion curve; thus, optimal distortion curve lies in
between the two curves. The two curves match when m > 2N2 = 38. Also, the lower bound is known
to be tight in the low sampling rates. This part of the lower bound is drawn in color red. While Fig. 1
is plotted for σ2i = 1, η = 0.1, we observe from numerical simulation that the gap between the lower
and upper bound decreases as we increase the sampling or corruption noises.

Discussion 1: We know the exact value of optimal distortion for mi > 2N2. As argued in Section
1.C, this corresponds to the high sampling rate region and is practically relevant when we have high
sampling noise. If the sampling noise models the quantization error of an A/D converter, this result
allows us to answer the question of whether it is better to collect some accurate samples from the
signals, or collect many more less accurate samples from them (a problem related to selecting an
appropriate Σ∆ modulator).

Discussion 2: Assume that the sampling noise variances of the corrupted signals satisfy σ21 ≤
σ22 ≤ · · · ≤ σ2k. Let us assume that we have a fixed total budget of m samples that we can distribute
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among the k signals, i.e.,
∑k

i=1mi = m. Then if m ≤ N , the lower bound will be tight. Regardless of
whether we want to construct the original signal or the collection of corrupted signals, one can verify
that the total distortion (subject to

∑k
i=1mi = m) is minimized when m1 = m and mi = 0 for i > 1,

i.e., all of the samples are taken from the first signal, S1(t), which has the minimum sampling noise
variance.
However, the problems of reconstructing the remote signal and the set of corrupted signals are not
equivalent. To see this assume that we keep the constraint

∑k
i=1mi = m for some m > 2N2k, and

further assume that mi > 2N2. For the reconstruction of the remote signal, it can be verified that
the total distortion (subject to

∑k
i=1mi = m, mi > 2N2) is minimized when mi for i ≥ 2 reaches

its minimum of 2N2 + 1, which means that we take as many samples as possible from the signal
with minimum sampling noise variance S1(t). On the other hand, if we wish to minimize the total
distortion of the entire corrupted signals, the optimum value for mi can vary depending on the value
of the parameters; it is not necessarily true that it is better to sample from the less noisy signal. The
intuitive reason for this is as follows: if sampling noise of a signal is very high, we need to take lots
of samples from it to be able to have a reconstruction with low distortion. However, if the sampling
noise of a signal is very low, we are able to have a good reconstruction with few samples; taking more
samples yields a negligible improvement in distortion. Therefore, if we aim to reconstruct all the
signals (i.e., to minimize the sum of the distortions of the signals), the most economic way could be
taking less samples from the less noisy signal. For instance, let us consider the case of two signals,
k = 2, and take the corruption noise variance to be η = 0.5. Assume that samples from the first
signal are taken with variance σ1 = 1, which is less than σ2 = 10, the noise variance of samples
from the second signal. Then for total sample budget m = 100, the optimum (m1,m2) subject to
mi > 2N2 is given in the following for different values of N2. For N2 = 20, the optimal choice is
(m1,m2) = (41, 59); observe that it is better to take 59 samples from the signal with more sampling
noise. For N2 = 10, the optimal choice is (m1,m2) = (32, 68). Here mi > 2N2 = 20 and the optimal
choice is not one of the boundary pairs (m1,m2) = (21, 79) or (79, 21).

3 Problem Formulation

In this section, we state the matrix representation of our problem. Let X be a column vector,
consisting of the Fourier coefficients of S(t)

X = [AN1 , AN1+1, · · · , AN2 , BN1 , · · · , BN2 ]T, (14)

where T is used for the transpose operation. Similarly, Xi is a column vector, consisting of the
coefficients of Si(t)

Xi = [AiN1 , Ai(N1+1), · · · , AiN2 , BiN1 , · · · , BiN2 ]T (15)

= X + [ViN1 , · · · , ViN2 ,WiN1 , · · · ,WiN2 ]T (16)

= X + ∆i, (17)

where ∆i = [ViN1 , · · · , ViN2 ,WiN1 , · · · ,WiN2 ]T. We assume that X consists of mutually independent
Gaussian random variables N (0, 1), i.e., the signal S(t) is white. Therefore, CX = I2N×2N . Moreover,
the random variables Vij and Wij are assumed to be independent with the probability distribution
N (0, η) for some η > 0.

Vectors Xi and Xj are correlated, because they are both corrupted versions of X. Their cross
covariance can be computed as CXiXi = (1 + η)I and CXiXj = I for i 6= j ∈ {1, 2, · · · , k}. One can
verify that for any j, the covariance matrix for the k random variables Aij for i = 1, 2, · · · , k is equal
to

Λ =


1 + η 1 1 · · · 1

1 1 + η 1 · · · 1
...

...
...

...
...

1 1 1 · · · 1 + η


k×k

. (18)
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Notation Description Helpful properties
X Column vector of size 2N of Fourier coefficients of S(t) CX = I2N×2N

Xi Column vector of size 2N of Fourier coefficients of Si(t) CXi
= (1 + η)I

for i = 1, 2, · · · , k CXiXj = I for i 6= j
X Vectors Xi Stacked on the bottom of each other; length 2Nk CX = Λ⊗ I2N×2N

Λ Symmetric k × k matrix given in (18)
Γ Γ = Λ−1; Explicit formula given in (89)

∆i The ith corruption vector: ∆i = Xi −X C∆i
= ηI2N×2N

∆ Column vectors ∆i Stacked on the bottom of each other CC = ηI2Nk×2Nk

Si Column vector of size mi; Samples of Si(t) at tij , j = 1, ...,mi Si = QiXi

Qi mi × 2N Matrix specified by harmonics at tij , given in (19)
Qa Matrices Qi stacked on the bottom of each other; size: (

∑
mi)× 2N

Qb Direct sum of matrices Qi; size: (
∑
mi)× 2Nk

Yi Noisy samples of the ith signal Si(t); length mi Yi = Si + Zi
Y Vectors Yi Stacked on the bottom of each other; length m =

∑
mi

Zi Sampling noise vector of the ith signal Si(t); length mi CZi = σ2
i Imi×mi

Z Vectors Zi Stacked on the bottom of each other; length m =
∑
mi CZ =

⊕k
i=1 σ

2
i Imi×mi

Z̃ Z̃ is defined as Qb∆ + Z. It appears in Y = QaX + Z̃. CZ̃ = ηQbQ
T
b + CZ

Table 2: Definition of auxiliary parameters.

Suppose that the ith signal, Si(t), is sampled at time instances tij for i = 1, 2, · · · , k and j =
1, 2 · · · ,mi. Hence,

Si(tij) =

N2∑
`=N1

[Ai` cos(`ωtij) +Bi` sin(`ωtij)].

To represent the problem in a matrix form, we define Si to be the vector of samples as

Si = [Si(ti1), Si(ti2), · · · , Si(timi)]
T.

Therefore, we have Si = QiXi, where Xi is defined in (17) and Qi is an mi×2(N2−N1+1) = mi×2N
matrix of the form

Qi =


cos(N1ωti1) cos((N1 + 1)ωti1) · · · cos(N2ωti1) sin(N1ωti1) sin((N1 + 1)ωti1) · · · sin(N2ωti1)
cos(N1ωti2) cos((N1 + 1)ωti2) · · · cos(N2ωti2) sin(N1ωti2) sin((N1 + 1)ωti2) · · · sin(N2ωti2)

...
...

cos(N1ωtimi
) cos((N1 + 1)ωtimi

) · · · cos(N2ωtimi
) sin(N1ωtimi

) sin((N1 + 1)ωtimi
) · · · sin(N2ωtimi

)

 .

(19)

Moreover, the observation vector for the ith signal is of the following form

Yi = Si + Zi = QiXi + Zi = QiX +Qi∆i + Zi,

in which Zi is the ith noise vector with covariance of CZi = σ2i Imi×mi .
Now, we define the vector of coefficients of all the k signals, X, the vector of all the samples, S,

the vector of all the observations, Y,... , as follows:

X = [XT
1 ,X

T
2 , · · · ,XT

k ]T, (20)

S = [ST
1 ,S

T
2 , · · · ,ST

k ]T, (21)

Y = [YT
1 ,Y

T
2 , · · · ,YT

k ]T, (22)

Z = [ZT
1 ,Z

T
2 , · · · ,ZT

k ]T, (23)

∆ = [∆T
1 ,∆

T
2 , · · · ,∆T

k ]T, (24)

Qa = [QT
1 , Q

T
2 , · · · , QT

k ]T. (25)

Furthermore, let

Qb =
k⊕
i=1

Qi (26)
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be the direct sum of the individual matrices Qi. Then, we can write

Y = S + Z = QbX + Z = QaX + Qb∆ + Z. (27)

One can verify that the covariance matrix of the noise is

CZ =
k⊕
i=1

CZi =
k⊕
i=1

σ2i Imi×mi . (28)

Moreover, CX = I2N×2N and CX = Λ⊗ I2N×2N , where Λ was given in (18), and N = N2 −N1 + 1.

3.1 Reconstruction of the remote signal S(t) and its corrupted version Si(t)

Here, we first state a lemma, which is frequently used in the formulation and proofs of our problem.
The Lemma provides the two alternative forms of the LMMSE estimator and the mean squared error.
Next we use this lemma to formulate the reconstruction of the remote signal S(t) and its corrupted
versions Si(t) in the subsequent subsections.

Lemma 1 [20] Suppose that Y = AX+Z in which Y is an observation vector, A is a known matrix,
X is a vector to be estimated and Z is an additive noise vector. In the case X and Z are mutually
independent Gaussian vectors, LMMSE is optimal and the estimator and the mean square error,
respectively, are given by

x̂MMSE(y) = E {X|y} = Wy,

E‖X− X̂‖2 = EY {Var[X|Y]} = Tr(Ce), (29)

where the reconstruction matrix, W , and the error covariance matrice, Ce, are of the following forms:

W = CXYC
−1
Y = CXA

T(ACXA
T + CZ)−1,

Ce = CX − CXYC
−1
Y CYX = CX − CXA

T(ACXA
T + CZ)−1ACX. (30)

Or alternatively [21], using the matrix identity

CXA
T(ACXA

T + CZ)−1 = (ATC−1Z A+ C−1X )−1ATC−1Z , (31)

the matrices W and Ce are given by

W = (ATC−1Z A+ C−1X )−1ATC−1Z ,

Ce = (ATC−1Z A+ C−1X )−1. (32)

3.1.1 Reconstruction of S(t)

Here, the goal is to reconstruct S(t) with minimum distortion using the observation vector Y. We use
the MMSE criterion to minimize the average distortion subject to the samples. From the Parseval’s
theorem, we have

Da =
1

T

∫ T

t=0
E{|Ŝ(t)− S(t)|2}dt =

1

2
E‖X− X̂‖2, (33)

where Ŝ(t) is the reconstructed signal and X̂ is the MMSE reconstruction of the coefficient vector X
from the observation vector Y. Since the random variables are jointly Gaussian, the MMSE estimator
is optimal. From the equation

Y = QaX + Z̃,

where Z̃ = Qb∆ + Z, the error of the linear MMSE estiamtor is equal to

E‖X− X̂‖2 = EY {Var[X|Y]} = Tr(Ca
e ), (34)
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where Ca
e has the following two alternative forms

Ca
e = CX − CXQT

a (QaCXQT
a + CZ̃)−1QaCX, (35)

= (QT
aC
−1
Z̃

Qa + C−1X )−1. (36)

In the above formula, the covariance matrix of Z̃ is

CZ̃ = QbC∆QT
b + CZ = ηQbQ

T
b + CZ. (37)

3.1.2 Reconstruction of Si(t) for i = 1, 2, · · · , k

Here, the goal is to reconstruct all the k signals with minimum distortion using the observation vector
Y. Again, from the Parseval’s theorem, we have

Db =
1

T

k∑
i=1

∫ T

t=0
E{|Ŝi(t)− Si(t)|2}dt =

1

2
E‖X− X̂‖2, (38)

in which Ŝ(t) and X̂ are the reconstructed signal and the estimated coefficients, respectively. From
the equation

Y = QbX + Z,

the LMMSE error is equal to

E‖X− X̂
2‖ = EY {Var[X|Y]} = Tr(Cb

e ), (39)

where Cb
e has the following two alternative forms

Cb
e = CX − CXQ

T
b (QbCXQ

T
b + CZ)−1QbCX, (40)

= (QT
bC
−1
Z Qb + C−1X )−1. (41)

3.2 Some helpful facts

We provide a number of facts about the matrices that we have introduced before. These facts can be
directly verified, and will be repeatedly used in the proofs. We have listed these facts here to improve
the presentation of the proofs.

(i) We have

QbQ
T
b =

k⊕
i=1

QiQ
T
i =


Q1Q

T
1 0 0 · · · 0

0 Q2Q
T
2 0 · · · 0

...
...

...
...

...
0 0 0 · · · QkQ

T
k


m×m

(42)

and

QaQ
T
a =


Q1Q

T
1 Q1Q

T
2 Q1Q

T
3 · · · Q1Q

T
k

Q2Q
T
1 Q2Q

T
2 Q2Q

T
3 · · · Q2Q

T
k

...
...

...
...

...
QkQ

T
1 QkQ

T
2 QkQ

T
3 · · · QkQ

T
k


m×m

, (43)

where m =
∑k

i=1mi.

(ii) The rows of matrix Qi are vectors of norm
√
N . Therefore, the matrix QiQ

T
i , for i = 1, 2, · · · , k,

is of size mi×mi and with diagonal entries equal to N regardless of the value of tij . Therefore,
(QaQ

T
a )Diag = (QbQ

T
b )Diag = NIm×m.

11



(iii) When, tij ∈ {0, T/N, · · · , (N − 1)T/N} and are distinct, the rows of matrix Qi will be perpen-
dicular to each other. Therefore, the matrix QiQ

T
i will be equal to NImi×mi . Similarly, if tij

are distinct for all i, j, the rows of Qi and Qj for i 6= j will be perpendicular to each other.
Therefore, QiQ

T
j = 0 for i 6= j in this case. Hence, using the definition of Qa and Qb given in (25)

and (26), both QaQ
T
a and QbQ

T
b will become diagonal matrices NIm×m, where m =

∑k
i=1mi.

(iv) The diagonal elements of matrices QT
i Qi for i = 1, 2, · · · , k give us the norm of the column

vectors of Qi. They can be calculated as follows:

QT
i Qi(l, l) =


∑mi

j=1 cos2 ((N1 + l − 1)ωtij) ; for 1 ≤ l ≤ N

∑mi
j=1 sin2 ((N1 + l −N − 1)ωtij) ; for N + 1 ≤ l ≤ 2N

. (44)

When we use the uniform sampling strategy, i.e., {tij} = {0, T/mi, 2T/mi, · · · , (mi − 1)T/mi},
the diagonal entries of QT

i Qi will become equal to mi/2. This is because, for instance,

mi∑
j=1

cos2 ((N1 + l − 1)ωtij) =

mi−1∑
j=0

cos2
(

(N1 + l − 1)ω
T

mi
j

)

=

mi−1∑
j=0

(
1

2
+

1

2
cos
(

2(N1 + l − 1)
2π

mi
j
))

=
mi

2
, (45)

where (45) follows from the fact that mi > 2N2. Moreover, the off-diagonal entries will be zero.
For example, consider the entry

QT
i Qi(2, 3) =

mi∑
j=1

cos ((N1 + 1)ωtij) cos ((N1 + 2)ωtij) =

mi−1∑
j=0

1

2

(
cos(

ωT

mi
j) + cos

(
(2N1 + 3)

ωT

mi
j
))

=

mi−1∑
j=0

1

2

(
cos(

2π

mi
j) + cos

(
(2N1 + 3)

2π

mi
j
))

= 0. (46)

In fact, with uniform sampling, different columns of the matrix Qi will be perpendicular to each
other and QT

i Qi will become (mi/2)I2N×2N .

4 Proofs

In this section, we state the proofs of our results. In the body of the proofs, we have used some
lemmas, which are provided in the appendix.

4.1 Proof of Equation (9)

We start by computing the average distortion using equations (33), (34) and (35) as follows

2Da = Tr(Ca
e ) = Tr

(
CX − CXQT

a (QaCXQT
a + CZ̃)−1QaCX

)
= Tr(CX)− Tr

(
(QaCXQT

a + CZ̃)−1QaC
2
XQT

a

)
(47)

= 2N − Tr
(

(QaQ
T
a + CZ̃)−1QaQ

T
a

)
, (48)

where (47) results from the cyclic property of the trace and (48) follows from the fact that CX =
I2N×2N .
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We would like to show that for any arbitrary choice of sampling time instances, tij , the average
distortion will be bounded from below as follows:

2Da = 2N − Tr
[
(QaQ

T
a + CZ̃)−1QaQ

T
a

]
≥ 2N −N

k∑
i=1

mi

(1 + η)N + σ2i
. (49)

In other words, from (48), we wish to prove that

Tr
(

(QaQ
T
a + CZ̃)−1QaQ

T
a

)
≤

k∑
i=1

Nmi

(1 + η)N + σ2i
. (50)

Equivalently, if we use (37) to replace CZ̃ with (ηQbQ
T
b + CZ), we would like to show that

Tr
(

(QaQ
T
a + ηQbQ

T
b + CZ)−1QaQ

T
a

)
≤

k∑
i=1

Nmi

(1 + η)N + σ2i
. (51)

This can be derived using Theorem 3 (given in Appendix B) with matrices F = QaQ
T
a + ηQbQ

T
b ,

G = QaQ
T
a and C = CZ. From Fact (i) of Section 3.2, observe that the matrices F and G are of the

forms

F =


(1 + η)Q1Q

T
1 Q1Q

T
2 Q1Q

T
3 · · · Q1Q

T
k

Q2Q
T
1 (1 + η)Q2Q

T
2 Q2Q

T
3 · · · Q2Q

T
k

...
...

...
...

...
QkQ

T
1 QkQ

T
2 QkQ

T
3 · · · (1 + η)QkQ

T
k


m×m

(52)

and

G = QaQ
T
a =


Q1Q

T
1 Q1Q

T
2 Q1Q

T
3 · · · Q1Q

T
k

Q2Q
T
1 Q2Q

T
2 Q2Q

T
3 · · · Q2Q

T
k

...
...

...
...

...
QkQ

T
1 QkQ

T
2 QkQ

T
3 · · · QkQ

T
k


m×m

. (53)

These matrices satisfy the required properties of Theorem 3, i.e., the matrices F and G are positive
semi-definite and G = F ◦ L, where the matrix L has the form of (110) with parameters a = 1 + η
and b = 1. Therefore, we have the following inequality

Tr
[(
F + C

)−1
G
]
≤ Tr

[(
FDiag + C

)−1
GDiag

]
. (54)

Hence, from Fact (ii) of Section 3.2 which states that FDiag = (QaQ
T
a )Diag + η(QbQ

T
b )Diag = N(1 +

η)Im×m and GDiag = (QaQ
T
a )Diag = NIm×m, the desired inequality in (51) concludes.

Furthermore, when
∑k

i=1mi ≤ N , we would like to show that this lower bound is tight if we take
distinct time instances, tij , from the set {0, T/N, · · · , (N−1)T/N}. Observe that this is possible since
{0, T/N, · · · , (N − 1)T/N} has N elements. Fact (iii) from Section 3.2 states that both the matrices
QaQ

T
a and QbQ

T
b will become diagonal matrices NIm×m, and thus CZ̃ given in (37) will be

CZ̃ = ηQbQ
T
b + CZ = ηNIm×m + CZ.

Hence, the minimum distortion will be

2Damin = 2N −N · Tr
[
((1 + η)NI + CZ)−1

]
,

= 2N −
k∑
i=1

Nmi

(1 + η)N + σ2i
, (55)

where (55) is derived using the definition of the diagonal matrix CZ given in (28). �

13



4.2 Proof of equation (10):

To compute the minimum average distortion, from Da = 1/2Tr(Ca
e ), we use the alternative form of

LMMSE (given in (36)), in which Ca
e is of the form

Ca
e = (QT

aC
−1
Z̃

Qa + C−1X )−1. (56)

Hence, the average distortion will be

2Da = Tr(Ca
e ) = Tr

( k∑
i=1

QT
i (ηQiQ

T
i + σ2i I)−1Qi + I

)−1 , (57)

which results from the facts that CZ̃ = ηQbQ
T
b + CZ (Section 3.1.1) and CX = I2N×2N .

Using the matrix identity given in (31) for matrix A to be
√
ηQi, we have

QT
i

(
ηQiQ

T
i + CZi

)−1
Qi =

(
ηQT

i C
−1
Zi
Qi + I

)−1
QT
i C
−1
Zi
Qi.

Therefore, the matrix in the left-hand side of (57) will be

k∑
i=1

QT
i

(
ηQiQ

T
i + CZi

)−1
Qi =

k∑
i=1

(
ηQT

i C
−1
Zi
Qi + I

)−1
QT
i C
−1
Zi
Qi

=
1

η

k∑
i=1

(
ηQT

i Qi + σ2i I
)−1 (

ηQT
i Qi + σ2i I − σ2i I

)
(58)

=
1

η

k∑
i=1

(
I −

(
η
QT
i Qi
σ2i

+ I

)−1)

=
1

η

k∑
i=1

(I −Bi) (59)

=
1

η
(kI −

k∑
i=1

Bi)

≤ 1

η

(
kI − k2

( k∑
i=1

B−1i

)−1)
, (60)

where (58) results from the fact that CZi = σ2i I, and in (59) matrix Bi stands for
(
ηQT

i Qi/σ
2
i + I

)−1
.

Moreover, (60) is derived using Lemma 4 for positive definite matrices Bi with the equality if and
only if B1 = B2 = · · · = Bk. Notice that 0 < Bi ≤ I.

For any two symmetric positive definite matrices A and B, the relation A ≤ B implies that
B−1 ≤ A−1. This is because the function f(t) = −t−1 is operator monotone [27]. Hence, (60) implies
that (

I +

k∑
i=1

QT
i (ηQiQ

T
i + σ2i I)−1Qi

)−1
≥

[
I +

1

η

(
kI − k2

( k∑
i=1

B−1i

)−1)]−1
.

Let A =
∑k

i=1B
−1
i =

∑k
i=1

(
ηQT

i Qi/σ
2
i + I

)
. Then, the relation between the traces of the above

matrices is

Tr

(
I +

k∑
i=1

QT
i (ηQiQ

T
i + σ2i I)−1Qi

)−1
≥ Tr

[
I +

1

η

(
kI − k2A−1

)]−1
≥ Tr

[
I +

1

η

(
kI − k2A−1Diag

)]−1
, (61)
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where (61) results from Lemma 3 for the convex function f(t) = (1 + k/η − k2t−1/η)−1 when t ≥ k
and the Hermitian matrix A ≥ kI. To find ADiag, we need to calculate the diagonal entries of matrix
A. They are

A(l, l) =


∑k

i=1

(
1 +

∑mi
j=1

η
σ2
i

cos2
(
(N1 + l − 1)ωtij

))
, a`; for 1 ≤ l ≤ N

∑k
i=1

(
1 +

∑mi
j=1

η
σ2
i

sin2
(
(N1 + l −N − 1)ωtij

))
, b`; for N + 1 ≤ l ≤ 2N

, (62)

since the diagonal elements of matrices QT
i Qi for i = 1, 2, · · · , k are of the following forms (Fact (iv)

from Section 3.2)

QT
i Qi(l, l) =


∑mi

j=1 cos2 ((N1 + l − 1)ωtij) ; for 1 ≤ l ≤ N

∑mi
j=1 sin2 ((N1 + l −N − 1)ωtij) ; for N + 1 ≤ l ≤ 2N

. (63)

Substituting the diagonal entries of the matrix A in (61), we obtain

Tr

(
I +

k∑
i=1

QT
i (ηQiQ

T
i + σ2i I)−1Qi

)−1
≥ Tr

[
I +

1

η

(
kI − k2A−1Diag

)]−1

=
N∑
`=1

1

(1 + k
η )− k2

η a
−1
`

+
1

(1 + k
η )− k2

η b
−1
`

≥
N∑
`=1

2

(1 + k
η )− k2

η (k + η
∑k

i=1
mi

2σ2
i
)−1

(64)

=
2N

(1 + k
η )− k2

η (k + η
∑k

i=1
mi

2σ2
i
)−1

, (65)

where (64) results from convexity of the function f(t) = (1− at−1)−1 for t ≥ a.
Now suppose that each mi > 2N2 for i = 1, 2, · · · , k. If we uniformly sample the signals, i.e.,

sample Si(t) at time instances {0, T/mi, 2T/mi, · · · , (mi − 1)T/mi}, from Fact (iv) of Section 3.2 we
conclude that the equality in the above equations holds, and thus the this lower bound is achieved.

�

4.3 Proof of Equation (12):

To compute the average distortion, here we use equations (38), (39) and (41). Hence,

2Db = Tr
(
CX − CXQ

T
b (QbCXQ

T
b + CZ)−1QbCX

)
= Tr(CX)− Tr

(
(QbCXQ

T
b + CZ)−1QbC

2
XQ

T
b

)
(66)

= k(2N)(1 + η)− Tr
(

(QbCXQ
T
b + CZ)−1QbC

2
XQ

T
b

)
, (67)

where (66) and (67) are achieved, respectively, by the trace cyclic property and the fact that CX =
Λ⊗ I2N×2N (The matrix Λ has been defined in (18)).

Here we are interested in reconstructing the signals Si(t). Following the similar steps from Sub-
section 4.1, we use Theorem 3 with the choice of F = QbCXQ

T
b , G = QbC

2
XQ

T
b and C = CZ. To

demonstrate that these matrices have the required properties of Theorem 3, one can verify (by ex-
plicit evaulation) that F has the same expression as in (52), i.e., F = QbCXQ

T
b = Qb(Λ⊗ I2N×2N )QT

b

is also equal to QaQ
T
a +ηQbQ

T
b . Furthermore to compute G, observe that C2

X = Λ2⊗ I2N×2N in which
Λ2 is a matrix of the following form

Λ2(i, j) =


(1 + η)2 + (k − 1) , α ; i = j,

2(1 + η) + (k − 2) , β ; i 6= j,

(68)
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for i, j = 1, 2, · · · , k. Then, one can verify that

G =


αQ1Q

T
1 βQ1Q

T
2 βQ1Q

T
3 · · · βQ1Q

T
k

βQ2Q
T
1 αQ2Q

T
2 βQ2Q

T
3 · · · βQ2Q

T
k

...
...

...
...

...
βQkQ

T
1 βQkQ

T
2 βQkQ

T
3 · · · αQkQ

T
k


m×m

. (69)

Therefore, applying Theorem 3 for the matrices F , G and C = CZ, we have

Tr
(

(QbCXQ
T
b + CZ)−1QbC

2
XQ

T
b

)
= Tr[(F + CZ)−1G]

≤ Tr[(FDiag + CZ)−1GDiag]

= Tr
[(

(1 + η)NI + CZ

)−1
αNI

]
(70)

=
k∑
i=1

αNmi

(1 + η)N + σ2i
, (71)

where (70) results from the fact that the diagonal entries of the matrices F and G are (1 + η)N and
αN , respectively (Fact (ii) from Section 3.2 and (69)). Consequently, the average distortion, for any
arbitrary choice of sampling times, can be bounded as

2Db = 2Nk(1 + η)− Tr
(

(QbCXQ
T
b + CZ)−1QbC

2
XQ

T
b

)
≥ 2Nk(1 + η)−

k∑
i=1

αNmi

(1 + η)N + σ2i
,

in which α is the one defined in (68).
Furthermore, we would like to show that the equality holds when

∑k
i=1mi ≤ N and we take

distinct time instances, tij , from the set {0, T/N, · · · , (N − 1)T/N}. To show that we compute the
average distortion when tij are distinct and belong to {0, T/N, · · · , (N − 1)T/N} for all i, j. Using
Fact (iii) from Section 3.2, the two matrices F and G will become diagonal matrices of the forms:

F = QbCXQ
T
b = (1 + η)NIm×m, G = QbC

2
XQ

T
b = αNIm×m (72)

Hence, the average distortion will be

2Dbmin = 2Nk(1 + η)− Tr
(
((1 + η)NIm×m + CZ)−1αNIm×m

)
(73)

= 2Nk(1 + η)−
k∑
i=1

αNmi

(1 + η)N + σ2i
(74)

where (74) is derived using the diagonal matrix CZ of (28). �

4.4 Proof of Equation (13):

Here, we divide the proof into two parts. In the first part, we show that

Dbmin ≥ N · Tr
(
Diag([

m1

2σ21
,
m2

2σ22
, · · · , mk

2σ2k
]) + Γ

)−1
,

and then we show that when mi > 2N2 (for each i ∈ 1, 2, · · · , k), the optimal sampling strategy is
uniform sampling and the minimum distortion is equal to

Dbmin = N · Tr
(
Diag([

m1

2σ21
,
m2

2σ22
, · · · , mk

2σ2k
]) + Γ

)−1
.
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In the second part, we simplify the above equation to obtain the expression given in the statement of
the theorem.
Part (i): To compute the minimum average distortion, we use Db = 1/2Tr(Cb

e ) and the alternative
form of LMMSE, where Cb

e is of the form

Cb
e =

(
QT

bC
−1
Z Qb + C−1X

)−1
. (75)

In the above formula,

C−1Z =
k⊕
i=1

1

σ2i
I2N×2N , C−1X = Γk×k ⊗ I2N×2N , (76)

where the matrix Γ is the inverse of the matrix Λ, given in (18). Therefore, the average distortion
will be

2Db = Tr(Cb
e ) = Tr

[(
k⊕
i=1

QT
i Qi
σ2i

)
+ Γ⊗ I

]−1
. (77)

First notice that due to Lemma 5, matrices Γ ⊗ I and I ⊗ Γ are permutation similar, i.e., there
exists a unique permutation matrix P (k, 2N) of size 2Nk × 2Nk such that

Γ⊗ I = P (k, 2N)T (I ⊗ Γ)P (k, 2N),

and moreover, P (k, 2N) has the property

P (k, 2N) = P (k, 2N)T = P (k, 2N)−1.

Using the permutation matrix P (k, 2N) and the cyclic property of the trace, we have

2Db = Tr(Cb
e ) = Tr

(
P (k, 2N)TCb

eP (k, 2N)
)

= Tr

[
P (k, 2N)T

(
k⊕
i=1

QT
i Qi
σ2i

)
P (k, 2N) + P (k, 2N)T (Γ⊗ I)P (k, 2N)

]−1
= Tr (H + I ⊗ Γ)−1 , (78)

where matrix H denotes the permuted matrix P (k, 2N)T (
⊕k

i=1Q
T
i Qi/σ

2
i )P (k, 2N). Notice that the

matrix
k⊕
i=1

QT
i Qi =

k∑
i=1

Gi ⊗QT
i Qi,

where Gi is a k × k matrix defined as follows: Gi(i
′, j′) = 0 if (i′, j′) 6= (i, i), and Gi(i

′, j′) = 1 if
(i′, j′) = (i, i). Therefore, the matrix H can be written as

H = P (k, 2N)T (
k⊕
i=1

QT
i Qi/σ

2
i )P (k, 2N)

=

k∑
i=1

QT
i Qi ⊗Gi. (79)

If we partition H into k × k submatrices Hij as follows

H =


H11 H12 · · · H1(2N)

H21 H22 · · · H2(2N)
...

...
...

...
H(2N)1 H(2N)2 · · · H(2N)(2N)

 , (80)

17



all the Hij submatrices will be diagonal matrices because they are weighted sums of diagonal matrices
Gi. More precisely, the submatrices Hll for l ≤ N can be computed as follows, using Fact (iv) from
Section 3.2 that gives us the diagonal entries of QT

i Qi (the entries of matrix Hll for 1 ≤ l ≤ N and
N ≤ l ≤ 2N are the lth and the (l + N)th diagonal entries of matrices QT

i Qi/σ
2
i , given in (63)),

respectively):

Hll =


1
σ2
1

∑m1
j=1 cos2((N1+l−1)ωt1j) 0 0 · · · 0

0 1
σ2
2

∑m2
j=1 cos2((N1+l−1)ωt2j) 0 · · · 0

...
...

...
...

...
0 0 0 · · · 1

σ2
k

∑mk
j=1 cos2((N1+l−1)ωtkj)


k×k

and for l = N + 1, N + 2, · · · , 2N ,

Hll =


1
σ2
1

∑m1
j=1 sin2

((N1+l−N−1)ωt1j) 0 0 · · · 0

0 1
σ2
2

∑m2
j=1 sin2

((N1+l−N−1)ωt2j) 0 · · · 0

...
...

...
...

...
0 0 0 · · · 1

σ2
k

∑mk
j=1 sin2((N1+l−N−1)ωtkj)


k×k

Applying Lemma 3 for the Hermitian matrix A and the convex function f(x) = x−1 for x > 0, we
attain a lower bound on the average distortion as:

2Db = Tr(Cb
e ) = Tr (H + I ⊗ Γ)−1 ,

≥ Tr (HBDiag + I ⊗ Γ)−1 , (81)

in which the matrix HBDiag is the block diagonal form of matrix H, where all the submatrices other
than the 2N block diagonal submatrices, Hll, are zero. Consequently, the matrix (HBDiag + I ⊗ Γ) is
of the form

(HBDiag + I ⊗ Γ) =


H11 + Γ 0 · · · 0

0 H22 + Γ · · · 0
...

...
...

...
0 0 · · · H(2N)(2N) + Γ


2Nk×2Nk

. (82)

Therefore,

Tr (HBDiag + I ⊗ Γ)−1 =
2N∑
l=1

Tr (Hll + Γ)−1 .

Using Lemma 6 (given in Appendix B), for any 1 ≤ l ≤ N , we obtain

1

2
(Tr (Hll + Γ)−1 + Tr

(
H(l+N)(l+N) + Γ

)−1
) ≥ Tr

(
1

2
(Hll +H(l+N)(l+N)) + Γ

)−1
(83)

= Tr

(
Diag([

m1

2σ21
,
m2

2σ22
, · · · , mk

2σ2k
]) + Γ

)−1
. (84)

Consequently,

Tr (HBDiag + I ⊗ Γ)−1 =

2N∑
l=1

Tr (Hll + Γ)−1 ≥ 2N · Tr
(
Diag([

m1

2σ21
,
m2

2σ22
, · · · , mk

2σ2k
]) + Γ

)−1
. (85)

Therefore, from (81) for any choice of sampling time instances tij , we obtain

Db ≥ N · Tr
(
Diag([

m1

2σ21
,
m2

2σ22
, · · · , mk

2σ2k
]) + Γ

)−1
. (86)
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Moreover, suppose that each mi > 2N2 for i = 1, 2, · · · , k. If we employ uniform strategy, the
matrices QT

i Qi (i = 1, 2, · · · , k) become diagonal matrices with diagonal entries equal to mi/2 (Fact
(iv) from Section 3.2). Then, the matrix in the right hand side of (77) will be[(

k⊕
i=1

mi

2σ2i
I2N×2N

)
+ Γ⊗ I

]−1
=

(
Diag([

m1

2σ21
,
m2

2σ22
, · · · , mk

2σ2k
])⊗ I + Γ⊗ I

)−1
(87)

=

(
Diag([

m1

2σ21
,
m2

2σ22
, · · · , mk

2σ2k
]) + Γ

)−1
⊗ I2N×2N . (88)

Therefore, from (77) and the fact that Tr(A⊗B) = Tr(A)Tr(B), we get

Dbmin ≤ N · Tr
(
Diag([

m1

2σ21
,
m2

2σ22
, · · · , mk

2σ2k
]) + Γ

)−1
.

Therefore, from (??) and the above inequality, we conclude that

Dbmin = N · Tr
(
Diag([

m1

2σ21
,
m2

2σ22
, · · · , mk

2σ2k
]) + Γ

)−1
.

Part (ii): So far we have shown that when mi > 2N2 for i = 1, 2, · · · , k, the minimal distortion is

Dbmin = N · Tr
(
Diag([

m1

2σ21
,
m2

2σ22
, · · · , mk

2σ2k
]) + Γ

)−1
.

Here, we wish to simplify the above equation to obtain Observe that Γ = Λ−1 can be computed
from (18) as follows:

Γ =


a b b · · · b
b a b · · · b
...

...
...

...
...

b b b · · · a


k×k

, (89)

in which

a =
η + k − 1

η(η + k)
and b =

−1

η(η + k)
. (90)

For simplicity define:

A := Diag([
m1

2σ21
,
m2

2σ22
, ...,

mk

2σ2k
]) + Γ (91)

Therefore, we need to find Tr(A−1) which is equal to
∑k

i=1(A
−1)i,i. To calculate the diagonal entries

of A−1, we use the Cramer’s rule as follows:

(A−1)i,i =
det(Ai)

det(A)
(92)

where Ai is the remaining matrix after removing the ith row and column of A. According to Lemma
7 (given in Appendix B), we deduce:

(A−1)i,i =

k∏
j=1
j 6=i

φj + b
k∑
j=1
j 6=i

k∏
l=1
l 6=i,j

φl

k∏
j=1

φj + b
k∑
j=1

k∏
l=1
l 6=j

φl

(93)
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in which φi = mi

2σ2
i

+ a− b = mi

2σ2
i

+ 1
η . Hence,

Tr(A−1) =

k∑
i=1

(A−1)i,i (94)

=

k∑
i=1

1
φi

+ b
k∑

i,j=1
j 6=i

1
φiφj

1 + b(
k∑
i=1

1
φi

)

, (95)

in which (95) is derived by replacing (93) in (94) and dividing both numerator and denominator by
k∏
i=1

φi. Observe that by our definition Φ−1 :=
k∑
i=1

1
φi

, we get

Tr(A−1) =

Φ−1 + b(Φ2
−1 −

k∑
i=1

1
φ2i

)

1 + bΦ−1
= Φ−1 −

b

1 + bΦ−1
Φ−2. (96)

We get the desired result by replacing b = −1/(η(η + k)). �

A Lemmas

In this section, we state some lemmas that have been used in the proof section.

A.1 Majorization inequalities

A vector x ∈ Rn is majorized by y ∈ Rn if after sorting the two vectors in decreasing order, the
following inequalities hold:

k∑
i=1

xi ≤
k∑
i=1

yi (1 ≤ k ≤ n),
n∑
i=1

xi =
n∑
i=1

yi. (97)

A fundamental result in majorization theory states that for any Hermitian matrix A of size n × n,
the diagonal entries of A are majorized by its eigenvalues [22]. The extension of the above result to
the block Hermitian matrices is also true (e.g. see [23, Sec. 1]):

Lemma 2 (Block majorization inequality) If a Hermitian matrix A is partitioned into block
matrices

A =


M11 M12 . . . M1k

M21 M22 . . . M2k
...

...
Mk1 Mk2 . . . Mkk

 (98)

for matrices Mij , i, j = 1, 2, . . . , k, then the eigenvalues of
⊕k

i=1Mii are majorized by the eigenvalues
of A.

If a vector x is majorized by y, then for any convex functions f : R 7→ R, we have
∑

i f(xi) ≤∑
i f(yi) [22]. This implies that

Lemma 3 Let Ω be a closed interval in R. For any Hermitian matrix A with eigenvalues in Ω, and
any convex function f on Ω,

Tr(f(A)) ≥ Tr(f(ADiag)). (99)
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More generally by Lemma 2 , for a Hermitian matrixA partitioned into block matricesMij , i, j = 1, 2, . . . , k,
as in (98),

Tr(f(A)) ≥ Tr

(
f
( k⊕
i=1

Mii

))
. (100)

A.2 Other useful definitions and inequalities

Lemma 4 [24] Let w1, w2, · · · , wk be non-negative weights adding up to one, and let B1, B2, · · · , Bk
be n × n positive definite matrices. Consider the weighted arithmetic and harmonic means of the
matrices Bi

A , w1B1 + w2B2 + · · ·+ wkBk, (101)

H , (w1B
−1
1 + w2B

−1
2 + · · ·+ wkB

−1
k )−1. (102)

Then, the following inequality holds,
H ≤ A,

with equality if and only if B1 = B2 = · · · = Bk.

Definition 1 [25] A real-valued continuous function f(t) on a real interval I is called operator mono-
tone if

A ≤ B ⇒ f(A) ≤ f(B), (103)

for Hermitian matrices A and B with eigenvalues in I . Furthermore, f is called operator convex if

f(λA+ (1− λ)B) ≤ λf(A) + (1− λ)f(B),

for any 0 ≤ λ ≤ 1 and Hermitian matrices A and B with eigenvalues that are contained in I, and f
is said to be operator concave if −f is operator convex.

Lemma 5 [26, p.260] Let m and n be given positive integers and matrices A and B be any square
matrices of sizes m×m and n×n, respectively. Then, matrix B⊗A is permutation similar to matrix
A⊗B, i.e., there is a unique matrix P such that

B ⊗A = P (m,n)T (A⊗B)P (m,n) (104)

where P (m,n) is the following mn×mn permutation matrix:

P (m,n) =
n∑
i=1

m∑
j=1

Eij ⊗ ETij (105)

in which Eij is an m × n matrix such that only the (i, j)th entry is unity and the other entries are
zero. Furthermore, the useful following property holds

P (m,n) = P (n,m)T = P (n,m)−1. (106)

Lemma 6 Assume that B1, B2 are positive definite matrices. Let B = (B1 +B2)/2, then

2Tr(B−1) ≤ Tr(B−11 ) + Tr(B−12 ).

Proof: The Löwner-Heinz theorem implies that the function f(t) = t−1 for t > 0 is operator convex
[27]. From the fact that B = (B1 +B2)/2, we conclude the desired inequality. �
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Lemma 7 Given real non-negative a1, a2, ..., ak and positive b, let

M(a1, .., ak, b) :=


a1 −b −b · · · −b
−b a2 −b · · · −b
...

...
...

...
...

−b −b −b · · · ak


k×k

. (107)

Then,

det(M(a1, ..., ak, b)) =
k∏
i=1

(ai + b)− b
k∑
i=1

k∏
j=1
j 6=i

(aj + b). (108)

Proof: The elementary row operations do not change the determinant. If we first subtract the
first row from all the other rows, and then multiply the ith row of the matrix by b/(ai + b) for
i = 2, 3, .., k, and add it to the first row, we end up with an upper triangular matrix with diagonal
entries {a′, a2 + b, a3 + b, ..., ak + b}, where a′ = a1 −

∑k
i=2

(a1+b)b
(ai+b)

. Since the determinant of an upper
triangular matrix is equal to product of the diagonal elements, we have

det(M(a1, ..., ak, b)) = a′(a2 + b)...(ak + b)

= a1(a2 + b)...(ak + b)− b
k∑
i=2

k∏
j=1
j 6=i

(aj + b)

=

k∏
i=1

(ai + b)− b
k∑
i=1

k∏
j=1
j 6=i

(aj + b).

(109)

�

B A new reverse majorization inequality

Theorem 3 Take two positive semidefinite matrices F and G of sizes m ×m satisfying G = F ◦ L,
where ◦ is the Hadamard product and L is a matrix of the following form:

L =


a1m1×m1 b1m1×m2 · · · b1m1×mk

b1m2×m1 a1m2×m2 · · · b1m2×mk

...
...

...
...

b1mk×m1 b1mk×m2 · · · a1mk×mk

 , (110)

where 1 is a matrix with all one coordinates and a and b are two positive real numbers, where
0 ≤ a ≤ b. Then, for any positive definite diagonal matrix C, we have

Tr
[(
F + C

)−1
G
]
≤ Tr

[(
FDiag + C

)−1
GDiag

]
, (111)

where FDiag is a diagonal matrix formed by taking the diagonal entries of F , and the matrix GDiag is
defined similarly.

Proof: If the statement of theorem holds for the matrix F , it will also hold for the matrix kF for
any positive constant k. Therefore, without loss of generality, we assume that a = 1 and hence, b ≥ 1.
From the Hadamard product relation, this implies that F and G are equal on block matrices on the
diagonal. Let A denote this common part, i.e.,

A =


F1:m1×1:m1 0 0 · · · 0

0 F(m1+1:m1+m2)×(m1+1:m1+m2) 0 · · · 0
...

...
...

...
...

0 0 0 · · · F(m1+···+mk−1+1)×(m1+···+mk−1+mk)


m×m

.
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One can find matrix B such that F = A + B and G = A + bB. Observe that wherever A is
non-zero, B is zero and vice versa. Substituting F and G in the left hand side of (111), one attains

Tr
[(
F + C

)−1
G
]

= Tr
[(
A+B + C

)−1(
A+ bB

)]
= Tr

[
(A+B + C)−1(A+B)

]
+ Tr

[
(A+B + C)−1(b− 1)B)

]
. (112)

We will show that the first term in the above formula is less than or equal to the right hand side of
(111) and the second term is non-positive.

Start with the first term of (112)

Tr
[
(A+B + C)−1(A+B)

]
= Tr(Im×m)− Tr

(
(A+B + C)−1C

)
, (113)

where the second term in (113) can be bounded as follows:

Tr
(
(A+B + C)−1C

)
= Tr

[(
C

−1
2 AC

−1
2 + C

−1
2 BC

−1
2 + I

)−1]
≥ Tr

[(
C

−1
2 ADiagC

−1
2 + I

)−1]
. (114)

The last inequality comes from Lemma 3.
Hence, (113) will be bounded as

Tr
[
(A+B + C)−1(A+B)

]
≤ Tr(Im×m)− Tr

[(
C

−1
2 ADiagC

−1
2 + I

)−1]
, (115)

= Tr[(ADiag + C)−1(ADiag + C)]− Tr[C
1
2 (ADiag + C)−1C

1
2 ] (116)

= Tr[(ADiag + C)−1ADiag] (117)

= Tr[(FDiag + C)−1GDiag], (118)

in which (117) comes from the trace interchange property and (118) is derived since A is defined to
be the common part of the two matrices F and G.

To complete the proof, it remains to show that the right hand side of (112) is non-positive, i.e.,

(b− 1) · Tr
[
(A+B + C)−1B

]
≤ 0. (119)

Since we have assumed that b ≥ 1, we need to show that the trace function is non-positive. For the
positive definite matrix (A+ C), we have

Tr
(
(A+B + C)−1B

)
= Tr(I)− Tr

(
(A+ C +B)−1(A+ C)

)
= Tr(I)− Tr

(
(A+ C)

1
2 (A+ C +B)−1(A+ C)

1
2

)
(120)

= Tr(I)− Tr
(

(I + (A+ C)
−1
2 B(A+ C)

−1
2 )−1

)
≤ Tr(I)− Tr(I) (121)

= 0.

in which the inequality (120) follows from the trace interchange property and (121) is derived using

Lemma 3 for the Hermitian matrix (I+(A+C)
1
2B(A+C)

1
2 )−1. Note that the matrix (A+C)

1
2B(A+

C)
1
2 is a block off-diagonal matrix, since matrices A and B has been defined to be, respectively, block

diagonal and off-diagonal matrices such that wherever Aij is zero, Bij is non-zero and vice versa. This
completes the proof of Theorem 3. �
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