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ABSTRACT 

 
In this paper, we investigate the recovery of a sparse weight 

vector (parameters vector) from a set of noisy linear 

combinations. However, only partial information about 

the matrix representing the linear combinations is available. 

Assuming a low-rank structure for the matrix, one natural 

solution would be to first apply a matrix completion to the 

data, and then to solve the resulting compressed sensing 

problem. In big data applications such as massive MIMO and 

medical data, the matrix completion step imposes a huge 

computational burden. Here, we propose to reduce the 

computational cost of the completion task by ignoring the 

columns corresponding to zero elements in the sparse vector. 

To this end, we employ a technique to initially approximate 

the support of the sparse vector. We further propose to unify 

the partial matrix completion and sparse vector recovery into 

an augmented four-step problem. Simulation results reveal 

that the augmented approach achieves the best performance, 

while both proposed methods outperform the natural two-step 

technique with substantially less computational 

requirements. 
 

Index Terms— IMAT; sparse; Lasso; matrix 

completion; missing data  

 

1. INTRODUCTION 

 
The most common approach in dealing with low-rank models 

containing missing information is to apply matrix completion 

methods. Matrix completion has been applied to 

recommendation problems. There are efficient matrix 

completion methods for low rank models in the literature 

such as Singular Value Thresholding (SVT) introduced by 

Candes et al in [1], and Optspace method by Keshavan et al 

in [2]. In our paper, we focus on Soft-Impute (SI) completion 

method which was first brought up by Hastie et al in [3]; we 

are assuming the low-rank model for data and sparsity for the 

parameters. In [4], Goldberg et al introduced the concept of 

direct method in recovering the parameters assuming the low-

rank structure for the data matrix which consists of missing 

entries. The parameters vector is not assumed to be sparse in 

the problem model in [4]. However, in our paper we assume 

that it is sparse and linked to the compressed sensing 

problem. Therefore, the problem includes both the 

compressed sensing and matrix completion problems. The 

straightforward approach in dealing with missing data in the 

literature is to apply matrix completion methods to the data at 

first to learn the missing information. Afterwards, sparse 

recovery methods could be applied on the learned data to 

detect the sparse parameters vector. In section 2, we will 

elaborate upon the new method we propose in dealing with 

the aforementioned problem. The main concern in working 

with big data is that we want to avoid time-consuming 

algorithms. In big data scenarios, completion methods in the 

literature are time-consuming since they work based on 

performing Singular Value Decomposition (SVD) which is 

considered to be of high time-complexity. Therefore, time-

efficient methods for this problem are of great importance 

due to the numerous applications big data is accompanied 

with.  

 
2. PROBLEM MODEL 

 

We consider the problem of finding the sparse signal 𝛽 in the 

following true linear model: 

 

                                      𝑌 = 𝑿𝛽 + 𝜖                                 (1) 

 

where, 𝑿 ∈ 𝑅𝑚×𝑛  is the data matrix, 𝛽 ∈ 𝑅𝑛  is the 

parameters signal, 𝜖~𝑁(0, 𝐼𝑛×𝑛) is the i.i.d noise, and 𝑌 ∈
𝑅𝑛 is the observed labels. We assume 𝑿 is of low rank which 

means that 𝑟𝑎𝑛𝑘(X) = 𝑟 where 𝑟 ≪ min(𝑚, 𝑛). 
We also consider 𝛽 to be sparse meaning that the nonzero 

number of elements in 𝛽 is 𝑠 ≪ 𝑛.  

The support of 𝛽 is defined as follows: 

                  𝑆𝑢𝑝𝑝(𝛽) = {𝑖 ∈ {1, … , 𝑛} ∶ 𝛽(𝑖) ≠ 0}             (2) 

Therefore |𝑆𝑢𝑝𝑝(𝛽)| = 𝑠 . We also suppose that  𝑿   has 

missing entries. For example, we can assume  𝑿  is generated 

from an initial  𝑿 ̃ as follows: 

= 𝑿̃⊙ 𝐵,𝑤ℎ𝑒𝑟𝑒 𝐵𝑖,𝑗~𝐵𝑒𝑟(𝛼)                    (3) 

where ⊙ denotes the Hadamard product, and 𝐵𝑒𝑟(𝛼) 
denotes Bernoulli distribution with parameter 𝛼 . In the 



problem model, we know the matrix 𝑿 and the labels 𝑌. The 

idea is to use an initial non-complex completion method, then 

we argue that by applying Iterative Method of Adaptive 

Thresholding for Compressive Sensing (IMATCS) as in [5], 

we can find a good initial approximation of the support of the 

signal 𝛽. Our previous works have shown that IMATCS has 

good performance in sparse recovery without applying any 

initial completion on the raw data or with a simple 

precompletion step; specifically accessing the raw data with 

missing samples we can have a better estimation of the 

support by IMATCS rather than LASSO [8]. Afterwards, we 

proceed considering the raw data on the support columns of 

the data with missing entries. Then, after dimension 

reduction, we have less time complexity in recovering the 

data on support columns. Even if we use an accurate method 

on the initial data, we have saved large amount of time due to 

dimension reduction. In other words, we focus on the support 

of our parameters, and try to be accurate on recovery on the 

coulmns relating to the support elements. This way, we avoid 

the time-consuming matrix completion on the entire data. We 

will include comparisons between the root mean square error 

(RMSE) values achieved by applying a matrix completion on 

the entire data followed by sparse recovery and the RMSE 

values achieved by the introduced approach. To illustrate our 

approach, we provide the following flowchart for more 

clarification (coined as the four-step method): 

 

𝑿
𝑀𝐶1
→  𝑿𝑀𝐶1

𝐼𝑀𝐴𝑇(𝜆1)
→      𝑿𝑆

𝑀𝐶2
→  𝑿𝑀𝐶2𝑆

𝑙𝑎𝑠𝑠𝑜(𝜆2)

𝐼𝑀𝐴𝑇(𝜆2)
→      𝛽̂(𝜆1, 𝜆2)) ,   (4) 

 

where 𝑀𝐶1 denotes the simple matrix completion, 𝑿𝑀𝐶1  is 

the data after initial matrix completion. 𝑿𝑆 is the data on the 

support of sparse recovered signal.  𝑿𝑀𝐶2𝑆 is the reduced data 

on which accurate matrix completion is applied. 𝛽̂ is the final 

recovered signal. 

Below is the flowchart for the two-step method: 

 

𝑿
𝑀𝐶2
→  𝑿𝑀𝐶2

𝑙𝑎𝑠𝑠𝑜(𝜆1)

𝐼𝑀𝐴𝑇(𝜆2)
→      𝛽̂(𝜆1)                          (5) 

 

Where 𝑿𝑀𝐶2  is the entire data completed with accurate 

completion method, and 𝛽̂(𝜆1) is the recovered sparse signal 

in two-step method. It is worth noting that according to [8], 

IMATCS outperforms LASSO in recovering the sparse signal 

parameters and therefore, we have included the results of the 

IMATCS in the final step of the four-step method and provide 

comparison with LASSO in sparse recovery at the final step 

to show how IMATCS yields better RMSE. 

The SI method solves the following problem iteratively  

assuming the data is low-rank. 

         𝑿∗(𝜆) = argmin (||𝑃𝐸(𝑿− 𝑿̂)||
2

2
+ 𝜆||𝑿||

∗
) ,                    (6) 

 

 

where ||𝑿||
∗

 denotes the trace norm of matrix 𝑿 , and 𝑃𝐸 

denotes the projection on the observed entries of 𝑿. 
In LASSO, we solve the following problem. By cross-

validating over 𝜆 and picking the desired 𝜆, the sparse signal 

is recovered. 

             𝛽∗(𝜆1) = min
𝛽
||𝑿̂𝛽 − 𝑌||

2

+ 𝜆1||𝛽||1                      (7) 

IMATCS method is introduced in [5] and one could refer to 

this paper to see how it iteratively works in order to find the 

solution to a compressive sensing problem.  

Table 1 best summarizes the four-step sparse signal recovery 

algorithm. The reason we use SI is that this method works 

iteratively and we are free to set the trade-off between the 

accuracy and the complexity of completion. The method we 

introduced and the original approach are two marginal 

endpoints of the spectrum which our sensitivity on the 

number of iterations cover. Our findings and simulations 

have verified that we could achieve small and even better 

errors by reducing the complexity using four-step method. 

 
      Algorithm 1    Stepwise presentation of four-phase algorithm   

 
 



 

3. AUGMENTED FOUR-STEP METHOD 

 
    In order to increase the prediction accuracy as well as 

saving time, we propose a second algorithm by concatenating 

the data matrix 𝑿 with the column 𝑿𝛽. This again, maintains 

low rank structure specifically for multi label problems. Next, 

the resulting matrix is taken into account for imputation and 

the vector 𝛽 is imputed inside the structure of this matrix. The 

intuition behind this approach is that the labels help recover 

the structure of data matrix since it contains useful 

information about the rank of 𝑿 . One can formulate the 

problem of finding this vector as follows: 

 

 min
𝛽,𝑋

 ||𝑃𝐸([𝑿 𝑿𝛽] − [𝑿̂ 𝑌])||
2

2
+ 𝜆1||[𝑿 𝑿𝛽]||∗ + 𝜆2||𝛽||1    (10) 

    This problem is generally a non-convex problem because 

if we denote [𝑿 𝑿𝛽]  with 𝒁 , we have the following 

relationship for the last column of 𝒁: 

𝒁∗,𝑛+1 = 𝑿𝛽,                                         (11) 
which makes non-convex. One approach for solving this 

minimization problem is to apply coordinate descent method 

which reduces to the two final stages of four-step method 

method but the structure of the matrix used is different from 

considering 𝑋 alone. It is worth noting that that this method 

is only different from the four-step method in the third and 

fourth stage. We will minimize a different objective, and 

finally we will show in the results section that applying the 

aforementioned method we enhance the performance. 

 

4. ANALYSIS OF TWO-PHASE AND FOUR-PHASE 

METHODS 

 

    In [7], authors have established proofs for bounding the 

difference between the  recovered signal and the original 

signal in noisy scenario. Here, we came up with the idea of 

applying theorems in [7] to the matrices completed by SI 

method, and consider the difference between completed 

matrices and main data rather than the difference between the 

noisy matrix and the main data in the final steps of two-phase 

and four-phase methods.  

Let 𝑿𝑘 and 𝛽𝑘 denote the solution to the 𝑘-th iteration of the 

SI method. If we apply LASSO on 𝑿𝑘, we can recover the 

support of 𝛽𝑘 with good approximation. Then we see that by 

using fewer iterations we can find the support of 𝛽𝑘 . This 

way, we can find the important features in recovering the  

parameters. We assume after the 𝑘-th iteration in Soft-Impute 

method, we have the following definitions:  

 

𝛽𝑘 = argmin
||𝛽||

1
≤𝑏0√𝑠

{||𝑿𝑘𝛽 − 𝑌||
2
+ 𝜆𝑘||𝛽||1}        (12) 

≡ argmin
||𝛽||

1
≤𝑏0√𝑠

{
1

2
𝛽𝑇𝑿𝑘

𝑇𝑿𝑘𝛽 − 𝑌
𝑇𝑿𝑘𝛽 + 𝜆𝑘||𝛽||1}  (13) 

 

Let 𝛤̂ denote 𝑿𝑘
𝑇𝑿𝑘 and 𝛾 =  𝑿𝑘

𝑇𝑌. 
In [7], the authors introduce a condition (lower restricted 

eigenvalue (RE) condition) as follows: 

Lower RE condition: 𝛤̂ satisfies lower RE with curvature 

𝛼1 ≥ 0  and tolerance 𝜏(𝑚, 𝑛) ≥ 0 𝑖𝑓 ∀ 𝜃: 𝜃𝑇𝛤̂𝜃 ≥ 𝛼1||𝜃||2
2
−

𝜏(𝑚, 𝑛)||𝜃||
1

2
 

In our case, 𝛤̂ and 𝛾 are surrogates for 𝑿∞ (the final output 

of Soft-Impute method) and the original 𝛽, respectively. 

the two following bounds are proved in [7]: 

||𝛾 − 𝑿∞
𝑇 𝑿∞𝛽||∞ ≤ 𝜙(𝜎

(𝑿𝑘  −𝑿∞ ))√
log 𝑛 

𝑚
,     (14) 

||(𝛤̂ − 𝑿∞
𝑇 𝑿∞)𝛽||

∞
≤ 𝜙(𝜎(𝑿𝑘  – 𝑿∞ ))√

log 𝑛 

𝑚
,   (15) 

where 𝜎(𝑿𝑘  −𝑿∞ ) denotes the operator norm of the matrix 

𝑿𝑘  −𝑿∞ , and 𝜙  is a decreasing function of the singular 

value. From now on, we denote 𝜎(𝑿𝑘  −𝑿∞ ) with 𝜎𝐷(𝑘). 
Here, we provide an extension to the main result in [7]. If the 

Lower RE and the two deviation conditions are met, and if 

there exist ( 𝛼1, 𝜏  such that √𝑠𝜏(𝑚, 𝑛) ≤

min {
𝛼1

128√𝑠
, 𝜙(𝜎𝐷(𝑘))√

log 𝑛 

𝑚
}),  then for any 𝛽∗ with sparsity 

𝑠 there is a universal positive constant 𝑐0 such that for any 

||𝛽||
2
≤ 𝑏0, 𝛽𝑘 satisfies the following bounds: 

||𝛽𝑘 − 𝛽||2 ≤
𝑐0√𝑠

𝛼1
max{ 𝜙(𝜎𝐷(𝑘))√

log𝑛 

𝑚
, 𝜆𝑘}      (16) 

||𝛽𝑘 − 𝛽||1 ≤
8𝑐0𝑠

𝛼1
max{ 𝜙(𝜎𝐷(𝑘))√

log 𝑛 

𝑚
, 𝜆𝑘}       (17) 

 

Now we show how the deviation bounds could be met. 

 

||𝛾 − 𝑿∞
𝑇 𝑿∞𝛽||∞ = |

|(𝑿𝑘 − 𝑿∞)
𝑇𝑌||

∞

≤ ||(𝑿𝑘 − 𝑿∞)
𝑇𝑌||

2

≤ ||𝑿𝑘 − 𝑿∞||2|
|𝑌||

2
= 𝜎𝐷(𝑘)||𝑌||2, (18) 

where the last inequality follows from Cauchy Schwartz 

inequality. To achieve this bound for this theorem we can set  

𝜙(𝜎𝐷(𝑘)) =
||𝑌||

2
𝜎𝐷(𝑘)

√log 𝑛 
𝑚

                            (19) 

Let 𝑫 = 𝑿𝑘 − 𝑿∞, then, 

||(𝑿𝑘
𝑇𝑿𝑘 − 𝑿∞

𝑇 𝑿∞)𝛽||∞
≤ ||𝑿∞

𝑇 𝑫 + 𝑫𝑇𝑿 + 𝑫𝑇𝑫||
2
||𝛽||

2

≤ 3𝜎𝐷(2𝜎∞ + 𝜎𝐷)||𝛽||2              (20)  

In order for the bounds to be valid, we can let 

𝜙(𝜎𝐷(𝑘)) =
3𝜎𝐷(2𝜎𝑘−𝜎𝐷)𝑏0

√log
(𝑛)

𝑚

. 

We can set 𝜙(𝜎𝐷(𝑘))  to be the point-wise maximum of 

(
3𝜎𝐷(2𝜎𝑘−𝜎𝐷)𝑏0

√
log𝑛

𝑚

,
||𝑦||

2
𝜎𝐷(𝑘)

√
log𝑛 

𝑚

) to guarantee that the theorem 



holds. So now, what is important for bounding ||𝛽𝑘 − 𝛽||2 

according to the theorem is to make 𝜎𝐷(𝑘)  smaller and 

smaller, to make 𝜙(𝜎𝐷(𝑘)) smaller. What we are looking for 

is the decrease rate in 𝜎𝐷(𝑘) . This is controlled in SI 

algorithm, and that is the reason we pick this up as a 

completion method. Since the 𝜎𝐷(𝑘) is decreasing in each 

iteration of SI method, the bound gets tighter and the 

recovered 𝛽  is guaranteed to converge to the original 𝛽  in 

both two-step and one four-step methods. 

 

5. SIMULATION RESULTS 

In this part, we illustrate the results of the simulations. Table 

2 shows the runtime required for three algorithms on diverse 

data sizes. The data is generated by forming the orthonormal 

matrices and the diagonal matrix containing the singular 

values as Gaussian random matrices. We observe that the 

runtime for four-phase and augmented four-phase methods 

are far less than the time required for the two-phase approach. 

Table 3 provides the RMSEs for the three methods. As a 

general rule, the RMSE for four-step method is less than the 

two step method or in some cases slightly less than that 

(approximately close). The RMSE for augmented four-phase 

is generally less than four phase; however, the  more runtime 

is required due to enhanced size of the problem. It is worth 

mentioning that the runtimes are obtained on a 2.7 GHz Intel 

Core i7 processor. Fig. 1 shows the cross-validated RMSE 

over parameters and the comparison between the RMSEs are 

provided. As we observe the RMSE for the augmented four-

step method is less than that of four-step method and the two-

step method, respectively. The data is generated by forming 

the svd and the orthonormal matrices and singular values are 

assumed to be generated as Gaussian random matrices. The 

parameters is 15-sparse. As we observe the Augmented four-

step method and four-step method outperform the ordinary 

method in addition to saving more time. In the final stage in 

the four-step and augmented four-step paper, we also applied 

the IMAT method in sparse recovery. The RMSEs were quite 

similar to the case where we applied Lasso in the last step 

verifying the result in [8]. Thus, we do not provide further 

tables for the results of IMAT in the last step. We have 

applied completion and learning algorithm on four-fifth of the 

data (training data), and found the RMSEs on the test data. 

The general observation is that the four-phase method 

outperforms the two-phase and its accuracy could be 

enhanced by the concept of augmentation as explained. 

 

6. CONCLUSION 

In conclusion, we notice that large runtime is saved if we 

restrict the completion on the support of the initial 

approximation of the parameters vector without losing the 

performance in the prediction. In order to have an initial 

approximation of the parameters, we have seen that the IMAT 

method functions well in sparse recovery. We have found that 

the four-step method of initial completion followed by 

applying IMAT (initial sparse recovery), accurate matrix 

completion on reduced data, and a final sparse recovery is 

more efficient than the two step method of sparse recovery on 

the entire data followed by sparse recovery (LASSO) both in 

terms of the RMSE of prediction on the test set and more 

importantly computational efficiency. We also improved our 

method and called it augmented four-step method. It was 

observed that this method works better in terms of RMSE in 

comparison to the four-step method while maintaining the 

same (or slightly little more) amount of time complexity. 
  TABLE 2 

   Comparison between the runtimes in seconds achieved by two 

step, four-step, and Augmented four-step Methods 

 

Method 

 

 

Data size 

Two 

step 

method 

Four 

step 

method 

Augmented 

Four  

step 

method 

m=500, n=200 0.9007 0.3333 0.5518 

m=2000,n=200 1.0312 0.4674 1.0072 

m=2000, n=500 8.4290 1.1630 1.1300 

m=1000,n=200 1.1374 0.4020 0.6493 

m=3000,n=500 8.9413 2.3973 2.5233 

 
           TABLE 3 

   Comparison between the RMSEs achieved by two-step, four-

step, and Augmented four-step Methods 

 

Method 

 

 

Data size 

Two 

step 

method 

Four 

step 

method 

Augmented 

four step 

method 

m=500, n=200 13.0507 18.9203 13.6528 

m=2000,n=500 1.7606 1.9290 1.7555 

m=2000,n=200 1.7599 1.6499 1.6648 

m=1000, n=200 4.2706 3.8700 4.2629 

m=3000,n=500 1.3549 1.3614 1.2998 
 

 
 

Fig. 1 RMSE values after cross-validation for the three methods on 

then data with size 2000×500 and 50% missing data and the rank is 

100.  
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