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ABSTRACT

Network motifs are often called the building blocks of net-
works. Analysis of motifs is found to be an indispensable
tool for understanding local network structure, in contrast to
measures based on node degree distribution and its functions
that primarily address a global network topology. As a result,
networks that are similar in terms of global topological prop-
erties may differ noticeably at a local level. In the context of
power grids, this phenomenon of the impact of local struc-
ture has been recently documented in fragility analysis and
power system classification. At the same time, most studies
of power system networks still tend to focus on global topo-
logical measures of power grids, often failing to unveil hidden
mechanisms behind vulnerability of real power systems and
their dynamic response to malfunctions. In this paper a pilot
study on motif-based analysis of power grid robustness un-
der various types of intentional attacks is presented, with the
goal of shedding light on local dynamics and vulnerability of
power systems.

1. INTRODUCTION

The past decade has seen increasing interest in the applica-
tion of tools developed in the interdisciplinary field of com-
plex network analysis to improve our understanding of power
system behavior (for overviews see, e.g., [11, 4, 13] and ref-
erences therein). Indeed, a power grid can be naturally de-
scribed as a graph where nodes represent, e.g., transformers,
substations or generators, and edges represent electrical con-
nections. Methods of complex network analysis have pro-
vided new insights into the fundamental and intrinsic char-
acteristics of power system efficiency, vulnerability and re-
silience. In particular, numerous recent results indicate that
both the topological and functional structure of power grid
networks can dramatically impact power system reliability
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and the effectiveness of associated risk mitigation strategies [3,
15, 10]. Among the most widely explored characteristics of
power grid networks are node degree distribution, mean de-
gree, small world properties and, to a lesser extent, between-
ness centrality measures – that is, primarily lower-order con-
nectivity features that are investigated at the level of individ-
ual nodes and edges. However, a number of recent studies
of power system reliability indices and stability estimation
suggest that resilience of the power grid is also intrinsically
connected to higher-order network features, or network mo-
tifs [8, 16]. The core idea is that if a particular subgraph struc-
ture such as, for instance, a triangle, star, square or wheel, oc-
curs significantly often, then such a subgraph likely plays an
important role in network functionality. And while higher-
order network features have proven to play a fundamental
role in understanding organization, functionality and hidden
mechanisms behind many complex systems, from brain con-
nectome to protein-protein interactions to transportation con-
gestion [9, 12, 2, 1], systematic analysis of network motifs
in power grids and their impact on system resilience is still
largely understudied [4, 8, 16, 14] but constitutes an emerg-
ing research direction.

In this paper we present a pilot study on motif-based anal-
ysis of power grid vulnerability under various types of in-
tentional attacks. In particular, we consider the dynamics
of 4-node connected motifs in eight European power grids
under three attack strategies, namely, attacked nodes are se-
lected based on degree centrality, betweenness centralities or
decreasing order of load (i.e., cascading failures). As a ref-
erence, we use a power grid fragility classification of [14]
based on a tail function of grid degree distribution, that is,
deviation of the observed grid cumulative degree distribution
from an exponential model. We find that local motif-based
properties of fragile and robust networks noticeably differ in
terms of their sensitivity to a type of attack. Although a pilot
study, these findings suggest that motifs can be useful metrics
to characterize a level of power system vulnerability to vari-
ous types of attacks and certain motifs can potentially serve
as early warning indicators of system failure.
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Fig. 1: All connected 4-node motifs.

2. MOTIF-BASED ANALYSIS OF POWER GRIDS

Background on graphs We consider an undirected graph
G = (V,E) as a model of a power grid network. Here V is a
set of nodes, and E is a set of edges. The order and size of G
are defined as the number of nodes and edges in G, i.e., |V |
and |E|, respectively. We assume that if an edge euv ∈ E,
then u 6= v. A graph G is connected if there exists a path
from any node to any other node in G. The distance d(u, v)
is defined as the minimum path length from u to v in G. The
degree of a node u is the number of edges incident to u.

A graph G′ = (V ′, E′) is a subgraph of G (i.e., G′ ⊆ G),
if V ′ ⊆ V and E′ ∈ E. If G′ = (V ′, E′) is a subgraph of G
and E′ contains all edges euv ∈ E such that u, v ∈ V ′, then
G′ is called an induced subgraph of G. Two graphs G′ =
(V ′, E′) and G

′′
= (V

′′
, E

′′
) are called isomorphic if there

exists a bijection h : V ′ → V
′′

such that any two nodes u and
v of G′ are adjacent in G′ if and only if nodes h(u) and h(v)
are adjacent in G

′′
.

Network motifs and their measures Analysis of higher-
order structures of G, or multiple-node subgraphs, provides
invaluable insights into network functionality and organiza-
tion beyond the trivial scale of individual vertices and edges.
A motif here is broadly defined as a recurrent multi-node sub-
graph pattern that tends to appear more often than would be
expected in a randomized network. Network motifs were in-
troduced by [9] in conjunction with the assessment of stabil-
ity and robustness of biological networks, and later have been
studied in a variety of contexts (see [17, 1] and references
therein).

Formally, let Gk = (Vk, Gk) be a k-node subgraph of G.
If there exists an isomorphism between Gk and G′, G′ ∈ G,
we say that there exists an occurrence, or embedding of Gk

in G. A motif signature fG(Gk) is a number of occurrences
of Gk in G. If a subgraph Gk occurs more frequently than
expected by chance, it is called a network motif [9]. Figure 1
shows all connected 4-node motifs.

Significance of motifs for a particular network can be mea-
sured by calculating motifs concentration and Z-scores. In
Z-score the number of appearances of a motif in the observed
network is compared with the corresponding quantity for a
randomized network: Z = MR −M/s, where M is the

mean number of specific motif occurrences in B replicated
randomized networks; s is the corresponding sample standard
deviation, and MR is the observed number of motifs in the
specific power system network. In this study the randomized
networks are simulated using a configuration model, that is, a
random graph with the same degree sequence as the observed
power grid [5]. The concentration (Ci) of n-node motif type i
is the ratio between its number of appearances (Ni) and total
number of n-node motifs in the network: Ci = Ni/

∑
iNi,

where
∑

iNi is the total number of n-node motifs.

Conventional graph characteristics and vulnerability
metrics The vulnerability of a network can be described as
the drop in performance of a network, e.g., power grid net-
work, when a disruptive event emerges. According to [4],
the common topology-based vulnerability/robustness metrics
are: degree distribution, average path length (APL), diameter
(D), clustering coefficient (CC), betweenness centrality (BC),
etc.

The node degree of a network is characterized by a proba-
bility mass function P (k) indicating the probability that a ran-
domly selected node has k links. As suggested by [18], higher
heterogeneity of power grids and, in particular, higher devi-
ations from the Poisson distribution, tends to imply higher
fragility. Power grid networks are assumed to follow expo-
nential cumulated degree distributions [14]. That is, the prob-
ability that a node chosen uniformly at random has a degree
k or higher follows: P (K ≥ k) = C exp (kγ), where C is a
normalization constant, k is the node degree and γ is a char-
acteristic parameter. According to [18] and [14], a power grid
is robust if γ < 1.5 and fragile if γ > 1.5.

Robustness under attacks In robustness under attacks,
the aim is to evaluate how a network behaves when a frac-
tion of random or selective nodes are removed. If the node
to be removed at each step is selected at random, then the
strategy is called a random attack. In the case of intentional
attacks, the targeted nodes to be removed are selected based
on their properties. For instance, if the nodes are selected in
the decreasing order of their degree or betweenness centrality,
the resulting attacks is called degree based attack or between-
ness based attack, respectively. Finally, in a cascading attack,
nodes are targeted in the decreasing order of their load. Typ-
ically the vulnerability of a network is measured on the basis
of the remaining connectivity, largest subgraph size, diameter
(D), average shortage path length (APL), etc., after each node
removed with different attack strategies. In this study we fo-
cus on remaining motif distributions under different targeted
attacks, e.g., degree based, betweenness based and cascade
attacks. More specifically, our goal is to analyze the decay-
ing rate of a specific motif concentration under different types
of attacks and enhance our understanding of local robustness
properties of the corresponding network.



3. CASE STUDIES

Data In this project we study electricity transmission net-
works of four European countries, e.g., Germany, Italy, France,
and Spain (the same power grid data that are analyzed by [6]),
and four European power system operators, e.g., RTE, Am-
prion, 50 Hertz, and TenneT. The number of nodes e.g., power
stations/ sub-stations and edges of the eight power systems are
listed in Table 1. RTE is the French high-voltage transmission
system, Amprion is one of the six transmission system opera-
tors in Germany, 50Hertz operates in the northern and eastern
part of Germany, with a direct connection to Poland, Czech
Republic, and the Denmark. TenneT operates in Netherlands
and Germany. The network topology of four European coun-
tries power systems are shown in Fig. 2.

Table 1: Network descriptions

Power # of nodes # of edges
Germany 417 537
Italy 254 357
France 647 880
Spain 461 664
TenneT 79 80
RTE 190 224
Amprion 193 252
50Hertz 63 82

Data for Germany, Italy, France, and Spain are obtained
from the Union for the Coordination of the Transmission of
Electricity (UCTE) and data for the four system operators are
obtained from the SciGRID project [7].

3.1. Conventional network robustness analysis

Table 2 presents conventional network-based vulnerability met-
rics for the eight power grids. Table 2 suggests that mean de-
gree, average clustering coefficient (CC) and betweennness
centrality (BC) for Germany, Italy, and TenneT tend to be
lower than the respective metrics for France, Spain, RTE, Am-
prion, and 50Hertz. In addition, Table 2 shows the estimated
fragility parameter γ, resulting from approximating the cu-
mulative degree distribution of each grid with an exponential
model [18, 14]. We find that the electricity transmission sys-
tems of Germany and Italy are classified as robust with γ of
1.324 and 1.204, respectively. The TenneT power system is
on the border of robustness with γ of 1.501. RTE, Amprion
and 50Hertz tend to be fragile with γ ≈ 2. France, Spain, and
50Hertz are classified as most fragile grids, with γ > 2.

Table 2: Vulnerability metrics for the power grid networks

Power γ Mean APL D CC BC
System Degree
Germany 1.32 2.58 11.75 30 0.07 2235.80
Italy 1.21 2.81 9.74 28 0.08 981.85
France 2.16 2.72 9.59 26 0.08 2750.01
Spain 2.22 2.89 8.26 18 0.09 1670.02
TenneT 1.50 2.03 5.33 12 0.10 78.71
RTE 1.86 2.36 8.05 20 0.17 379.91
Amprion 1.98 2.61 7.01 18 0.09 530.10
50Hertz 2.13 2.60 5.15 14 0.15 120.60

3.2. Motif based power grid robustness analysis

Motif-based robustness analysis We start from the concen-
trations and Z-scores for different 4-node motifs that appear
in the eight European power grid networks. Since motif distri-
butions are highly skewed, standard z- and t-quantile are no
longer appropriate. Hence, we compare the observed motif
Z-scores with critical values obtained from parametric boot-
strap under a configuration model as a reference.

Table 3 summarize the concentrations and Z-scores (in
parenthesis) for different motifs that appear in the eight Euro-
pean power grid networks.

In the German, Italian, and French power grids, all 4-node
motifs are significant, but in case of the power grid of Spain,
star-like motifs V1 are not significant. In cases of TenneT and
50Hertz, we find that both grids deliver non-significant con-
centrations of detour motifs (i.e., V4 and V5). At the same
time, the robust TenneT has also a non-significant concentra-
tions of low connectivity tree-like dead end motifs, V2; while
the fragile 50Hertz has a statistically significant concentration
of a tree-like motif V2.

Remarkably, in their studies of the European power grid
networks, [14] find that power system fragility seems to in-
crease as the elements of the grid become more intercon-
nected and the number of {3, 4}-node subgraph patterns such
as stars and triplets, begins to increase. Independently, based
on the analysis of synthetic power grids and a case study
of the Northern European power system, [8, 16] show that
an abundance of tree-like dead-end 4-node subgraph patterns
leads to a loss of stability and degradation of resilience. More
recently, [10] who study the impact of removing transmission
lines with a high betweenness centrality, suggest that fewer
connections imply higher security. Hence, the motif analysis
of TenneT and 50Hertz may imply that there exists some bal-
ance in representation of low connectivity tree-like and detour
motifs, resulting in a relatively stable system. However, there
likely exists some functional nonlinear interaction among low
connectivity and detour motifs and network robustness.
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Fig. 2: Maps representing the four European countries power grid networks, where nodes indicate Power stations/sub-stations.

Table 3: Concentration and Z-scores (in parenthesis) of 4-node motifs; ∗ denotes that a motif is significant in the network with
0.05 level of significance. Number of parametric bootstrap replications is 1,000.

Power System V1 V2 V3 V4 V5
Germany 0.252 0.687 0.052 0.006 0.003

(-4.85 ∗) (-6.98 ∗) (15.74∗) (11.33∗) (49.07∗)
Italy 0.229 0.697 0.058 0.013 0.003

(-4.36 ∗) (-9.67∗) ( 11.12 ∗) (14.67∗) (19.79∗)
France 0.292 0.642 0.059 0.006 0.002

(-3.51 ∗) (-9.36 ∗) (24.35 ∗) (19.58∗) (50.89∗)
Spain 0.346 0.570 0.075 0.005 0.003

(0.87) (-12.63∗) (19.26∗) (11.16∗) (34.57∗)
TenneT 0.332 0.605 0.060 0.003 0.000

(-5.162∗) (-1.873) (5.179∗) (1.491) (-0.032)
RTE 0.262 0.608 0.119 0.007 0.005

(-13.321∗) (-8.002∗) (12.451∗) ( 3.303∗) (22.101∗)
Amprion 0.413 0.504 0.074 0.007 0.002

(-4.412∗) (-6.861∗) (4.442∗) ( 3.171∗) (2.912∗)
50Hertz 0.252 0.616 0.123 0.007 0.002

(-3.572∗) (-3.690∗) (3.831∗) (-0.242) ( 0.531)

3.3. Robustness under attacks

In robustness under attack we want to evaluate how a power
grid network behave when a fraction of random or selective

nodes (e.g., node with highest degree or betweenness) are re-
moved. Here our goal is to measure the remaining connec-
tivity i.e., how large are connected components under random
and targeted attacks.



Figure 3 indicates that under cascade, degree-based and
betweenness-based attacks, connectivity in the power grid net-
works of France, Spain, RTE, Amprion and 50Hertz decays
more rapidly than connectivity in the power grid systems of
Germany, Italy, and TenneT. However, under random attacks
all eight power systems loss connectivity with similar rates.

To assess vulnerability of the eight power grid networks,
we also investigate the dynamics of motif distributions under
different targeted attacks. Fig. 4–6 depict the decaying rate
of different 4-node motif concentrations under three types of
targeted attacks, e.g., degree-based, betweenness-based and
cascade attacks. The motif concentrations in the networks of
France, Spain, RTE, Amprion, and 50Hertz tend to exhibit
different dynamics of decay, than the motif concentrations in
the power grid networks of Germany, Italy, and TenneT.

For instance, the decay of motif concentration curves for
V2 is noticeably steeper than the decay of motif concentra-
tion curves for V1 in the German, Italian, and TenneT power
grid networks under degree- and betweenness-based attacks
(Fig. 4-5), whereas, the respective gaps among concentration
curves for V1 and V2 in other five networks tend to narrower.
Note that according to [18] and [14], the power grids of Ger-
many and Italy are classified as robust, while the grids of
France, Spain, RTE, Amprion, and 50Hertz are classified as
fragile. TenneT power grid is a borderline case (see Table 2).

Furthermore, Fig. 7 suggest that concentrations of V2 for
the power systems of Germany, Italy, and TenneT under be-
tweenness based attacks decay noticeably slower than the re-
spective concentrations under degree-based and cascade at-
tacks. However, dynamics of concentrations of five other
networks appear not to depend on a type of attack. Similar
patterns are observed for concentration of V4, although the
difference between concentration curves under betweenness-
based attacks and under the degree-based and cascade attacks,
is less profound than for the case of V2 (see Fig. 8). (Notice,
concentration of V4 for 50Hertz exhibits a steeper decay un-
der betweenness-based attacks than under degree-based and
cascade attacks, which is contrast to other systems.) These
results suggest that a local motif structures of fragile and ro-
bust networks appear to be sensitive with respect to an attack
strategy and a considered motif.

4. CONCLUSION AND DISCUSSION

Although even basic {3, 4}-node motifs have been proven to
unravel hidden mechanisms behind functionality and stabil-
ity of various complex systems (see [9, 17, 19] and refer-
ence therein), including a limited number of motif-based vul-
nerability studies in power networks [16, 14], to our knowl-
edge, there exists no previous study of motif-based analysis
of power systems under attacks. In this pilot study we fo-
cus on motif-based analysis of local power grid vulnerability
under random and intentional attacks. We find that the dy-
namics of distributions of 4-node motifs under various attacks

differ with respect to the global tail-based grid classification
of power grid fragility proposed in [14]. In particular, we find
that robust and fragile power systems exhibit different degrees
of local sensitivity and degradation with respect to the type of
attack and the type of motif. Hence, motif characteristics such
motif concentrations can be potentially used as alternative lo-
cal metrics of fragility under attacks as well as early warning
indicators of system degradation and failure. In the future,
we plan to further expand this study into a hybrid analysis
of local motif-based topological and functional properties of
weighted power grid systems.
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Fig. 5: Dynamics of 4-motif concentrations under betweenness based attacks.
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Fig. 6: Dynamics of 4-motif concentrations under cascade attacks.
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Fig. 7: Persistence of V2 motif concentrations under different targeted attacks.
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Fig. 8: Persistence of V4 motif concentrations under different targeted attacks.
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