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ABSTRACT

Following the rapidly growing digital image usage, automatic
image categorization has become preeminent research area.
It has broaden and adopted many algorithms from time to
time, whereby multi-feature (generally, hand-engineered fea-
tures) based image characterization comes handy to improve
accuracy. Recently, in machine learning, pre-trained deep
convolutional neural networks (DCNNs or ConvNets) have
proven that the features extracted through such DCNN can
improve classification accuracy. Thence, in this paper, we fur-
ther investigate a feature embedding strategy to exploit cues
from multiple DCNNs. We derive a generalized feature space
by embedding three different DCNN bottleneck features with
weights respect to their softmax cross-entropy loss. Test out-
comes on six different object classification data-sets and an
action classification data-set show that regardless of variation
in image statistics and tasks the proposed multi-DCNN bot-
tleneck feature fusion is well suited to image classification
tasks and an effective complement of DCNN. The compar-
isons to existing fusion-based image classification approaches
prove that the proposed method surmounts the state-of-the-art
methods and produces competitive results with fully trained
DCNNS as well.

Index Terms— Transfer learning, CNN, Image classifi-
cation

1. INTRODUCTION

The traditional classification models using single feature rep-
resentation suffers from the inability to tackle intra-class vari-
ations and global variants such as color, lightings and orienta-
tion of image statistics. Therefore, it is an intuitive process to
fuse multiple features to meliorate the classification accuracy
because multiple features can plausibly create a well general-
ized feature space. Researchers in the computer vision com-
munity also have shown interest in multiple feature fusion.
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For example, Li et al. [1] utilized the Riemann manifold
to combine the features from the covariance matrix of mul-
tiple features and concatenated multiple features to represent
the object appearance. Meanwhile, Park [2] took the Multi-
partitioned feature-based classifier (MPFC) to fuse features
such as Hue-saturation-value(HSV), Discrete cosine transfor-
mation (DCT) coefficients, Wavelet packet transform (WPT)
and Hough transform (HT) with specific decision character-
istic expertise table of local classifiers. Similarly, Kwon et
al. [3] had advantage of multiple features for efficient object
tracking, where, they dissevered the task into multiple con-
stituents and combined multiple features through sparse Prin-
cipal component analysis (PCA) to select the most important
features, by which, the appearance variations were captured.

On the other hand, researchers in [4], [5], [06], [7] also
found different ways to merge multiple hand-engineered-
features to improve classification accuracy. Fernando ef al.
[4] merged Hue-histograms, Color name (CN) descriptors,
Scale-invariant feature transform (SIFT) and Color-SIFT,
while, Gehler and Nowozin [5] achieved some success of
improving classification accuracy by means of combining the
basic SIFT feature with another eight different features: His-
togram of gradients (HOG), Local binary pattern (LBP),
Color-SIFT and so forth using Multiple kernel learning
(MKL) to combine 49 different kernel matrices. Khan et
al. [6] employed multiple cues by individually processing
shape and color cues then combining them by modulating
the SIFT shape features with category-specific color atten-
tion. They used a standardized multi-scale grid detector with
Harris-laplace point detector and a blob detector to create
feature description, then they normalized all the patches to
a predefined size and computed descriptors for all regions.
Dixit et al. [7] embedded features from a CNN with Semantic
fisher vector (SFV), where the SFV is ciphered as parameters
of a multi-nominal Gaussian mixture FV.

In the aforesaid literature, however, the features fused are
mainly the hand-engineered features or such features with



bottleneck features' from a single CNN. Hence, utilizing the
bottleneck features extracted through an off-the-shelf pre-
trained CNN, significantly, outperforms a majority of the
baselines state-of-the-art methods [8]. Thus, one may pon-
der the following questions: (i) If multiple CNN features
extracted from different networks, can such features be com-
plementary?, if so (ii) what can be an acceptable approach
to fuse them so that the classification accuracy will improve?
We address these questions by carrying out experiments on
various data-sets with three different pre-trained CNNs as fea-
ture extractors, weights based on cross-entropy loss function
as feature embedding scheme and softmax as classifier. The
experiment results have strengthen our idea of fusing multiple
CNN features to improve image classification accuracy.

1.1. CNN as Feature Extractor

A DCNN pre-trained on large image data-set can be ex-
ploited as generic feature extractor through transfer learn-
ing process [9]. Generally, in transfer learning, parameters
(weights and biases) of first n layers of source (pre-trained
DCNN) are transferred to the first n layers of target (new
task) network and left without updates during training on
new data-set, while the rest of the layers known as adaptation
layers of target task are randomly initialized and updated
over the training. If a fine-tuning strategy is taken then back-
propagation process will be carried out through the entire
(copied + randomly initialized layers) network for calibrating
the parameters of the copied layers in the new network so that
the DCNN responses well to the new task.

In this experiment, we take three pre-trained networks:
AlexNet, VGG-16, and Inception-v3 and extract features
from their respective penultimate layers. These networks
have been trained on ImageNet”, where the final logits layer
of each network has 1000 output neurons. That final layer
is decapitated, then rest of the DCNN is employed as fixed
feature extractor on the new data-sets, where number classes
per data-set may differ. The following intermezzo highlights
the properties of the DCNNs.

AlexNet[ 0] is the winner of 2012 ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) with 37.5% and
17.0% top-1 and top-5 object classification error rates respec-
tively. It subsumes 5 convolutional (Conv) layers occasion-
ally interspersed with max-pooling layers, 3 fully-connected
(FC) layers and the last softmax classifier with 1000 output
neurons trained on 1.2 million images in the ImageNet-2010
data-set. The penultimate layer referred as FC7 has 4096
output channels. VGG-16[11] is the winner of 2014 ILSVRC
challenge for localization task with 25.3% error and runner-
up of the classification task with 24.8% and 7.5% top-1 and
top-5 error rates respectively. It has 16 Conv layers with max-

1 The high-level feature representations of ConvNet that is feed into a final
classification layer is called bottleneck features. 2 It contains more than 14
million images which are hand labeled with the presence/absence of 21000+
categories.

pooling layers after each set of two or more Conv layers, 2
FC layers, and a final softmax output layer. The penultimate
layer FC2 has 4096 channels of output. Inception-v3[12]
is an improved version of GoogLeNet the winner of 2014
ILSVRC classification task. It achieved 21.2% top-1 and
5.6% top-5 error rates on the benchmark ILSVRC 2012 clas-
sification challenge validation set. We extract features of
target data-sets from a maxpooling layer named as pool_3:0
in the network, which has 2048 output channels.

Rest of this paper is organized as follows. Section 2 ex-
patiates on the main ideas: feature extraction, feature embed-
ding and classification via block diagrams and mathematical
derivations. Section 3 details the experimental results through
quantitative and qualitative analysis. Finally, Section 4 con-
cludes the work with final remarks on future directions.

2. SYSTEM OVERVIEW

As described in Section 1.1, using the selected CNN models
and their associated learned parameters a forward-pass oper-
ation (without back-propagation) is carried out on the image
statistics of new data-sets to extract bottleneck features. De-
pends on the size of the data-set, feature extraction process
may take several hours; however, it will be considerably lit-
tle time than training or fine-tuning the CNN completely. For
instance, on a Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz
machine with 16.0GB RAM, it would take about 5-6 hours to
get the features from CIFAR10 data-set through Inception-v3.
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Fig. 1. The Image Classification System Overview (ConvNet
refers to CNN).

2.1. Feature Embedding

As we exploit three different CNNs for feature extraction
as shown in Figure 1, the system must be devised with an
appropriate strategy to merge the extracted features toward
classification accuracy gain. The basic approach is concate-
nating all different features in a single vector per sample
as F'o= {f]Pt P2 o prxpm iy the final feature
space F has the dimension of n x (pl + p2 + --- + pm).
Although, such straight forward concatenation process of-
ten improve classification accuracy than using single feature,



the penalty is unfair since a weak feature may deteriorate
the performance of other good features. We circumvent that
by introducing weighted feature embedding layer as shown
in Figure 2, where we calculate cross-entropy loss for each
feature individually and update their assigned parameters us-
ing softmax function and gradient descent based optimizer
to minimize the cross-entropy loss. On the other hand, this
layer functions as indemnifier for the variant image statistics
like imaging conditions, viewpoints and object types of the
source and target data. The following snippet describes the
mathematical background of the technique.

The softmax function produces a categorical probability
distribution, when the input is a set of multi-class logits as:

0(2); = s forf =1, K, (1)

where input Z is K-dimensional vector and output is also a
K-dimensional vector having real values in the range (0, 1)
and that add up to 1 as normalization happens via the sum
of exponents term dividing actual exponentiation term. The
cost function for the softmax function of the model can be
written in terms of likelihood maximization with a given set
of parameter ¢ as:

argmax L(¢l, t,2), )
%)
where the likelihood can be deduced to a conditional distribu-
tion of t and z for the same ¢ as:

P(t, zlp) = P(tlz, ) P(2]#)- 3

Note that the probability that the class ¢ = j for a given input
z and with 7 = 1, ..., K can be written in matrix form as:
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where P(t, j|z) is the probability that the class is j given that

the input is z. Eventually, the cost function through maxi-

mizing the likelihood can be done by minimizing the negative
log-likelihood as:

K, K

—logL(6lt,z) = £(t,z) = —log l'[1 Yy =— -21 tj - log(y;), (5)

J= J=
where ¢ denotes the cross-entropy error function. Then, the
derivative 0¢/0W of the cost function with respect to the

softmax input z can be used to update the weights as:
0
W(t) - )\Bwft) ) (6)

where A the learning rate tells us how quickly the cost changes
the weights. In the same way, biases can also be updated; to-
wards the goal of bringing the error function to local mini-
mum. In this work, we utilize the backpropagation (aka back-
props) based on gradient descendant optimization algorithm

W(t+1) =

to update the weights and biases. The gradient decent algo-
rithm is the workhorse of learning in neural networks, these
days. Intricate description of backprops can be referred from
[13]. Thus, we get dimension reduced logits Yl, Yg, Y3 of the
Alex, VGG, and Inception bottleneck features respectively as
shown in Figure 2. Sequentially, the estimated logits are co-
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Fig. 2. Weighted Cross-entropy Based Feature Embedding.

alesced by a product F = H?:1 Y; and fed in into the final
classification layer.

3. EXPERIMENTAL RESULTS

Experiments were carried out on 6 different object classifi-
cation data-sets: CIFAR-10, CIFAR-100 [21], MIT67 [22]
Caltech101, Caltech256 3, Sun397 # and an action classifica-
tion data-set the Pascal VOC 2012 [20]. Three statistics from
each data-set is shown in Figure 3 while Table 2 summarizes
all the data-sets. In Pascal VOC 2012, as the action bound-
aries were given we extracted the action statistics within the
boundaries and zero padded to make their dimension spatially
square and resized to meet the requirement of the employed
CNN architectures. For other data-sets, whole size images
were taken and only resized to meet the networks’ input layer
requirements.

The results of the proposed bottleneck feature embedding
are compared in Table 1 with existing algorithms. The Ta-
ble also lists the performance of single CNN bottleneck fea-
ture without any feature fusion for quantitative analysis, while
Figure 4 shows an overall performance comparison in terms
of box-plot of the fused feature with the best results of other
methods chosen from Table 1. From these comparisons one
can understand that the proposed feature embedding has im-
proved the classification accuracy by 1% - 2% most of the
cases without any data-augmentation.

Note that in Table 1, [14] uses Data-augmentation + la-
tent model ensemble with single CNN feature; [15], [16]
and [17] do not use any feature fusion; [2], [5], [6], [7]
and [19] use feature fusion of multiple hand-crafted features
or hand-crafted feature(s) with a single CNN feature; [18]
uses CNN features extracted though pre-trained AlexNet on

3 http://www.vision.caltech.edu/Image_Datasets/Caltechl01/

4 http://groups.csail.mit.edu/vision/SUN/


http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://groups.csail.mit.edu/vision/SUN/

Type I Data-set | Proposed | AlexNet | VGG-16 [ Ince.-v3 | Other methods \
CIFAR10 92.00 81.60 85.35 89.57 91.87[14], 85.02[15], 74.5[16]
CIFAR100 74.60 56.30 67.26 69.86 72.60[17], 66.64[14]
Object classification Caltech101 95.65 90.15 91.31 93.57 83.60[2], 82.10[5], 76.1[06]
Caltech256 87.30 69.22 79.30 83.75 60.97[7], 50.80[5]
MIT67 77.38 53.88 66.41 76.04 70.72[18], 65.10[7]
Sun397 55.22 45.18 47.87 49.41 54.30[18], 38.00[19]
Action classification || Pascal VOC 2012 82.50 63.39 71.13 79.98 70.20[9], 69.60 OXFORDI[20]

Table 1. Comparison of the results (top-1 accuracy in %).
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Fig. 3. Illustration of different data-set statistics: (a). Pas-
cal VOC 2012 (riding horse, using computer, ridding bike),
(b). Sun397 (airplane cabin, cafeteria, dam), (c). MIT67
(bakery, children room, museum), (d). Caltech101 (wrench,
strawberry, wild cat), (e). Caltech256 (baseball bat, calcula-
tor, firetruck), (f). CIFAR10 (dog, horse, airplane), (g). CI-
FARI100 (insects, household furniture, large natural outdoor
scenes).

‘ Data-set ‘ No. of classes ‘ Train. samples ‘ Test samples ‘ Ref. ‘

CIFAR10 10 50,000 10,000 [21]
CIFAR100 100 50,000 10,000 [21]
Caltech101 101 6,076 2,601 [23]
Caltech256 256 21,363 9,146 [24]
MIT67 67 5,360 1,340 [22]
Sun397 397 59,550 10,919 [19]
Pascal VOC 10 4,588 4,569 [20]

Table 2. Summary of the data-sets.

Places205/365, similarly [9] also uses CNN features extracted
by using a pre-trained AlexNet on 1512 classes of ImageNet
(in our case, the AlexNet used is pre-trained on 1000 classes
of ImageNet).

4. CONCLUSION

An approach to fuse bottleneck features of multiple CNNs
through weighted cross-entropy is presented, where a set of
three different pre-trained CNNs are exploited as feature ex-
tractors. The test results on various data-sets show that it
outperforms the state-of-the-art hand-crafted feature fusion
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Fig. 4. Performance comparison.

methods and produces very competitive results to fully trained
(data-set specific) DCNN, as well. It accords with our hypoth-
esis that features from multiple CNNs can be complementary
to each other and fusion of them can be a generalized repre-
sentation of images that is appearance invariant.

Although, the proposed feature embedding enhances the
classification accuracy, how to fuse multiple features is still
an open problem. In this work, our goal is to analyze if the
accuracy improves when multiple CNN bottleneck features
are fused as proposed. As for the future work, metric learning
approaches can be exploited to capture facet in the CNN fea-
tures that to differentiate classes and inter-classes. Hence, this
work can be extended for dynamic texture and video activity
detection and classification, as well.
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