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Abstract—In this paper we consider the generalized approxi-
mate message passing (GAMP) algorithm for recovering a sparse
signal from modulo samples of randomized projections of the
unknown signal. The modulo samples are obtained by a self-reset
(SR) analog to digital converter (ADC). Additionally, in contrast
to previous work on SR ADC, we consider a scenario where
the compressed sensing (CS) measurements (i.e., randomized
projections) are sent through a communication channel, namely
an additive white Gaussian noise (AWGN) channel before being
quantized by a SR ADC. To show the effectiveness of the proposed
approach, we conduct Monte-Carlo (MC) simulations for both
noiseless and noisy case. The results show strong ability of the
proposed algorithm to fight the nonlinearity of the SR ADC,
as well as the possible additional distortion introduced by the
AWGN channel.

Index Terms—Generalized approximate message passing, self-
reset analog to digital converter, noisy channel, compressed
sensing, Bernoulli-Gaussian mixture

I. INTRODUCTION

Whittaker-Nyquist-Kotelnikov-Shannon theorem is the fun-

damental result in signal processing, that states that one can

perfectly reconstruct a continuous bandlimited signal from a

set of samples, taken at a sampling rate which is proportional

to bandwidth of the signal. Here we assume that the analog

to digital converter (ADC) has infinite precision and infinite

dynamic range. Even though, the theory of finite precision

quantization (rate distortion theory) is well known for decades,

the effects of finite dynamic range (i.e., clipping) became

interesting only recently in different research communities,

e.g., in image and audio processing, bio-medical applications

and analysis of physiological data [1]–[3].

To reduce the negative effects of clipping, Bhandari et al. [4]

propose digitalizing bandlimited signals with a self-reset (SR)

ADC with an appropriate choice of the threshold parameter λ.

The SR ADC with the parameter λ is defined by the mapping

Mλ(t) = 2λ

(s
t

2λ
+

1

2

{
−

1

2

)

, (1)

where JtK , t− ⌊t⌋ is the remainder of the division t and λ.

In Fig. 1 we illustrate the effects of digitalization with SR

ADC, where one can observe that only values of the received

signal that are outside the range [−λ, λ] are affected by the

ADC in the sense that the input value is folded to the range

[−λ, λ]. If some estimate of the norm of the input signal

is known, the authors of [4] prove that perfect recovery of

a bandlimited signal from its discrete samples is possible

if the sampling period T ≤ (2πe)−1, where it is assumed

that the bandwidth of the signal is normalized to π. Apart

from giving the sufficient conditions for perfect recovery, the

authors present a stable recovery algorithm.

When sampling certain sparse signals, it was reported in

[5]–[8], that during the calibration phase, the received ampli-

tudes are typically larger than during the subsequent sensing

phase. Unlike classical approaches of clipping or saturation,

the authors in [5] provide sufficient conditions for perfect

recovery of K-sparse1 signal from its low-pass filtered version,

together with a constructive recovery algorithm.

Contributions

In this paper we follow the work of [5], but instead of

sampling a low-pass filtered version of a sparse signal, we take

compressed sensing (CS) measurements and digitalize them

with a SR ADC. This problem corresponds to the communi-

cation scenario shown in Fig. 2, where we first construct a

vector of CS measurements of a sparse signal. That message

vector is later transmitted through an additive white Gaussian

noise (AWGN) channel and digitalized at the receiver with a

SR ADC. To recover the unknown sparse signal we employ

the well known generalized approximate message passing

(GAMP) [9] algorithm and tailor it to our specific problem.

The GAMP algorithm was already successfully applied in [9]–

[14] for recovery of sparse signals from CS measurements

with nonlinear distortions. To our best knowledge this is the

first work that examines the effects of SR ADC on CS phase

transition curves.

Notation

Vectors and matrices are represented by boldface characters.

Random variables, random vectors, and random matrices are

denoted by sans-serif font, e.g., a, a, and A, respectively.

Function n(x;µ, σ2) represents a Gaussian pdf with mean

µ and variance σ2 evaluated at x. The Hadamard product

(i.e., component-wise multiplication) is denoted by the op-

erator •. If a scalar valued function receives a vector as

its argument, this means component-wise application of that

function. For example, M(z) = [M(z1), ...,M(zn)]
T , and

(z)−1 = [z−1

1
, ..., z−1

n ]T . The Dirac delta distribution is rep-

resented by δ(·). Unless otherwise specified ‖ · ‖ corresponds

to the Euclidian (l2) norm.

1A K-sparse vector has at most K nonzero components
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Fig. 1: An example of digitalizing a signal with SR ADC, with λ = 0.5. All the values inside interval [−λ, λ] are kept

undistorted, while the values outside this range are folded back to the interval [−λ, λ].

II. SELF RESET ANALOG TO DIGITAL CONVERSION OF CS

MEASUREMENTS CORRUPTED WITH AWGN

Next, we formulate the mathematical model for the un-

known signal and the measurement process.

A. Signal Model

We assume that the components {xi}Ni=1
of the unknown

sparse vector x are i.i.d. realizations of the Bernoulli-Gaussian

mixture distribution, i.e.,

pxi(x) = (1− ǫ)δ(x) + ǫ n(x; 0, σ2), (2)

where ǫ represents the probability of nonzero value. Conse-

quently, 1− ǫ is the sparsity of the signal.

B. Measurement Model

Each measurement yi is a folded version of the correspond-

ing component i of the received signal y∗, i.e.,

yi = Mλ(y
∗
i ), (3)

where Mλ(·) represents the nonlinear mapping of the SR

ADC converter given in (1). We note that the involved SR

ADC has infinite precision in the interval [−λ, λ]. Alterna-

tively, respecting (1) we can write

y∗ = y + ǫg, (4)

where the entries of vector ǫg are samples so-called simple

function. These samples belong to a set of discrete points

2λZ. Furthermore, y∗ is equal to the sum of the vector of

CS measurements z and a noise vector w, i.e.,

y∗ = z+w = Ax+w, (5)

where w is i.i.d. zero-mean AWGN noise vector with the

covariance matrix σ2

w I, i.e., w ∼ N (0, σ2

w I), and A ∈ R
n×N

is the Gaussian measurement matrix, that defines the sampling

rate (indeterminacy) ρ = n/N . Finally, we can compactly

write

y = Mλ

(

Ax+w
)

. (6)

Our goal is to estimate x from y. To solve this problem

we employ the GAMP algorithm that we present in the next

section.

III. THE GENERALIZED APPROXIMATE MESSAGE PASSING

ALGORITHM OR SELF-RESET ADC

A. The GAMP Algorithm

The equations (7-11) define the steps of the GAMP algo-

rithms [9].

1) Initialization: At t = 0, respecting the prior in (2), the

GAMP algorithm is intialized according to

x̂0 = E{x} = 0, v0

x
= var{x} = ǫ σ2, ŝ0 = y. (7)

2) Iteration: At every subsequent iteration t = 1, 2, ..., tmax

it performs the measurement updates before the es-

timation updates, where both updates have a linear

step followed by a nonlinear step. Those updates are

calculated according to:

a) Measurement update linear step:

vt
p = (A •A)vt−1

x , (8a)

p̂t = Ax̂t−1 − vt
p • ŝ

t−1. (8b)

b) Measurement update nonlinear step:

ŝt = F1(y, p̂
t,vt

p), (9a)

vt
s = F2(y, p̂

t,vt
p). (9b)

c) Estimation update linear step:

vt
r =

(

(A •A)Tvt
s

)−1

, (10a)

r̂t = x̂t−1 + vt
r • (A

T ŝt). (10b)

d) Estimation update nonlinear step:

x̂t = G1(r̂
t,vt

r, px), (11a)

vt
x = G2(r̂

t,vt
r, px). (11b)

The nonlinear functions in (9) and (11) are applied

component-wise and are given by

F1(y, p̂, vp)=
E{z|y} − p̂

vp
, G1(r̂, vr, px) =E{x|̂r},

F2(y, p̂, vp)=
vp − var{z|y}

v2p
, G2(r̂, vr, px) = var{x|̂r},

(12)

where
fz|y ∝ fy|z fz = fy|z n(·; p̂, vp),

fx|̂r ∝ fr̂|x fx = n(·; r̂, vr) fx.
(13)
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Fig. 2: The signal processing chain. The unknown K-sparse vector x ∈ R
N is multiplied with measurement matrix An×N to

obtain a vector of CS measurements z ∈ R
n. The components of z are transmitted through an AWGN channel. At the receiver,

the samples of the received signal y∗ are digitalized with a SR ADC to obtain the vector of measurements y. The GAMP

algorithm is applied to produce an estimate x̂ of the unknown sparse signal x.

E{z | y = y} E{z2 | y = y} fy(y)

SR ADC
1

fy(y)

∞
∑

k=−∞

(y+2kλ)n(y+2kλ;µz , σ
2

z )
1

fy(y)

∞
∑

k=−∞

(y+2kλ)2 n(y+2kλ;µz , σ
2

z)
∞
∑

k=−∞

n(y + 2kλ;µz , σ
2

z)

AWGN

(

y

σ2
w

+
µz

σ2
z

)

σ2

wz

σ2
wσ2

z

σ2
w + σ2

z

+ E{z | y = y}2
∑

k

n(0; y+2kλ−µz , σ
2

z + σ2

w)

TABLE I: Scalar mean, power, and probability density function for the GAMP nonlinear measurement updates.

3) Stopping criterion: We define two criteria for the de-

termining the convergence of the algorithm. We stops

iterating if ‖x̂t − x̂t−1‖2 < ε ‖x̂t‖2 with a small ε > 0
(e.g., ε = 10−2) or when t ≥ tmax, where tmax is

predefined maximum number of iterations (typically in

the order of N or less).

To get more accurate estimate, we use the vector version of

the algorithm. Therefore we do not average over the entries

of vt
s and vt

x, given in (9) and (11), respectively.

B. Nonlinear Steps in the Updates

Given the fact that z ∼ N (µz , σ
2

z)
2 and considering the

measurement model given by (6), we can calculate the closed

form expressions for the scalar measurement updates in (12).

These terms are computed according to Table 1.

The expressions for the nonlinear functions G1(·) and G2(·)
are identical to those in [13].

IV. NUMERICAL RESULTS

To investigate the performance of the proposed reconstruc-

tion algorithm we perform Monte-Carlo (MC) simulations,

with the associated parameters described in the following

subsection.

A. Simulation Setup

The measurement ratio ρ and the probability of nonzero

value ǫ take values in the range [0.1, 1] and [0.0156, 0.25],
respectively. For a specific pair {ρ, ǫ}, we average results

over 4000 independent realizations of sets indices of nonzero

components, the values of the nonzero components, the Gaus-

sian sensing matrix A, and the AWGN w. The nonzero

2Here we use µz and σ2
z , instead of p̂ and vp, respectively

components of the source vector x as well as the entries of the

measurement matrix are drawn randomly from a zero-mean

Gaussian distribution with power σ2 = 1 and σ2 = 1/n,

respectively. In each simulation we fix N = 256, and acquire

n = ρN measurements of the K = ǫN sparse vector. Each

CS measurement vector is corrupted with AWGN noise with

power σ2

w = 10−SNR/10, where the SNR is defined as

SNR/dB = 10 log
10
{‖y∗‖2/‖w‖2}. (14)

In the noiseless case, we simply set SNR = ∞. The SR ADC

threshold λ is fixed to 1.

The stopping threshold for the algorithms is ε = 10−3,

where as the maximal number of iterations of the proposed

algorithm is set to tmax = N/2 = 128.

To get an insight at recovery potential of the GAMP

algorithm, we calculate mean squared error (MSE) for each

independent realization of x, which is defined as

MSE/dB = 10 log
10
‖x− x̂‖2

2
. (15)

In the noiseless case, we calculate the success rate as the aver-

age number of successful recoveries. A recovery is considered

successful if the resulting MSE is ≤ −30dB. We chose this

measure of quality of the reconstruction since in the noiseless

case, the algorithm either recovers the unknown signal almost

perfectly (with very small MSE ≤ - 40dB), or fails completely.

In the noisy case, MSE is used as a figure of merit.

B. Results

Noiseless Case: In Fig. 3, we show the success rate of

the GAMP algorithm (Fig. 3a) and the average norm of the

simple function ‖ǫg‖0 (Fig. 3b), both as a function of the

measurement ratio ρ and the nonzero probability ǫ. The norm
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Fig. 3: Average success rate of GAMP reconstruction algorithm on the left, and average norm of the simple function ‖ǫg‖0 on

the right as a function of the nonzero probability ǫ and the measurement ratio ρ. The CS measurements are digitalized with a

SR ADC with λ = 1. We consider a reconstruction to be successful if the corresponding reconstruction MSE is ≤ −30dB.
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Fig. 4: Average MSE in dB of GAMP reconstruction algorithm on the left, and average norm of the simple function ‖ǫg‖0
on the right as a function of the nonzero probability ǫ and the measurement ratio ρ. The CS measurements are corrupted with

AWGN noise before being digitalized with a SR ADC with λ = 1. The SNR is set to 20dB.

of the simple function provides a measure of how corrupted the

measurements are due to SR ADC. In Fig. 3a, we see a clear

phase transition between unsuccessful (black) and successful

(white) regions. While classical CS algorithms completely fail

when ‖ǫg‖0 6= 0, we observe that GAMP is able to cope with

folded measurements, and the phase transition is almost linear

in ǫ.
Noisy Case: In Fig. 4, we show the MSE of the GAMP al-

gorithm (Fig. 4a) and the average norm of the simple function

‖ǫg‖0 (Fig. 4b), both as a function of the measurement ratio

ρ and the nonzero probability ǫ. In Fig. 4a we observe that,

compared to the noiseless case, the phase transition curve is

shifted the right lower corner. This is to be expected, since

the measurements are corrupted with AWGN (SNR = 20dB)

before digitalization, and more measurements are needed for

accurate reconstruction.

Comments: It should be noted that if λ → 0 the mea-

surements become less and less informative, and in the limit

they carry no information. However, taking too large λ, in

practical scenarios with finite bit-budget per sample leads

to coarse quantization. Hence, one needs to make a good

trade-off between large dynamic range and fine quantization

resolution. Therefore, it is an interesting research problem

to investigate the effects of folding combined with finite bit

budget quantization of the measurements on the CS phase

transition curves.
V. CONCLUSIONS

In this paper we investigated the potential of applying

the GAMP algorithm for recovery of sparse signal from

CS measurements digitalized with a SR ADC. Our results

show that for certain choice of the signal parameters, the

GAMP algorithm is able to successfully recover a sparse signal

from folded measurements. Moreover, unlike the previously

proposed algorithm for recovery of sparse signals from folded

measurements, the GAMP algorithm can cope with the noise

introduced by a communication channel.
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