
UC San Diego
UC San Diego Previously Published Works

Title
PATCH-AWARE AVERAGING FILTER FOR SCALING IN POINT CLOUD COMPRESSION

Permalink
https://escholarship.org/uc/item/7ds0s5h1

Authors
Cao, Keming
Xu, Yi
Cosman, Pamela C

Publication Date
2018-11-29

DOI
10.1109/globalsip.2018.8646392

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7ds0s5h1
https://escholarship.org
http://www.cdlib.org/

PATCH-AWARE AVERAGING FILTER FOR SCALING IN POINT CLOUD COMPRESSION

Keming Cao? Yi Xu† Pamela C. Cosman?

? Department of Electrical and Computer Engineering † Owlii Inc.
UC San Diego, La Jolla, CA 92093-0407 Beijing, China

ABSTRACT

With the development of augmented reality, the delivery
and storage of 3D content have become an important research
area. Among the proposals for point cloud compression col-
lected by MPEG, Apple’s Test Model Category 2 (TMC2)
achieves the highest quality for 3D sequences under a bi-
trate constraint. However, the TMC2 framework is not spa-
tially scalable. In this paper, we add interpolation compo-
nents which make TMC2 suitable for flexible resolution. We
apply a patch-aware averaging filter to eliminate most out-
liers which result from the interpolation. Experimental results
show that our method performs well both on objective evalu-
ation and visual quality.

Index Terms— Interpolation, Point Cloud Compres-
sion, Outlier Elimination, Patch-aware Averaging Filter,
Augmented Reality

1. INTRODUCTION

Virtual reality (VR) and augmented reality (AR) are impor-
tant future directions of interaction with content and the real
world, due to the better experience they could provide com-
pared to traditional 2D media content. The development of
depth sensors, such as Kinect from Microsoft and RealSense
from Intel, leads to an increase of 3D data processing appli-
cations. This in turn makes the storage for huge amounts of
3D data a problem.

There are two main representations for 3D data, mesh and
point cloud. For point cloud compression, since the points
are not connected as they are in a mesh, the spatial organi-
zation of points should be built so as to encode the points
efficiently. Octree is applied in [1, 2] to progressively com-
press point clouds, which makes a partition of three dimen-
sional space by dividing it into octants recursively like a tree
structure with eight children nodes for each parent node. Hi-
erarchical clustering of points can generate Level Of Detail
which is progressively compressed in [3]. MPEG hosted a
call for proposals [4] and picked out three methods as winners
for three different categories: static model, dynamic sequence
and dynamic acquisition. TMC2 from Apple Inc. [5] achieves
the best subjective and objective quality under given target bi-
trates for the dynamic sequence category. Its core idea is to

project points, both their geometry coordinates and attributes,
to 2D and convert the 3D sequence to a 2D sequence. Then
any present video codec, such as ffmpeg and HM (Test Model
for HEVC) could be utilized to compress the 2D sequence.
In their framework, after the resolution of the 2D sequence is
fixed as an initial parameter, any scale-up or scale-down of the
2D sequence will create outlier points when projected back to
3D space. However, there is no prior work dedicated to re-
moving those outlier points for point cloud compression. In
this paper, we add interpolation modules which makes TMC2
suitable for flexible resolution. A patch-aware averaging filter
is proposed to eliminate the outlier points which result from
scaling-down and scaling-up. Experimental results show that
our method performs well both on objective evaluation and
visual quality.

This paper is structured as follows. Sec. 2 briefly de-
scribes the framework of TMC2 and Sec. 3 introduces the
details of our proposal. Sec. 4 shows experimental results and
conclusions.

2. RELATED WORK

The framework of TMC2 is shown in Fig. 1. Here, the color
information assigned for each point, called texture informa-
tion, represents an attribute of a point. Any other kind of
attribute, such as reflectance, could be processed in the same
way. The framework of the encoder is divided into three parts:
segmentation, packing and compression.

2.1. Segmentation

Given an input frame of a point cloud, before segmenting the
points, TMC2 generates the normal direction for each point
based on the underlying surface. Then, according to normal
direction clusters, segmentation is applied to divide the point
cloud into patches. The total number of patches is constrained
within 256. Fig. 2 from [5] shows an example.

For each patch pi, i ∈ {1, 2, ..., N} where N is the num-
ber of patches, one of 6 main directions (±x direction, ±y
direction and ±z direction) is assigned as the principal direc-
tion based on the main clustered normal direction.

390978-1-7281-1295-4/18/$31.00 ©2018 IEEE GlobalSIP 2018

Fig. 1. Compression framework

Fig. 2. (a) Original point cloud. (b) Segmentation result with
different colors representing different patches (c) Examples
for texture image, geometry image and occupancy map

2.2. Packing

After segmentation, projection is performed to convert each
3D patch into a 2D patch. For each point v in the 3D patch pi,
the coordinate of v is projected onto the 2D patch pgeometry

i

while the color information is projected onto ptexturei . The
projection direction is determined by the principal direction
of this 3D patch. The same location of a pixel in pgeometry

i

and ptexturei denotes one same 3D point. Then packing fits all
2D texture patches into an image Itexture, and all geometry
patches into an image Igeometry with the same pre-fixed size
lx by ly . Packing images from all 3D frames will form two 2D
video sequences, one for geometry and the other for texture.
Geometry and texture sequences are in YUV format but only
the Y channel is occupied for the geometry sequence because
for 3D point (x, y, z), z is stored in Y channel at pixel position
(x, y).

Apart from geometry and texture, occupancy maps are
also generated for each frame where 0 denotes not occupied
and 1 denotes occupied. Occupancy maps are losslessly com-
pressed with arithmetic coding. Fig. 2 (c) shows image exam-
ples for texture, geometry and occupancy map.

2.3. Compression and Decompression

Geometry and texture sequences could be encoded with any
2D video codec, such as ffmpeg or HM. Combining all in-
formation together, we get the final compressed bit stream.
The decoder shown in Fig. 1 is a reversed encoder. First, the
bit stream is separated into the geometry, texture, occupancy
map and patch information. Then, we decode the geometry
and texture bit streams, and project 2D patches back to 3D
according to patch information and occupancy maps.

3. PROPOSED METHOD

In the original TMC2 framework, the image size, lx and ly , is
fixed all through the compression, which could lead to less
flexibility when compressing the dynamic sequence, espe-
cially when a target bitrate constraint exists. Although the
geometry and texture sequences could be scaled down at point
A in Fig. 1 at the encoder and be scaled up at point B at the
decoder, interpolation for scaling tends to bring in noise at
the edges of patches, especially for the geometry sequence.
An example of noise in the geometry image after scaling is
shown in Fig. 3. The video content of the geometry sequence
is not like normal 2D videos, which have strong spatial cor-
relation, because the geometry images are packed from dif-
ferent patches with different depths. It is also different from
the content of the texture sequence because the noise of the
color information is not that obvious compared to geometry
noise. Geometry noise will easily turn out to be a large outlier
when back-projected to 3D space. So our proposed method is
targeted to process the geometry image so as to reduce the
outliers.

Fig. 3. Scaling noise is the middle strip in the right image

We add scaling modules at the encoder and decoder to im-
prove flexibility for compression, however, we must perform

391

further processing to remove noise caused by scaling. Pixels
in 2D geometry patch pgeometry

i are divided into three sets.
Set Si

n1 has pixels of chessboard distance 1 to pixels outside
the patch, set Si

n2 has pixels of chessboard distance 2 to pix-
els outside patch and the remaining pixels of the patch, which
are the interior pixels, are in set Si

b. Pixel values in set Si
n1

are modified by a patch-aware averaging filter:

I ′up(x, y) =


1

M

∑
m∈Q

Iup(xm, ym), Q 6= ∅

Iup(x, y), Q = ∅
(1)

where Q is the set of points that belong to set Si
n2 and have

chessboard distance 1 to (x, y) and M is the size of Q. The
left image in Fig. 4 shows examples. The filtered value for
pixel A should be the average of pixels 1, 2, 3 and 4, for pixel
B it should be pixel 5, and it is the average of pixels 6, 7, 8
for pixel C.

Here an averaging filter is chosen for simplicity. Other
simple filters could also be applied, such as a median filter or
weighted filter. Different filters are evaluated in Sec. 4.

Fig. 4. Example for patch-aware averaging filter and pro-
posed modules

Our modules added to the TMC2 framework are shown as
’a’ in Fig. 4 to be inserted at point A in Fig. 1 and ’b’ in Fig. 4
to be placed at point B in Fig. 1. Here, the down-scale module
is a normal scaling component for any interpolation method,
Idown = Scale(I, 1/r,method), where I is the input image,
r ≥ 1 is the scale factor and Idown is the down-scaled image
I . The up-scale module is a normal scaling component for
any interpolation method, Iup = Scale(Idown, r,method),
and the size of Iup is equal to that of I . Two interpolation
methods are evaluated in Sec. 4.

4. EXPERIMENT

4.1. Dataset

We choose four 3D dynamic sequences from Owlii Inc. as
our dataset: basketball, dancer, model and exercise. Each
sequence has 300 frames with around 2.5 million points per
frame with range 1024 for x, y and z directions.

4.2. Evaluation Metric

For 2D evaluation, we choose the PSNR of the occupied
pixels denoted in the occupancy map as our evaluation met-
ric. However, MSE is chosen for 3D because it is hard
to define a fixed maximum possible value for different 3D
sequences. Given input reference point cloud A and pro-
cessed point cloud B, first, we determine an error vector
eAB(i, j) from point pi in A to the closest point pj in B.
Then we compute the MSEAB as 1

NA

∑
pi∈A |eAB(i, j)|2

where NA is the number of points in A. The error vector
from B to A, eBA(j, i), is generated in a similar way which
leads to MSEBA as 1

NB

∑
pj∈B |eBA(j, i)|2 and NB is the

total number of points in B. The final MSEfinal is set to
MSEfinal = max(MSEAB ,MSEBA).

4.3. Evaluation

For each test sequence, we randomly pick three frames to
evaluate with both the 2D metric and 3D metric. Six scale
factors, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, are chosen with four
different choices for interpolation:

NN2NN: Nearest neighbor scaling at the encoder and de-
coder.

NN2B: Nearest neighbor scaling at the encoder and bicu-
bic scaling at the decoder.

B2NN: Bicubic scaling at the encoder and nearest neigh-
bor scaling at the decoder.

B2B: Bicubic scaling at the encoder and decoder.
First, patch-aware averaging filter is evaluated. For 2D

PSNR, we have PSNR1 = PSNR(I, Iup) and PSNR2 =
PSNR(I, I ′up). I is the original image, Iup is the image after
scaling down and scaling up and I ′up is Iup processed with
the patch-aware averaging filter. Table 1 shows ∆PSNR =
PSNR2 − PSNR1 with different interpolation choices. We
see that almost for every scale factor and every sequence,
the patch-aware averaging filter produces a quality improve-
ment. For 3D MSE, we evaluate the method in a similar way.
MSE1 is computed between the input point cloud and out-
put point cloud from compression and de-compression with-
out the patch-aware averaging filter. MSE2 uses the output
point cloud after the patch-aware averaging filter. Five quan-
tization parameters (QP) are chosen: 0, 10, 20, 30 and 40.
The scale factors are the same as for the PSNR evaluation.
Then ∆MSE = MSE2 − MSE1. In Fig. 5, ∆MSE vs. QP
curves are plotted for different interpolation choices and dif-
ferent r. Only plots for sequence dancer are shown to save
space. Almost all curves are below the x axis which means
the patch-aware averaging filter produces a lower MSE.

Three filter types, patch-aware averaging filter (A), patch-
aware median filter (M) and patch-aware weighted filters (W)
of 3 × 3 Gaussian kernel, with two interpolation choices
NN2NN and NN2B are compared. A−M is the difference of
MSE between A and M and other notations use similar defi-

392

Fig. 5. ∆MSE vs. QP for different scale factors of sequence dancer

Fig. 6. ∆MSE vs. QP for different scale factors of sequence dancer for filter comparisons

nitions. The curves for different QPs and r are shown in Fig.
6 for dancer. In the plots, all three filter types have similar
performance because the ∆MSE are all within 0.01 and the
averaging filter is slightly better than the other two especially
for QP ≥ 20. When QP ≤ 20 and r ≤ 2.0 for NN2B, the
yellow curves are above x axis which means median filtering
is a little better than averaging filtering.

Table 1. ∆PSNR
Factors 1.25 1.5 1.75 2.0 2.25 2.5

NN2NN:
dancer 5.463 5.235 7.230 -0.008 7.334 7.183

basketball 4.659 6.800 7.802 0.012 7.415 8.166
model 5.299 5.600 7.017 -0.131 6.455 7.610

exercise 6.419 6.389 7.838 -0.198 8.119 8.149
NN2B:
dancer 7.991 8.200 7.587 4.194 5.474 4.576

basketball 8.417 9.006 8.281 4.928 5.819 4.663
model 8.225 8.238 7.293 4.497 5.109 4.663

exercise 9.684 9.256 8.287 5.304 5.721 5.000
B2NN:
dancer 6.817 6.161 6.690 0.042 5.253 4.693

basketball 7.482 7.534 7.625 0.070 5.137 4.732
model 6.485 6.403 6.893 -0.094 4.388 4.932

exercise 7.343 7.191 8.021 -0.065 5.600 5.306
B2B:

dancer 6.924 7.647 7.506 7.366 5.720 4.704
basketball 7.572 8.403 8.080 8.363 6.135 4.912

model 6.687 7.449 7.161 7.301 5.402 4.755
exercise 7.581 8.455 8.194 8.485 5.801 5.245

To choose which interpolation can generate the best qual-
ity, following evaluation method is applied. For each se-
quence and interpolation method, mseQP,1 is first subtracted
from the MSE value mseQP,r corresponding to different
scale factors for the same QP. The resulting values are nor-
malized to [0, 1] across all interpolation methods. Lining up
normalized values for all QPs and all factors, we calculate the
mean value for four interpolation choices shown in Table 2.

Table 2. MEANMSE
Interpolation NN2NN NN2B B2NN B2B

dancer 0.170 0.343 0.736 0.593
basketball 0.260 0.390 0.747 0.516

model 0.266 0.321 0.751 0.484
exercise 0.227 0.474 0.742 0.564

A lower mean value denotes better MSE. We notice that the
mean value for NN2NN is the lowest among the four choices
for every sequence, so NN2NN is the best combination among
the four interpolation choices.

For visual quality, Fig. 7 shows examples without and
with the patch-aware averaging filter. Our filter eliminates
the outliers and greatly improves visual quality.

Fig. 7. The left two images are without filtering and the right
two are with filtering.

Conclusion: In this paper, we add scaling modules to the
original TMC2 framework to improve compression flexibil-
ity. A patch-aware averaging filter is proposed to remove
most outlier points caused by scaling. The averaging filter
generates slightly lower MSE than the median filter and a
weighted filter. The experimental results on 2D PSNR and
3D MSE show that our method performs well both on objec-
tive evaluation and on subjective visual quality. Among the
four different interpolation choices, NN2NN achieves the best
performance in terms of MSE.
Acknowledgment: This research was supported in part by
NSF grant SCH-1522125 and by Owlii Inc.

393

5. REFERENCES

[1] R. Schnabel and R. Klein, “Octree-based point-cloud
compression.,” Spbg, vol. 6, pp. 111–120, 2006.

[2] J. Kammerl, N. Blodow, R. Bogdan Rusu, S. Gedikli,
M. Beetz, and E. Steinbach, “Real-time compression
of point cloud streams,” in Robotics and Automation
(ICRA), 2012 IEEE International Conference on. IEEE,
2012, pp. 778–785.

[3] Y. Fan, Y. Huang, and J. Peng, “Point cloud compres-
sion based on hierarchical point clustering,” in Signal and
Information Processing Association Annual Summit and
Conference (APSIPA), 2013 Asia-Pacific. IEEE, 2013, pp.
1–7.

[4] “Call for proposals for point cloud compression v2,”
ISO/IEC JTC1/SC29/WG11, Hobart, Australia, April,
2017.

[5] K. Mammou, A. M. Tourapis, D. Singer, and Y. Su,
“Video-based and hierarchical approaches point cloud
compression,” ISO/IEC JTC1/SC29/WG11, Macau,
China, October, 2017.

394

