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ABSTRACT
This paper focuses on the problem of communication ef-
ficient distributed zeroth order minimization of a sum of
strongly convex loss functions. Specifically, we develop
distributed stochastic optimization methods for zeroth order
strongly convex optimization that are based on an adaptive
probabilistic sparsifying communications protocol. Under
standard assumptions on the cost functions and the noises
corrupting the function evaluations, we establish with the pro-
posed methodO(1/(Ccomm)2/3−ζ) mean square error (MSE)
convergence rates, for the zeroth order optimization, where
Ccomm is the number of per-node communications and ζ > 0
is arbitrarily small. In the distributed setting considered, the
established rate is the best known rate in terms of the MSE-
communication cost trade off for zeroth order optimization.
Finally, through empirical evaluations we illustrate the pro-
posed algorithm’s theoretical guarantees.

Index Terms— Distributed Optimization, Stochastic Op-
timization, Zeroth Order Optimization, Multi-agent Net-
works.

1. INTRODUCTION
We study zeroth order distributed strongly convex stochas-
tic optimization over networks. There are N interconnected
agents, that aim to collaboratively minimize the sum of their
locally known strongly convex costs. Distributed stochastic
optimization has had increasing interest of late, e.g., [1–4].
These references consider algorithms which have access to a
stochastic first order or a second order oracle. However, in
this paper, we focus on zeroth order distributed stochastic op-
timization methods, where at each time instant (iteration) k,
each node queries a stochastic zeroth order oracle (SZO) to
get unbiased estimates of function values at a queried point.
Such kind of scenarios arise in typical black box settings,
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where only the evaluations of a loss function are known or
can be queried for and there is no access to first order gradi-
ent or second order Hessian information that can be retrieved.
Our focus is on examining the tradeoffs between perfor-
mance and communication cost, measured by the number of
per-node transmissions to neighboring nodes in the network;
and computational cost, measured by the number of per-node
queries made to the SZO.
Contributions. Our main contributions are as follows. We
develop a novel method for communication efficient ze-
roth order distributed stochastic optimization. The method
is based on a communication protocol which probabilisti-
cally sparsifies the message exchanges in the network along
iterations. More precisely, each node, at each iteration k, par-
ticipates in communication (transmits and receives messages
in its neighborhood) with probability pk (independently from
the past and from the others), where the parameter pk decays
to zero at a carefully tuned rate. For the proposed method, we
establish the O(1/(Ccomm)2/3−ζ) mean square error (MSE)
convergence rate in terms of communication cost1 Ccomm,
where ζ > 0 is arbitrarily small. At the same time, the
method achieves the order-optimal O(1/(Ccomp)1/2) MSE
rate in terms of computational cost2 Ccomp, that is not
improvable even in the centralized setting. The achieved
O(1/(Ccomm)2/3−ζ) MSE-communication rate is signifi-
cantly faster than existing zeroth order optimization schemes
in the distributed setting (see, for example [5–8]), that achieve
at best the O(1/(Ccomm)1/2) rate.
Related Work.In the context of distributed stochastic strongly
convex optimization, first order schemes with static net-
works ( [2, 9]), deterministic time-varying networks [1, 3, 4]
and random time-varying networks albeit with access to ex-
act first order information [10, 11] have been considered.
The aforementioned works explicitly characterize the conver-
gence rates in terms of the iteration counter k, that translates

1The communication cost is measured in terms of per-node number of
transmissions.

2The computation cost is measured in terms of per-node number of
queries made to the SZO.



into computational cost Ccomp, i.e., number of gradient eval-
uations under suitable assumptions. More relevant to the
current context, references [1, 3, 4] consider deterministically
varying networks, assuming that the “union graph” over finite
windows of iterations is connected. In contrast, we consider
randomly time-varying networks connected only in mean
with access to a SZO for our distributed zeroth order opti-
mization scheme. In the context of distributed zeroth order
optimization, [12] considers an algorithm for non-convex
minimization over a static graph, where a random directions-
random smoothing approach was employed. Reference [8]
considers a zeroth order distributed stochastic approximation
method and establishes the method’s O(1/k1/2) convergence
rate in terms of the number of iterations, where the number of
queries to the SZO at each iteration scales with the dimen-
sion of the optimizer. In contrast, the scheme proposed here
utilizes only two calls of the SZO per node, per iteration, in-
dependently from the variable dimension d. However, all the
aforementioned work in the distributed setup is aimed at at-
taining the optimal rate in terms of the iterations or explicitly
in terms of the number of queries made to the stochastic ora-
cle in question. In the context of distributed setups with ran-
dom networks and access to stochastic oracles references [8]
and [13] achieve order-optimal rates for zeroth and first order
distributed strongly convex optimization respectively.3 In
the context of communication efficient distributed inference
and optimization, adaptive communication protocols for first
order schemes without explicit characterization of communi-
cation cost savings (see, for example [14–16]) and constant
proportion of communication savings at the cost of deviat-
ing from the order-optimal rate (see, for example [17]) have
been considered. In contrast to [14–16], we consider a com-
munication efficient distributed zeroth optimization scheme,
where we explicitly characterize the communication savings
while ensuring order-optimal convergence rates as compared
to [17]. In prior work [18, 19], we developed distributed
algorithms with increasingly sparse communications for sta-
tistical estimation problems. This paper demonstrates that the
concept of increasingly sparse communications can be ex-
ploited to develop communication-efficient distributed zeroth
order stochastic optimization algorithms also. Technically,
the setups in [18, 19] and the setup here are very different,
requiring new analyses. Communication efficient distributed
estimation schemes as proposed in [18, 19] involve local cor-
rectness, i.e., the optimizers of the sum of loss functions of
the individual nodes is a subset of the optimizers of each lo-
cal function, while in the current work, the setup is rendered
locally incorrect. We skip the proofs due to space limitations.
The proofs can be found in [20].

2. MODEL AND PROPOSED ALGORITHM
Our setup involves a network of N agents which collaborate
through an iterative message passing scheme so as to solve

3Reference [8] utilizes a non-diminishing amount of communications
across iterations, and hence achieves at best and O(1/(Ccomm)1/2) com-
munication rates.

the following unconstrained problem:

min
x∈Rd

N∑
i=1

fi(x), (1)

where fi : Rd 7→ R is a convex function available to node
i, i = 1, ..., N . We make the following assumption on the
functions fi(·):

Assumption A1. For all i = 1, ..., N , function fi : Rd 7→ R
is twice continuously differentiable with Lipschitz continuous
gradients. In particular, there exist constants L, µ > 0 such
that for all x ∈ Rd, ∀i = 1, 2, · · · , N

µ I � ∇2fi(x) � LI.

From Assumption A1 we have that each fi, i = 1, · · · , N ,
is strongly convex with modulus µ. Using standard properties
of convex functions, we have for any x,y ∈ Rd:

fi(y) ≥ fi(x) +∇fi(x)> (y − x) +
µ

2
‖x− y‖2,

‖∇fi(x)−∇fi(y)‖ ≤ L ‖x− y‖.

The optimization problem in (1) has a unique solution, which
we denote by x∗ ∈ Rd, where the uniqueness is guaranteed by
assumption A1. Throughout the paper, we also use f : Rd →
R, f(x) =

∑N
i=1 fi(x). We employ a distributed zeroth order

optimization scheme to solve (1).

2.1. Zeroth Order Optimization
We employ a distributed random directions stochastic approx-
imation (RDSA) type method to solve (1). Each node i, i =
1, ..., N , in our setup maintains a local copy of its local esti-
mate of the optimizer xi(k) ∈ Rd at all times. In the absence
of first order information, each agent i queries the SZO at
time k, to obtain noisy function values of fi(xi(k)). An un-
biased estimate of fi(·) is obtained from the SZO which is
then given by,

f̂i(xi(k)) = fi(xi(k)) + vi(k), (2)

where vi(k) is the measurement noise. In order to ap-
proximate the gradient, each agent makes queries to the
SZO twice at each iteration. For instance, agent i queries
for fi(xi(k) + ckzi,k) and fi(xi(k)) at time k and obtains
f̂i(xi(k) + ckzi,k) and f̂i(xi(k)) respectively, where ck is a
carefully chosen time-decaying factor (to be specified soon)
and zi,k is a random vector such that E

[
zi,kz

>
i,k

]
= Id. Let

Fk denote the history of the proposed algorithm up to time k
which is given by the σ-algebra generated by the collection
of random variables {L(s)4, vi(s), zi,s}, i = 1, ..., N , s =
0, ..., k − 1. Denote by ĝi(xi(k)) the approximated gradient.
By mean value theorem, we then have:

ĝi(xi(k)) =
f̂i (xi(k) + ckzi,k)− f̂i (xi(k))

ck
zi,k

⇒ E [ĝi(xi(k))|Fk] = E
[
zi,kz

>
i,k∇fi (xi(k)) |Fk

]
+ ck E

[(
z>i,k∇2fi (ek) zi,k

) zi,k
2
|Fk
]

︸ ︷︷ ︸
bi (xi(k))

, (3)

4To be specified soon



where ek = θxi(k) + (1− θ) (xi(k) + ckzi,k) and θ ∈ [0, 1].
Thus, we can write,

ĝi(xi(k)) = ∇fi (xi(k)) +
v̂i(k)zi,k

ck

+ E [ĝi(xi(k))|Fk]−∇fi (xi(k))︸ ︷︷ ︸
ckb(xi(k))

, (4)

where v̂i(k) = (f̂i(xi(k) + ckzi,k) − fi(xi(k) + ckzi,k)) −
(f̂i(xi(k))− fi(xi(k))).

Assumption A2. The zi,k’s are drawn from a distribution P

such that D(P )
.
=
√

E
[
‖zi,k‖6

]
is finite.

We provide two examples of two such distributions. If zi,k’s
are drawn fromN (0, Id), then

√
E
[
‖zi,k‖6

]
=
√
d(d+ 2)(d+ 4).

If zi,k’s are drawn uniformly from the l2-ball of radius
√
d,

then we have, ‖zi,k‖ =
√
d and

√
E
[
‖zi,k‖6

]
= d3/2.

2.1.1. Communication Scheme
Let the backbone graph over which we design the increasingly
sparsified communication protocol be given by G = (V,E),
which is an undirected graph with N vertices, i.e. |V | = N
and E represents the edges. For each node i, at every time k,
we introduce a binary random variable ψi,k, where

ψi,k =

{
ρk with probability ζk
0 else,

(5)

where ψi,k’s are independent both across time and the nodes,
i.e., across k and i respectively which abstracts out the partici-
pation of the node i at time k in the neighborhood information
exchange. We specifically take ρk and ζk of the form

ρk =
ρ0

(k + 1)ε/2
, ζt =

ζ0
(k + 1)(τ/2−ε/2)

, (6)

where 0 < ε < τ and 0 < τ ≤ 1. Furthermore, define βk to
be

βk = (ρkζk)2 =
β0

(k + 1)τ
. (7)

The random time-varying Laplacian L(k) ∈ RN×N which
abstracts the inter-node information exchange can be repre-
sented as follows:

Li,j(k) =


−ψi,kψj,k {i, j} ∈ E, i 6= j

0 i 6= j, {i, j} /∈ E∑
l6=i ψi,kψl,k i = j.

(8)

The above protocol avoids directed graphs by enforcing the
requirement of both nodes being active to be able to commu-
nicate with each other. We have, for {i, j} ∈ E:

E [Li,j(k)] = −βk, E
[
L2
i,j(k)

]
=

ρ0β0

(k + 1)τ+ε
.

Define the mean of the random time-varying Laplacian se-
quence {L(k)} as L(k) = E [L(k)] and L̃(k) = L(k)−L(k),
where E

[
L̃(k)

]
= 0. We also have that, L(k) = βkL, where

Li,j =


−1 {i, j} ∈ E, i 6= j

0 i 6= j, {i, j} /∈ E
−
∑
l 6=i Li,l i = j.

(9)

We make the following assumption on L.

Assumption A3. The inter-agent communication graph is
connected on average, i.e., L is connected. In other words,
λ2(L) > 0, where λ2(L) is the second largest eigenvalue of
L.

Technically speaking, the communication graph need not be
connected at all times. Hence, at any given time, only a
few of the possible links could be active. The connected-
ness in average basically ensures that over time, the infor-
mation from each agent in the graph reaches other agents in
a balanced fashion, thus ensuring information flow. With
the communication protocol in place, we now state the op-
timizer update rule. For arbitrary deterministic initializations
xi(0) ∈ Rd, i = 1, ..., N , the optimizer update rule at node i
and k = 0, 1, ..., of the consensus+innovations form [21] and
is given as follows:

xi(k + 1) = xi(k)−
∑
j∈Ωi

ψi,kψj,k (xi(k)− xj(k))

− αkĝi(xi(k)), (10)

where ĝi(·) is as defined in (4) and Ωi represents the neigh-
borhood of agent i at time k. The weight sequences {αk},
{ck} and {βk} are given by αk = α0/(k + 1), ck = c0/(k +
1)δ and βk = β0/(k+1)τ respectively, where α0, c0, β0 > 0.
We state an assumption on the weight sequences and measure-
ment noises before proceeding further.

Assumption A4. The constants α0, δ > 0 and τ ∈ (0, 1) are
chosen such that,

∑∞
k=1

α2
k

c2
k
<∞.

Assumption A5. For each i = 1, ..., N , the sequence of mea-
surement noises {vi(k)} satisfies for all k = 0, 1, ...:

E[ vi(k) | Fk ] = 0, E[ vi(k)2 | Fk ] ≤ cf‖xi(k)‖2 + σ2, a.s.,

where cf and σ2 are nonnegative constants.

Communication Cost. Define the communication cost Ct to
be the expected per-node number of transmissions up to iter-
ation t, i.e.,

Ct = E

[
t−1∑
s=0

I{node C transmits at s}

]
, (11)

where IA represents the indicator of event A. Note that the
per-node communication cost in (11) is the same as the net-
work average of communication costs across all nodes, as the
activation probabilities are homogeneous across nodes.



3. CONVERGENCE RATES
In this section, we state the results concerning the conver-
gence rate of the proposed zeroth order optimization algo-
rithm.

Theorem 3.1. 1) Consider the optimizer estimate sequence
{x(k)} generated by the algorithm (10). Let assumptions A1-
A5 hold. Then, for each node i’s optimizer estimate xi(k) and
the solution x? of problem (1), ∀k ≥ k3 there holds:

E
[
‖xi(k)− x∗‖2

]
≤ 2Mk +

32NL2∆1,∞α
2
0

µ2λ2
2

(
L
)
c20β

2
0(k + 1)2−2τ−2δ

8L2D2(P )c20
µ2(k + 1)2δ

+
4∆1,∞α

2
0

λ2
2

(
L
)
β2

0c
2
0(k + 1)2−2τ−2δ

+
4Nα0

(
dcfq∞(N, d, α0, c0) + dNσ2

1

)
µc20(k + 1)1−2δ

, (12)

where, k3 = max{k0, k1, k2},
k0 = inf

{
k|µ

2
> (L− µ)

√
Ndck +

2cfαk

c2
k

}
,

k1 = inf
{
k|µ

2
>
√
N
2
d(P )Lck +

2dcfαk

c2
k

}
,

k2 = inf{k|βk
2
λ2

(
L
)
> 4|E|βkρk},

∆1,∞ = 6dcfq∞(N, d, α0, c0) + 6dNσ2
1 and q∞(N, d, α0, c0) =

E
[
‖x(k0)− xo‖2

]
+
√
Nd(P )Lα0c0

2δ
+
Nd2(P )L2α2

0c
2
0

4(1+2δ)
+4 ‖∇F (xo)‖2

µ2

+
dα2

0(2cfN‖xo‖2+Nσ2)
c20(1−2δ)

. Mk is a term which decays faster than
the rest of the terms.
2) In particular, the RHS of (12) decays as (k+ 1)−δ1 , where
δ1 = min {1− 2δ, 2− 2τ − 2δ, 2δ}. By, optimizing over τ
and δ, we obtain that for τ = 1/2 and δ = 1/4,

E
[
‖xi(k)− x∗‖2

]
= O

(
1

k
1
2

)
, ∀i.

3) The MSE-communication rate is given by,

E
[
‖xi(k)− x?‖2

]
= Θ

(
1

C2/3−ζ
k

)
.

Theorem 3.1 asserts that the MSE-communication rate can
be improved to Θ

(
C−2/3+ζ
k

)
while keeping the MSE decay

rate at O
(
k−

1
2

)
by the proposed zeroth order distributed al-

gorithm. The performance of the zeroth order optimization
scheme depends explicitly on the connectivity of the expected
Laplacian through a 1

λ2
2(L)

scaling. In particular, communica-

tion graphs which are well connected, i.e., have higher values
of λ2

(
L
)

will have lower MSE as compared to a counterpart
with lower values of λ2

(
L
)
. However, the network connec-

tivity quality, i.e., λ2
(
L
)
, does not affect the convergence rate

in k.

4. SIMULATIONS
In this section, we provide evaluations of the proposed al-
gorithm on the Abalone dataset [22]. To be specific, we
consider `2-regularized empirical risk minimization for the
Abalone dataset, where the regularization function is given by
Ψi(x) = 1

2‖x‖
2 and the loss function is the squared loss. We

consider a 10 node network. The Abalone dataset has 4177
data points out of which 577 data points are kept aside as the
test set and the other 3600 is divided equally among the 10
nodes resulting in each node having 360 data points. The vec-
tors zi,k’s are sampled from a normal distribution with unit
covariance. The measurement noises vi,k are sampled from
a standard normal distribution. For the proposed algorithm,
we compare it with a zeroth order scheme employing the
static Laplacian (Benchmark). The data points at each node
are sampled without replacement in a contiguous manner.
Figure 1 compares the test error for the schemes, where it can
be clearly observed that the test error is indistinguishable in
terms of the number of iterations or equivalently in terms of
the number of queries to the stochastic zeroth oracle. Figure
2 demonstrates the superiority of the proposed algorithm in
terms of the test error versus communication cost as com-
pared to the benchmark, as predicted by Theorem 3.1. For
example, at the same relative test error level of 0.3, the pro-
posed algorithm uses up to 3x less number of transmissions
as compared to the benchmark scheme.
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Fig. 1: Test Error vs Iterations
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5. CONCLUSION
We have developed a communication efficient distributed
stochastic zeroth order optimization method for smooth
strongly convex optimization, where by employing a random
directions stochastic approximation type consensus+innovations
algorithm. Through the analysis of the considered method,
we have established the order optimal O(k−1/2) MSE con-
vergence rate while improving the MSE-communication rate
to Θ

(
C−2/3+ζ
k

)
. In particular, we have also quantified the

mean square error of the generated optimizer estimate se-
quence in terms of the algorithm parameters. Future work
includes extending the current approach to a broader class of
convex and non-convex functions.
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