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ABSTRACT

The Search for Extra-terrestrial Intelligence (SETI) aims to
find technological signals of extra-solar origin. Radio fre-
quency SETI is characterized by large unlabeled datasets and
complex interference environment. The infinite possibilities
of potential signal types require generalizable signal process-
ing techniques with little human supervision. We present a
generative model of self-supervised deep learning that can
be used for anomaly detection and spatial filtering. We de-
velop and evaluate our approach on spectrograms containing
narrowband signals collected by Breakthrough Listen at the
Green Bank telescope. The proposed approach is not meant
to replace current narrowband searches but to demonstrate the
potential to generalize to other signal types.

Index Terms— Deep Learning, Generative Networks,
Anomaly Detection, SETI, Radio Frequency, Signal Detec-
tion

1. INTRODUCTION

1.1. Overview

The possibility of detecting radio emission from extraterres-
trial technologies was first suggested in 1959 [1]]. The first
modern SETI took place a year later, scanning 400 kHz of
bandwidth in the direction of two stars [2l]. Such searches
for “technosignatures” have since greatly expanded in band-
width, the number of stars surveyed, and the range of signal
types detected (e.g. [3l 14, 5]). Launched in 2015, Break-
through Liste [6] is the most comprehensive SETI search
to date. Listen is using the Green Bank Telescope (GBT) in
West Virginia and the Parkes Telescope in Australia to look
at thousands of stars and hundreds of galaxies across multi-
ple GHz of bandwidth. Reduction of raw data results in stor-
age of lower resolution spectrograms at rate of approximately
1PB/year.

Ihttp://seti.berkeley.edu/listen
Zhttp://www.breakthroughinitiatives.org

Radio frequency SETI poses considerable signal process-
ing challenge. SETT seeks signals that appear artificial in na-
ture, but that are not originating from earthbound technolo-
gies (including Earth-orbiting satellites). Simple signals can
be easily detected with a suitable algorithm [7], but there is
a practically infinite parameter space of potential SETI signal
types for which hand-coded matched filters may not be effec-
tive. Therefore analysis techniques generalizable to a wider
range of signals are necessary.

The ability to generalize has been one of the main rea-
sons for the success of modern deep learning. Many of the
cutting edge deep learning techniques have been developed in
the field of computer vision, where large labeled datasets are
available. No such comprehensive labeled dataset is currently
available for radio astronomy data. Additionally, the mor-
phology of detected signals depends greatly on the frequency
band of the receiver, the interference environment of the tele-
scope, and the resolution of the data product, complicating the
process of universal labeling. Generative models, which have
recently become popular in machine learning, provide alter-
nate approaches to hand-labeling interfering signals. Many
forms of generative models are able to learn lower dimen-
sional representations of the data without human supervision.
In this work we apply techniques from recent advances in
generative deep learning to find signals using anomaly detec-
tion.

1.2. Problem Formulation

The main challenge in radio SETI is contamination from
Radio Frequency Interference (RFI) such as that from cell-
phones, satellites, airplanes or even unintentional emissions
such as from microwave ovens. SETI surveys cannot sim-
ply reject signals seeminly from human engineered systems,
since they may throw out extraterrestrial technosignatures
as well. Instead, SETI typically applies spatial filtering to
identify signals that appear localized at the target that the
telescope is tracking. Listen observations at GBT points the
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telescope at a target star for 5 minutes, then moves off target
for 5 minutes, typically iterating this sequence three times
per target. If a signal is present in both on and off-target
observations, it must be from a terrestrial source.

In this paper, we attempt to model variations and regu-
larities in the time evolution of signal spectrum from Listen
data to make future predictions. We train a generative model
that, when given an on observation, predicts the off obser-
vation. If an observation fails to match the predictions, an
anomaly is triggered. We frame this as a spatial-temporal
sequence forecasting problem that can be solved under the
general sequence-to-sequence learning framework proposed
in [8]. Compared to video sequences in computer vision,
radio astronomical data poses different types of challenges.
While lacking in the complexities of the high-level features
needed for problems such as vehicle detection, astronomical
spectrograms typically present high noise environments and
signals entangled in interference foregrounds [9]. Besides,
the vastly varying strength and spectral spread of signals re-
quire a framework highly robust to adversarial perturbations.

In this paper, we present:

1. An adversarial Convolutional LSTM (ConvLSTM) net-
work that is capable of predicting observations with greatly
varying signal strength.

2. A scheme of anomaly detection based on the predicted
and actual observations.

The rest of this paper is organized as follows. In Section
[2] we discuss some related works of predictive anomaly de-
tection. In Section 3] we discuss the details of our model. In
Section 4] we evaluate our model with a scheme of anomaly
detection, and in Section 3] we conclude.

2. RELATED WORK

Recurrent neural network (RNN) and long short-term mem-
ory (LSTM) models ([LLO, [11} 112} 13} |8} 14, [15]) have driven
many of the recent advances in predictive video generation.
The LSTM encoder-decoder models proposed in works such
as [8] and [13]] provide a general framework for sequence-to-
sequence learning problems by training two separate LSTM
models, one to map input sequence to a vector of fixed dimen-
sion and another to extract output sequence from that vector,
thereby predicting future sequences or reconstructing past se-
quences.

Predictive anomaly detection in radio frequency data has
challenges of high thermal noise and large variations of sig-
nal strength. Time domain anomaly detection has first been
explored in [16]. The authors used a recurrent network, and
show effective detection of a range of synthetic anomalies.
Most recently [[17] explores predictive anomaly detection in
spectrogram and spectral density functions (SDF). There the
authors experimented with simulated signals and anomalies
and concluded that there was a greater probability of detec-
tion in the SDF domain than in spectrograms.

3. METHOD

3.1. Dataset

Breakthrough Listen analysis has largely focused on the
search for narrow-band (few Hz bandwidth) signals a few Hz
in width[[7]]. Natural astronomical processes do not produce
signals so narrow in frequency. Hence if such a signal can
be determined to be not coming from Earth, it is a candidate
technological signal from an alien civilization. In this paper,
we collect the training set with the Doppler-drift narrow-
band search pipeline TurboSETI, though the technique we
propose can be used for more general signal types.

Our dataset was collected from the L-band receiver (1.1
GHz - 1.9 GHz) of the 100 meter Robert C. Byrd Green Bank
Telescope in west Virginia, processed into high frequency res-
olution filterbank files. We extracted 91000 samples that con-
tain narrowband signals. Each sample is cut into an image of
size 512 x 16, with 512 frequency stamps and 16 time stamps,
and 3Hz by 19sec frequency and time resolutions. We use
90% of the data for training and the rest for testing.

3.2. Approach

We adopt a stacked ConvLSTM model similar to the one de-
scribed in [13]. Specifically, we adopted composite model,
which outputs future prediction as well as input reconstruc-
tion. The original motivation for input reconstruction is to
help ensure good representation is learned while the predict-
ing decoder tackles prediction. Here we potentially have di-
rect use for the reconstruction decoder in disentangling spatial
filtering from actually anomalous signals. For the network to
capture context information, we increased the number of in-
put and output frames ﬂ Without this we find the model to
suffer from the tendency to learn trivial representations that
memorizes the last time stamp from the inputs. Operating on
eight frames at a time we see qualitative improvements that
the model is able to learn patterns in the presence of noise,
rather than just producing a constant value. However, the
model still shows signs of forgetfulness over longer than eight
frames of predictions.

A key challenge in RF prediction is a loss function that
can operate in high noise regimes. Pixel-wise [2-loss encour-
ages fitting to not just the signal of interest, but the back-
ground noise as well. Adding loss from features extracted
with a pre-trained neural network is expected to mitigate this
issue. Generative Adversarial Networks [[18]] has been pop-
ular for generating realistic looking images [[19, 20} 21} 22].
The idea involves training a generator and discriminator si-
multaneously with competing goals. The generator is trained
to generate samples towards the true data distribution to fool
the discriminator, while the discriminator is optimized to dis-
tinguish between real samples and fake samples produced by

3Each frame here is single time stamp of 1D vector.
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Fig. 1. ConvLSTM Composite Model

the generator. Further, learning the common behavior of real
versus generated signals can be expected to mitigate the issue
of network forgetfulness. Thus we solve both of these con-
cerns by introducing a discriminatory network trained concur-
rently with the ConvLSTM Composite model. The discrimi-
nator aims to distinguish between a real and predicted sample,
while the generative model incurs an additional /5-loss from a
high level feature layer of the discriminatory network as well
as a distinction loss for the discriminator having successfully
identified the predicted sample.

We show examples of ground truth as well as recon-
structed and predicted on-off pairs in Fig. 2] Time increases
downward in each plot so that the on-target observation is
on top. Left column shows ground truth while right col-
umn shows reconstruction and predictions. In the first row
the network shows ability to predict intermittent amplitude
modulations. The second row shows an example that would
have triggered an energy sum detector such as [7]], though our
model correctly predicts no signal in the off-frame. The third
row shows strongly Doppler-drifting signals. The fourth row
shows example of a candidate signal: the network predicts the
existence of a signal in the off-frame, while no signal is ob-
served. The last row shows common non-drifting narrowband
signals.

3.3. Implementation Details

Our Composite model has 8 x 8 filter with 8 number of fea-
tures for each ConvLSTM layer. Due to the elongated shape
of the images, the ConvLSTM layers are sandwiched between
one convolutional and one de-convolutional layers with stride
2 in the frequency direction to extract lowest level features
without losing crucial information. For experimental train-
ing, we feed in the first sequence of 8 frames to predict next 8
frames with batch size of 32. Experiments show that overlap-
ping prediction and input frames leads to marginal improve-
ments.

\

Fig. 2. Example reconstruction and predictions of our net-
work (right) compared to actual observations (left). Each plot
shows 10 minutes of observation, with time increasing down-
ward. The line of padding in the middle of each plot shows
the moving time of the telescope, when no data is recorded.

We deploy a 5-layer convolutional neural network as the
discriminator. Again due to the elongated shape of the im-
ages, the discriminator operates on average-pooled input with
factor of two reduction in frequency dimension, and a combi-
nation of convolutional kernels with asymmetrical strides to
reduce the dimension of the image, before a t anh activation
unit. All of our models were implemented in TensorFlow.

Our final generative loss function is given by

Lg= a(LZZ—future"'L&-pasl)+ﬁL22—feature+Lg,

where Lo fuuretLe2-past are the pixelwise reconstruction and
prediction losses, L teaure 1S the £2 loss from features ex-
tracted from the 3rd layer of the discriminator, and

Lg = log( 1 'D(Gfuture))

is the usual generative loss for having successfully fooled
the discriminator. We take the parameters a=0.001 and
(£=0.0001. The discriminative loss takes the usual form:

Lq= log(D(Gfmure))"' log(l'D(xfuture))-

In the ideal scenario, the generator and discriminator reach
equilibrium and improve simultaneously, in which case Ly ~
-0.69, Lq ~ -1.38. In practice, however, care must be taken to



avoid instability, as we initially observed. To ensure stability,
we regularize by monitoring the discriminator and generator
loss and update their weights independently to maintain the
loss in close range to ideal values.

4. ANOMALY DETECTION

Having trained a predictive model to generate the expected
off-target observations, we match it to actual observations to
see if anomaly is present. In practice, due to the highly vary-
ing signal to noise ratio (SNR), a pixel-wise lo loss would
incur high loss when SNR is high. In [[17] the authors split
the spectrogram into two dimensional grids and fit a distribu-
tion of loss on each grid cell, so that at inference time the log
likelihood of the observed loss can be leveraged in predicting
anomaly. This ameliorates the effect of noise to a certain ex-
tent. However, the authors find the resulting log-likelihood to
still vary greatly depending on the signal and hinders accurate
anomaly detection. In our case, the very narrow nature of the
some of the signals in comparison to our resolution also pro-
hibits gridding. Thus we propose an alternative loss metric
for determining anomalies.

Since we are interested in anomalies that correspond to
the spectral-temporal location of the signal, the fluctuations
due to varying signal strength is a nuisance. Our new met-
ric is thus centered on the idea to disentangle signal strength
from spectral-temporal location. To do this we apply a sim-
ple percentile mask to extract the brightest n% of the pixels
from the predicted as well as ground truth observations, and
match them by bitwise operations. Specifically, given masks
m; and my with filling percentage n, we threshold the size of
their intersection over the size of their union:

H,
> Hm1&m2H’
[[mama||
0

where & denotes bitwise AND operator and | denotes OR. As
sanity check, if the two masks match exactly the above ratio
becomes unity, while if they are random and independent, the
ratio has expectancy of n/2%. The optimal filling percentage
n depends on the band and RFI environment. In practice, we
search over a range of thresholds and filling fraction n and
find the detection performance to vary little with 1 < n < 10.
We perform the following experiment to evaluate our method.

A
4.1. Pair Matching

In this first experiment, we take equal fractions of match-
ing pairs and mismatched pairs of observations, and use our

“4Future plans of this work include a second experiment where we inject
and recover signals to evaluate model performance in different regimes of
signal to noise ratio.

method to identify the two classes. Searching over 7 and n we
get the Receiver operating characteristic (ROC) curves shown
in Fig. |3 The similarity of the curves show that our detection
scheme is relatively robust to the choice of n. In all cases our
schemes are able to correctly identify the pairings with around
90% AUC. With inspection almost all false alarms correspond
to cases where no signal is present in the off-frame observa-
tion, where the scheme is thus comparing two noise-like dis-
tributions. Combining our scheme with one like [[17]] to deter-
mine if the predicted frame is noise like is expected to further
reduce false positive rates in these cases, though doing so is
outside the scope of this work. One can also construct the
metric for both the reconstruction and future prediction, and
comparing the two could help to disentangle spatial filtering
from actually anomalous signals.
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Fig. 3. ROC for the pair matching experiment. The detection
performance are roughly self-consistent across filling percent-
age from 1 to 10.

5. CONCLUSION

Radio frequency SETI requires generalizable techniques of
data analysis on large unlabeled datasets. In this work, we
develop a self-supervised model for radio frequency SETI
spatial RFI rejection and anomaly detection. We develop
and test our approach on spectrograms of narrowband sig-
nals collected by Breakthrough Listen at the Green Bank
Telescope. Our model demonstrates ability to learn mean-
ingful predictions of future observations, and even shows
signs of improvement over traditional energy sum when the
signal appears intermittent. We introduce an anomaly de-
tection scheme that identifies spatially constrained signals
in moderate SNR regimes. Our method parallels the efforts
of radio frequency anomaly detections in domains of wire-
less communication. We believe the technique stands ready
to be generalized to other signal types, and our successful
application to real data in real observational environments
encourages fruitful further exploration in this area.
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