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ABSTRACT

Recent advancements in signal processing and machine learning do-
mains have resulted in an extensive surge of interest in deep learn-
ing models due to their unprecedented performance and high accu-
racy for different and challenging problems of significant engineer-
ing importance. However, when such deep learning architectures are
utilized for making critical decisions such as the ones that involve
human lives (e.g., in medical applications), it is of paramount im-
portance to understand, trust, and in one word “explain” the rational
behind deep models’ decisions. Currently, deep learning models are
typically considered as black-box systems, which do not provide any
clue on their internal processing actions. Although some recent ef-
forts have been initiated to explain behavior and decisions of deep
networks, explainable artificial intelligence (XAI) domain is still in
its infancy. In this regard, we consider capsule networks (referred to
as CapsNets), which are novel deep structures; recently proposed as
an alternative counterpart to convolutional neural networks (CNNs),
and posed to change the future of machine intelligence. In this paper,
we investigate and analyze structures and behaviors of the CapsNets
and illustrate potential explainability properties of such networks.
Furthermore, we show possibility of transforming deep learning ar-
chitectures in to transparent networks via incorporation of capsules
in different layers instead of convolution layers of the CNNs.

Index Terms: Explainable Machine Learning, Capsule Net-
works, Deep Neural Networks, Convolutional Neural Networks.

1. INTRODUCTION

Nowadays, advanced machine learning techniques [1] have encom-
passed all aspects of human life including complicated tasks. As
such, several critical decisions are now made based on predictions
provided by machine learning models without any human supervi-
sion or participation. It is, therefore, of paramount importance to be
able to trust a model, validate its predictions, and make sure that it
performs completely well on unseen or unfamiliar real world data.
For example, in critical domains such as medical applications [2] or
self-driving cars [3], even a single incorrect decision is not accept-
able and could possibly lead to a catastrophic result. For guarantee-
ing reliability of a machine learning model, it is significantly impor-
tant to understand and analyze rational reasons behind the decisions
made by such sophisticated and advanced models, in other words,
we need to be able to open the black-box. On the other hand, deep
models [4] are considered as one of the most successful methods
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True output = Face
Why face?
Why not somthing else?

How to automatically verify it?

How to trust the network?

Wrong output = Face

How to find out this is a failure
point?

How to improve the network?

Fig. 1. Black-box deep neural networks and explainability concept. Feeding
an input image and getting a prediction from the other side.

in several areas especially in image processing and computer vision
domains. However, as deep architectures become more complex and
introduce more nonlinearity, their structures become less transparent
and it is harder to understand what operations or input information
lead to a specific decision. Moreover, in scenarios where sufficient
data for training is not available, which is a common case when it
comes to training deep neural networks such as Convolutional Neu-
ral Nets (CNNs) [5], probability of error will increase drastically,
which further necessitates an urgent need for interpretation of ma-
chine learning architectures.

Explaining a model means providing extra qualitative information
about why the model reach to a specific decision regarding the input
components’ relationship (e.g., different patches of an image [6]).
Explanation can be considered as opening incomprehensible black-
box and seeing inside. In other words, the main goal is to find an-
swers to questions of like: What is happening inside a neural net-
work? What does each layer of a deep architecture do? What features
a deep network is looking for? Fig. 1 illustrates a graphical represen-
tation of this black-box concept, where the input is an image and the
network prediction would be a single word (e.g., face or cat). As can
be seen, such a single output provides no evidence for confirming the
truth of predictions or rejecting incorrect predictions without having
access to the ground-truth. Main advantages of using an explainable
model are as follows: Verification of the model; Improving it by un-
derstanding failure points; Extracting new insights and hidden laws
of the model, and; Finally, identifying modules responsible for in-
correct decisions [7].

Explainability can be fulfilled visually, text based, example based,
and/or by relating inputs and learned parameters [8]. In this regard,
recently there has been a great surge of interest [9-19] for develop-
ment of methodologies to make neural network models explainable.
For example, an early work in this area is named sensitivity analysis
(SA) [10], which measures how much changing each pixel effects
the final decision and then a heatmap is obtained referred to as the
explainability feature. But this heatmap does not show which patches



or pixels play more important role in the decision making process.
Moreover, it more looks like a saliency map [17], which uses unique
frequencies or focus points or other features to find regions of inter-
est, however, pixels identified as salient regions are not necessarily
the pixels being involved in making the predictions. In layer-wise
relevance propagation method (LRP) [11], each prediction is decom-
posed by redistributing backward through the network’s layers using
redistribution rules and finding a relevance path. Relevance of each
neuron or pixel indicates how much it contributes to the decision.
The LRP approach is unsatisfying when we have a more complex
or nested architecture. Reference [6], proposed Local Interpretable
Model-agnostic Explanations (LIME) approach, which explains the
prediction by approximating the original model with an interpretable
model around several local neighbourhoods. Reference [12] pro-
posed to identify the most responsible training points by tracing back
the prediction using influence functions, which estimate effects of
changing each training point on that prediction. Gradient-weighted
Class Activation Mapping (Grad-CAM) [18] approach is another ex-
planation method for CNNs which uses gradient to obtain localiza-
tion map as a visual explanation and finds important layers for each
class. Finally, Reference [19] proposed a verification framework for
increasing trustworthy and explainability of deep networks. It as-
sumes that there is a region in each input which specifically deter-
mines its class category and if the prediction shows this category, its
input should include the saliency points of that region.

Although recently different research works are developed for ex-
plaining complex behaviour of deep neural networks, especially for
visual tasks as briefly outlined above, explainable artificial intelli-
gence (XAI) is still in its infancy and needs significant research to
further open the black-box. In this regard, we focus on a very re-
cently proposed deep network architecture referred to as Capsule
Networks (CapsNets) [20], which is a turning point in the deep learn-
ing research. In particular, we investigate CapsNets’ architecture and
behavior from explanability perspective. Through analyzing differ-
ent underlying components of the CapsNet architecture and its learn-
ing mechanism (routing-by-agreement), we illustrate that this revo-
lutionized deep net has more intrinsic explainability properties. In
particular, we show that CapsNets automatically form the verifica-
tion framework introduced in [19], learn regions of interest which
determine class category, and as such improve trustworthy and ex-
plainability of deep networks. Besides, CapsNets inherently create
the relevancy path (introduced in [6]) and we refer to it as relevance
by agreement as a bi-product of the routing-by-agreement algorithm,
which adds another level of explanability to this architecture.

The rest of this paper is organized as follows: Section 2 reviews
CapsNets. Section 3 investigates CapsNets explainability properties.
Section 4 shows some explanations of CapsNets on MNIST dataset.
Finally, Section 5 concludes the paper.

2. CAPSNETS PROBLEM FORMULATION

Generally speaking, CNNs learn to classify objects using convolu-
tional operations by first extracting low level features in initial layers
and then stacking up the preliminary features learned through ini-
tial layers to extract more complex features in higher layers. How-
ever, CNN architecture ignores the hierarchy between layers (as is
present in the human brain), which limits their modeling capabili-
ties. CNNs try to overcome (mask) such limitations by utilization of
a large amount of training data. The first problem (limitation) is that
CNNs use sub-sampling in pooling steps to transfer more impor-
tant features to the next layer. Therefore, some viewpoint changes
and precise spatial relationships between higher level components
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Fig. 2. Examples of instantiation parameters for a nose capsule in
face detection problem.

will be lost. The other problem is that CNNs are not robust against
new viewpoints, because they can not extrapolate their geometric
information. For these reasons, CapsNet has been proposed to re-
place invariance concept with equivalence, which means that if the
input is spatially transformed, the network adapts accordingly and
responses properly. A capsule is a group of neurons nested inside
a layer and is considered as the main building block of the Cap-
sNet architecture. Actually, the idea behind introducing a capsule
is to encapsulate (possibly large) number of pose information (e.g.,
position, orientation, scaling, and skewness) together with other in-
stantiation parameters (such as color and texture) for different parts
or fragments of an object. This multilayer structure is deep in width
instead of being deep in height. It can be considered as a parse tree
because each active capsule chooses a capsule in the next layer as
its parent in the tree. By incorporation of capsules instead of neu-
rons and deepening the width, therefore, CapsNets can better handle
different visual stimulus and provide a better translational invariance
compared to pooling methods (max/average pooling) used in CNNs.
Fig. 2 shows a nose CapsNet for face detection problem. In this illus-
trative example, there are 5 possible facial component capsules (we
note that these are being automatically formed by the CapsNet) and
4 instantiation parameters (i.e., shifting, scaling, rotation, and defor-
mation), which are also extracted automatically by the network. It is
worth mentioning that in designing a CapsNet architecture, we only
specify the number of capsules and the number of instantiation pa-
rameters per capsule, the network then learns specifics automatically.
Fig. 3 shows detection architecture for a CapsNet with the
following three layers: (i) Convolutional layers; (ii) A Primary-
Capsule (PC) layer (the first capsule layer of a CapsNet architecture)
consisting of Ny capsules, and; (iii) A Class-Capsule (CC) layer (the
last capsule layer of a CapsNet architecture) with M capsules. For
simplicity of the presentation, first we further describe the three lay-
ers CapsNet shown in Fig. 3. In this architecture, first the input is
fed into the convolutional layers for extracting local features from
the pixels. The next layer is the PC layer, where each capsule 4, for
(1 € 4 < Ny), has an activity vector (u; € R1) to encode Py
spatial information (instantiation parameters). Capsules in the PC
layer can be grouped into several blocks referred to as “Component
Capsules”. In the next step, the output vector u; of the i PC, for
(1 < i < Np),is fed into the j™ CC, for (1 < j < M), using weight
matrix Wi; € RFE*P1) and “Coupling Coefficient” c;; as follows

Ny
)i = Wijui  and 55 = Zcz'jujm (L
=1

where w;|; is the prediction vector indicating how much the PC
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Fig. 3. Detection architecture for a three layers CapsNet. Each arrow in
the Primary-Caps layer indicates activity vector of a capsule. The red arrow
shows an activated capsule with higher magnitude for the example kernel
introduced to find right curve fragment of digit 6.

1 contributes to the CC j, and scalar ¢;; is a coupling coefficient
which links predictions of the PC i to the CC j. Note that, vec-
tor s; is a weighted sum of all the PC predictions for the CC j.
Also we note that, P; denotes the dimension of each capsule in the
PC layer while R denotes the dimension of each capsule in the CC
layer. We also note that, one can introduce L > 1 number of inter-
mediate capsule layers located between the PC and CC layers each
with V; number of localized capsules. If needed, we use index [, for
(2 <1 < L+ 1),torefer to the intermediate capsule layers.

Coupling coefficients are trained during the routing process such
that for each capsule j in the CC layer, we have Zjﬁl ci;j = 1.
Finally, the vector output for the CC j is obtained through non-linear
squashing operator given by

o — Isil* s,
j= ol .
L+ Is5112 lIs;l
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In each iteration, coupling coefficient c¢;; is updated by agreement
(using dot product) between vector v;, which is the output of the
CC 3, and vector ;);, which is the prediction vector of the i" PC.
Length of vector v; associated with the CC j, for (1 < 57 < M),
indicates the presence of an object represented by class 7 in the input.
Let us further elaborate on the CapsNet structure introduced
above, in terms of the example shown in Fig. 3. Here, we have P, =
8 dimensional PCs, i.e., each capsule entity in the PC layer encodes
eight different types of information. Besides, the PC layer consists of
32 component capsules (cubes) each of which consisting of 36 cap-
sules, shown by “arrows” in the last component capsule. Therefore,
the PC layer in this illustrative example has N1 = 36 x 32 = 1152
individual capsules. Dimension of capsules in the CC layeris R = 2
and there are total of M = 10 individual capsules in the CC layer.
Finally, in terms of our running example, ve has the largest magni-
tude among the CCs considered here, therefore, the CapsNet’s out-
put decision will be digit 6. This was a brief overview of the CapsNet
architecture, next we will investigate its explanability properties.

3. CAPSNETS’ EXPLAINABILITY

In this section, we look at CapsNet architecture described in the pre-
vious section from different angles to see whether or not this revo-
lutionized deep learning model has improved explanability charac-
teristics. As we mentioned previously, CNNs can not preserve spa-
tial relationship between components of an object because, some
features will be discarded during the pooling process. CNNs com-
pensate this deficiency by increasing the number of training data.
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Fig. 4. Mismatch among instantiation parameter vectors for the face cap-
sule. The first element of each set is the likelihood (probability) of that PC
and the second element is the capsule’s prediction vector. Although, all the
facial components exist with high probability, they disagreement among them
explains the resulting low probability for the face capsule.

In CapsNets, we have capsules (a group of neurons) instead of neu-
rons (single units). Each capsule performs some internal complicated
computations and its output is a vector instead of a scalar value. In
particular, we investigate the potential properties of using such vec-
torized outputs, which could lead to more explainability.

3.1. Relevance Path by Agreement

The vector representation provided by CapsNets is highly informa-
tive and can model possible instantiation parameters for components
or fragments of an object [21]. We argue that this vector output of the
capsules can essentially lead to improved explanability of the overall
network. In other words, while the length (magnitude) of the output
vector v; corresponding to capsule j in the CC layer is used to make
decisions regarding the input image, the length ||u;|| of the output
vector u; from the of i™ capsule in the PC layer or an intermedi-
ate capsule layer can be interpreted as probability of existence of the
feature that this capsule has been trained to detect. More specifically,
we can assign to each capsule a set consisting of two segments for
explanation purposes:

(i) Likelihood values which can be used to explain existence prob-
ability of the feature that a capsule detects, and;

(ii) Instantiation parameter vector values which can be used to ex-
plain consistency among the layers. In other words, when all
capsules of an object are in an appropriate relationship with
consistence parameters, the higher level capsule of that object
will have a higher likelihood. Therefore, explanations can be
provided to describe why the network did detect an object.

For example, Fig. 4 shows the sets computed based on 5 intermedi-
ate component capsules referring to class face (j) in the CC layer.
Regarding Item (i), the likelihood part of each of these capsules is
relatively high explaining that the input contains all the facial com-
ponents represented by these 5 component capsules with high prob-
ability. However, the network decision is that there is not a face in
the input as the likelihood of the face capsule in the CC layer is
relatively low. This can be explained based on the non-consistency
among the instantiation parameters (Item (ii)). The output vector of
the 4™ capsule in the PC layer is multiplied by its weight matrix
W, corresponding to the j capsule in the CC layer, which has
been learned through backpropagation algorithm to account for all
possible transformations of the instantiation parameters. This mul-
tiplication is considered as the vote of capsule ¢ for class j (which
is represented by vector ;). When all related capsules have sim-
ilar votes for the j™ CC, it means that they agree to each other on
presence of object j.



Table 1. CapsNet architecture.

28 x 28 x 1
Conv with 9X 9 kernels, stride=1, Relu
20 x 20 x 256
Conv with 9X9 kernels, stride=2, 8D Caps
6xX6x32x8
Multiply by W, Weighted sum, Squashing
10 x 2
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Fig. 5. Variation of two parameters output of the detected digit capsule
within [—0.25, 0.25] with step size of 0.1 for three sample digits. One can
then explain the learned features of the CCs as thickness and deformation.

CapsNet applies non-linear squashing function on output vectors
(v;) in each iteration. It actually bounds likelihood of these vectors
between 0 and 1, which means that it suppresses small vectors and
preserves long vectors in the unit length

v; & ||s;]ls; = 0,
Py

Vi R e L
Therefore, during agreement iterations, unrelated capsules will be-
come smaller and smaller and the related ones will be remained un-
changed. Consequently, introduction of the squashing function re-
sults in the coupling coefficients c.; associated with irrelevant cap-
sules to approach zero while coupling coefficient corresponding to
the ones responsible for the ;™ CC to increase. Hence, CapsNets
intrinsically construct a relevance path (we refers to it as the rele-
vance path by agreement concept) which eliminates the need for a
backward process to construct the relevance path. The reason behind
the exitance of the relevance path by agreement is that CapsNet uses
dynamic routing instead of common pooling methods. In the other
words, when a group of capsules agree for a parent (higher level
component), they construct a part whole relationship which can be
considered as a relevance path. For example in face prediction case,
facial components (eyes, nose, mouth) in a particular relationship
will detect a face as a higher level component (Fig. 2).

d

if s;is small

3

X

if s;is large

4. EXPERIMENTAL SETUP

In this section, we investigate explanation capabilities of the Cap-
sNets on 28 x 28 MNIST dataset [22]. The used architecture is sim-
ilar to the one that has been presented in [20] as outlined in Table 1.
After training CapsNet with MNIST training data, in a first exper-
iment we varied each of the two parameters of the CC output vec-
tor corresponding to the detected digit and reconstructed it again to
find out what is nature of the two plausible features that have been
learned (i.e., to explain the learned features at the CC layer). Fig. 5
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Fig. 7. Misclassified samples: The 1st row represents the input digit; The
2nd row shows the reconstructed digit by the CapsNet’s prediction; the 3rd
row is the reconstruction based on the capsule with second highest likelihood,
and; finally the last row is the reconstructed digit by true label.

illustrates the results for three digits. It is observed that by chang-
ing the parameters, thickness and shape of digits have been changed
simultaneously. Therefore, we can consider them as explanation of
the learned features. Fig. 6 displays the two parameters of the output
vector associated with the detected digit capsule for all the testing
dataset. As can be seen, the vector output of different digit capsules
significantly overlap with each other, e.g., capsules 1/7; 6/9, and; 3/5
generate close values. Therefore, in misclassified samples, there is a
high probability for detecting overlapped digits. Recognizing these
failure points is another level of explanation that CapsNet can pro-
vide on MNIST dataset. Now, we found misclassified samples in
1000 testing data and display their output prediction vectors. In all
cases, the true class had the second highest likelihood (magnitude)
except one instance in which the third highest likelihood was corre-
sponding to the true label. Moreover, we can usually see a high de-
creasing magnitude between third and forth positions. Therefore, one
can use the likelihood values and present the second and third high-
est capsules as alternative solutions and explanations. Fig. 7 shows
all misclassified samples in 1000 testing data. We reconstructed in-
put digits by prediction and true label outputs. As we see, each input
digit in the first row is similar to both reconstructed digits bellow it,
which explains why the model has been failed in these cases.
5. CONCLUSION

In this paper, we represented the necessity of explainability in deep
neural networks especially in critical decisions where a single incor-
rect decision is even unacceptable. Previous explainability methods
try to find and visualize the most relevant pixels or neurons by adding
an extra explanation phase. In this work, we illustrated potential in-
trinsic explainability properties of Capsule network, by analyzing its
behavior and structure.
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