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Abstract—In this paper, we statistically analyze the effect
of hardware impairments on power pattern of antenna array
systems. We consider a linear array and formulate the stochastic
beam pattern as a function of variations in phase, gain and
element positions. By deriving a closed-form expression for the
variance of the power pattern, we express how the performance
of antenna array can be degraded in each angle, allowing for
investigation of the role of each parameter in the final power
pattern variations. The proposed closed-form expression serves
as a tractable tool for analyzing the effect of perturbations in
different settings.

Index Terms—Antenna array, phase errors, hardware impair-
ments, array factor, power pattern variation.

I. INTRODUCTION

The performance of antenna array systems is unavoidably
affected by different impairments including perturbations in
phase, gain and array positions which are introduced due
to non-ideal manufacturing process, aging and environmental
conditions [1]. These perturbations make the beam pattern
deviate from the nominal one which can considerably degrade
the system performance and typically, several steps of calibra-
tion are required for compensating their effects.

To quantify how much degradation can be tolerated due to
the effect of such perturbations, and then to design proper
calibration algorithms, one first needs to know the character-
istics of the power pattern variations. Since the perturbations
are random variables, it is desirable to characterize the power
pattern variations in terms of the first and second order
statistics. Several works have been done in the literature about
analytical study of the impact of random perturbations on
the performance of antenna array systems [2]–[7]. In [2], the
mean of power pattern is calculated in terms of the mean of
random perturbations in phase (steering vector). The work in
[3] models the sidelobe level of an antenna array using Rician
distribution and presents an approximation for the variance of
beam pattern as a function of the variance of perturbations in
phase and gain (complex gain vector). In [4], [5], the authors
model the combined effect of different perturbations using
a single multidimensional random variable and calculate the
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variance of beam pattern with the aid of a-priori information
on the statistics of perturbations. In [6], a closed-form function
for the mean of power pattern is derived in terms of variances
of phase, gain, and element position perturbations. In [7],
the beam pattern in presence of gain and phase perturbations
is assumed to be a circular-symmetric complex Gaussian
distributed function and the mean and variance of the beam
pattern are calculated based on that approximate assumption.

There are also a few other works in the literature which
analyze the perturbations in antenna arrays based on numerical
methods and Monte-Carlo simulations [8]–[12]. In [8], the
authors consider random gain and phase perturbations, and use
Monte-Carlo simulations to numerically find the variations of
the beam pattern. Similarly, in [9], Monte-Carlo simulations
are used to obtain the mean of power pattern, the variance
of beam pattern, and the bias of beam pattern for random
perturbations in complex gain, element positions and orien-
tations. In [10], [11], authors employ the interval arithmetic
(IA) to compute power pattern bounds for antenna array per-
turbations in complex gain but with a reduced computational
effort compared to Monte-Carlo methods. In [12], the authors
propose a method to calculate the variations of power pattern
by approximating the antenna power values using the first
order Taylor expansion with respect to the uncertain amplitude
in order to further reduce the computational complexity of the
IA methods.

Although numerical calculations of the variations of power
pattern by using Monte-Carlo simulations are effective for
finding the bounds of variations [8]–[12], they are not tractable
for analyzing the effects of all possible error combinations
with all their different settings. It is more desirable to use
analytical methods which are tractable for any combination of
perturbations, allowing for investigation of the role of each
parameter in the final power pattern variations. The previous
works on analytical analysis [2]–[7], have not presented any
closed-form expression for the variations of the power pattern.
In this paper, we will follow the previous works done in [6]
for calculation of mean of power pattern, and calculate the
variance of power pattern for perturbations in phase, gain and
element positions. We present a closed-form expression for the
variance of power pattern in terms of variances of those three



perturbation parameters, and express analytical bounds for the
power pattern.

The paper is organized as follows. In Section II, we make
a brief review on antenna array systems and present the for-
mulations for statistical definition of perturbations. In Section
III, we explain the analytical derivations for the variance of
power pattern with all its details. In Section IV, we validate
the analytical study with simulations, and finally, the paper is
concluded in Section V.

II. SYSTEM MODEL

A. Antenna Array System Review

Consider a linear array of N elements on z-axis with
positions p0,p1, ...,pN−1 where pn = [0 0 pnz]

T . The
array manifold vector is defined as [6]

v(k) =
[
e−jkp0 e−jkp1 . . . e−jkpN−1

]T
, (1)

where k is the wavenumber and is used to express the direction
of any array with any coordinates which is defined as

k =
2π

λ

[
sin(θ)cos(ψ) sin(θ)sin(ψ) cos(θ)

]
, (2)

where λ is the wavelength, θ is the angle towards the z-axis
and ψ is the angle from the x-axis. Now, if we consider a
weight filter for each element, the complex gain vector is
defined as

w = [w0 w1 . . . wN−1]T , (3)

where,
wi = gie

jφi , (4)

is the complex gain of each element in the phase shifter
network (PSN) and arises after vector modulator (VM) which
includes a phase shifter (PS) and a variable gain amplifier
(VGA). In case of uniform linear array, all element gains are
equal to 1/N . The complex gain vector is the multiplication
of real gains gi with steering vector elements ejφi . These
two components have different effects on the beam pattern.
The steering vector is used for changing the direction of the
main beam, and subsequently will change the direction of side-
lobes. The vector of real gains on the other hand, is usually
used for tapering and reducing the side-lobe levels, which also
has some effects on the main lobe and can change the shape
of the beam pattern. Beam pattern is defined as [6]

B(θ, ψ) = B(k) = wHv(k) =

N−1∑
i=0

gie
j(φi)e−jkpi . (5)

B. Statistical Modeling of Perturbations

If we consider the effect of perturbations in gain and phase
of each element in the complex gain vector (2), then for each
element we can write

wi = gi(1 + ∆gi)e
j(φi+∆φi), (6)

where ∆gi and ∆φi are random variables with variances σ2
g

and σ2
φ.

We can define the perturbations in the position of array
elements as

pi = pci + [0 0 ∆pi]
T , (7)

where ∆pi is a random parameter with the variance of σ2
λ in

z− axis, and pci is the vector of nominal element position in
3D space. Therefore, the stochastic beam pattern function can
be written as

B(k) =

N−1∑
i=0

gi(1 + ∆gi)e
(j(φi+∆φi)−jkpi). (8)

Now, if we consider ∆pi, ∆gi and ∆φi for i = 0, 1, . . . , N−1
as statistically independent, zero-mean, and Gaussian random
variables [6], then the beam pattern in (8) is actually a random
function of σ2

g , σ2
φ and σ2

λ as the variances of perturbations
in gain, phase, and element positions. The expectation of
magnitude square of beam pattern (power pattern) can be
obtained as [6]

E
[
|B(k)|2

]
= |Bc(k)|2e−(σ2

φ+σ2
λ) +

(
(1 + σ2

g)− e−(σ2
φ+σ2

λ)
)N−1∑
i=0

g2
i ,

(9)

where |Bc(k)| is the nominal beam pattern without any
perturbation.

III. STATISTICAL ANALYSIS OF POWER PATTERN
VARIATIONS

Eq. (9) gives us the average power, but we need to know
the variance of the power pattern function to characterize
its probable variations in the presence of perturbations. To
mathematically formulate the variations, we need to calculate
the variance of magnitude square of the beam pattern in (8).
Namely, we need to find

Λ = E[|B(k)|4]− (E[|B(k)|2])2. (10)

For the second term, we can directly use (9), and for the
first term, according to the expression of expected value of
a random variable to the power of four, we have

E[|B(k)|4] = E[B(k)HB(k)B(k)HB(k)]

=

N−1∑
i=0

N−1∑
l=0

N−1∑
m=0

N−1∑
q=0

E
[
gi(1+∆gi)gl(1+∆gl)gm(1+∆gm)gq

(1 + ∆gq)e
j(φi+∆φi−φl−∆φl+φm+∆φm−φq−∆φq)

e−jk(pi−pl+pm−pq

]
. (11)



Now, if we consider all random variables as statistically
independent, zero-mean, and Gaussian, then by using method
of moments, for the first part, we can write

E
[
(1 + ∆gi)(1 + ∆gl)(1 + ∆gm)(1 + ∆gq)

]
= E

[
1 + ∆gm∆gq + ∆gi∆gm + ∆gi∆gq + ∆gl∆gm

+∆gl∆gq + ∆gi∆gl + ∆gi∆gm∆gq + ∆gl∆gm∆gq

+∆gi∆gl∆gm + ∆gi∆gl∆gq + ∆gi∆gl∆gm∆gq
]
,

(12)
where by any coordination of indices, the expectation of
product of three random variables are zero and for the last
term, by using the expression for the expected value of
multiplication of four jointly Gaussian random variables [13],
we can write

E[∆gi∆gl∆gm∆gq]

= E[∆gi∆gl]E[∆gm∆gq] + E[∆gi∆gm]E[∆gl∆gq]

+E[∆gi∆gq]E[∆gl∆gm] = (δilδmq + δimδlq + δiqδlm)σ4
g ,

(13)
which is derived using characteristic function of zero-mean
jointly normal random variables, and δil = 1 when i = l, and
otherwise is zero. Now, we can rewrite equation (13) as

E[(1 + ∆gi)(1 + ∆gl)(1 + ∆gm)(1 + ∆gq)]

= 1 + (δmq + δim + δiq + δlm + δlq + δil)σ
2
g

+(δilδmq + δimδlq + δiqδlm)σ4
g .

(14)

By using (23) in the Appendix, the second term in (12) can
be written as

E[ej(∆φi−∆φl+∆φm−∆φq)] = ea
Tm+0.5aTΣa, (15)

where m is the zero vector, since we have considered zero-
mean random variables, and the covariance matrix Σ and the
vector a are defined as

Σ =


σ2
ii σ2

il σ2
im σ2

iq

σ2
li σ2

ll σ2
lm σ2

lq

σ2
mi σ2

ml σ2
mm σ2

mq

σ2
qi σ2

ql σ2
qm σ2

qq

 , (16)

a = [j − j j − j]T , (17)

respectively. We can rewrite (15) as

E[ej(∆φi−∆φl+∆φm−∆φq)]

= e0.5[−(σ2
ii+σ

2
ll+σ

2
mm+σ2

qq)+2(σ2
il−σ

2
im+σ2

iq+σ
2
lm−σ2

lq+σ
2
mq)]

= eσ
2
φ(−2+(δmq−δim+δiq+δlm−δlq+δil)).

(18)
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Fig. 1: Power pattern analysis for a) analytical derivations
based on (9) and (20), and for b) Monte-Carlo realizations.

Finally, for the last multiplicative term in (12), by using (23)
in the Appendix, we can write

E[e−jk[0 0 ∆pi−∆pl+∆pm−∆pq ]]T

= eσ
2
λ(−2+(δmq−δim+δiq+δlm−δlq+δil)). (19)

Thus, according to equation (12) and by using the results in
equations (14), (18), and (19), we can express the variance
of power pattern as given in (20) on top of the next page.
This closed-form expression can give us very useful insights
through the variations of the power pattern in presence of
perturbations which is explained in the next section.

IV. NUMERICAL RESULTS

For numerical analysis, we have considered an array of
N = 10 antenna elements symmetrically positioned on the z-
axis with steering angle of θ = 0 in the broadside. The curves



Λ =

N−1∑
i=0

N−1∑
l=0

N−1∑
m=0

N−1∑
q=0

[(
giglgmgqe

j(φi−φl+φm−φq)e−jk(pci−pcl+pcm−pcq)
)(

1 + (δmq + δim + δiq + δlm + δlq + δil)σ
2
g

+ (δilδmq + δimδlq + δiqδlm)σ4
g

)(
eσ

2
φ(−2+(δmq−δim+δiq+δlm−δlq+δil))

)(
eσ

2
λ(−2+(δmq−δim+δiq+δlm−δlq+δil))

)]
−
(
|Bc(k)|2e−(σ2

φ+σ2
λ) + [(1 + σ2

g)− e−(σ2
φ+σ2

λ)]

N−1∑
i=0

g2
i

)2

(20)
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Fig. 2: Power pattern for the main lobe level and first sidelobe
level with σ2

λ = 0.001 in a) span of σ2
φ, and b) span of σ2

g .

for nominal power pattern (nominal PP), the mean of power
pattern (PP mean) based on (9), three standard deviations
higher than the mean of the power pattern (PP UB), and three
standard deviations lower than the mean of the power pattern
(PP LB) based on (20) are depicted in Fig. 1-a. In Fig. 2-b,
the power pattern is depicted for 100 realizations based on (8).

The standard deviation based on (20) is calculated as 0.020
for the main-lobe level at θ = 0, which is closely matched
to 0.0188 as the standard deviation calculated numerically
from 100 realizations for the same angle (θ = 0). These results
reveal the accuracy of (20).

In Fig. 2, the upper bounds and lower bounds of power
pattern are depicted for the main-lobe and the first side-lobe
levels in different settings of perturbations. According to the
figures, we can investigate in each combination of perturba-
tions, which one is the most affecting one that deteriorates the
performance. The proposed formulation also facilitates error
tolerance studies. For example, according to Fig. 2-b, we can
say that for the tolerance level of up to one dB in the main
beam (1 dB loss), the variance of perturbations in gain should
be less than 0.1 (σ2

g < 0.1) with σ2
λ = 0.001 and σ2

φ = 0.001.

V. CONCLUSION

We have formulated a closed-form expression for variance
of power pattern in antenna array systems. This closed-form
function can predict the behavior of beam pattern for any com-
bination of perturbations in gain, phase and antenna positions,
and is a reliable metric for antenna array performance analysis,
distinguishing the dominant perturbations, and it can be used
for impairment calibrations.

APPENDIX

Considering a Normal random variable as Z ∼ N (µ, σ2),
then the nth moment of Z will be [13]

MZ(n) = e(µn+σ2n2/2), (21)

and then we have

E[eZ ] = MZ(1) = e(µ+σ2/2). (22)

In general, with a = [a1 . . . aK ]T and z = [z1 . . . zK ]T

and by using general moment function, we can write the
expected value of product of normal random variables as

E
[ K∏
i=1

eaizi
]

= E
[
ea
T z
]

= ea
Tm+0.5aTΣa, (23)

where m = [µ1 . . . µK ]T is the vector of mean values, and
Σ is the covariance matrix.
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