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Abstract—In this paper, we use an aerial base station (aerial-BS)
to enhance fairness in a dynamic environment with user
mobility. The problem of optimally placing the aerial-BS is a
non-deterministic polynomial-time hard (NP-hard) problem.
Moreover, the network topology is subject to continuous changes
due to the user mobility. These issues intensify the quest to
develop an adaptive and fast algorithm for 3D placement of
the aerial-BS. To this end, we propose a method based on
reinforcement learning to achieve these goals. Simulation results
show that our method increases fairness among users in a
reasonable computing time, while the solution is comparatively
close to the optimal solution obtained by exhaustive search.

I. INTRODUCTION

In recent literature, aerial base stations (aerial-BSs) have been

proposed and studied as a way of tackling emergency situa-

tions or highly atypical load (traffic) conditions in wireless net-

works. A good example of the former is a natural disaster that

could cause a terrestrial network to become nonoperational.

To better cope with atypical traffic in space and time, the

flexibility and agility of the network can be enhanced substan-

tially by aerial-BSs; this would prevent over-engineering by

eliminating the need for over-densification [1], [2]. However,

the performance of wireless networks with aerial-BSs is rather

sensitive to the placement of the aerial-BSs. To mitigate this

sensitivity, many studies have investigated the optimal place-

ment of aerial-BSs in wireless networks [3]–[15]. It should be

noted that, although the optimal placement of aerial-BSs is an

important issue, the opportunities and challenges related to the

use of aerial-BSs are not limited to their placement [16]–[18].

Ensuring high levels of fairness among users and a good

cell-edge performance are some of the expectations of the

next-generations of wireless networks. The proportional fair-

ness model used in this paper results in a non-deterministic

polynomial-time hard (NP-hard) problem. However, one of

the most challenging aspects of solving NP-hard problems

is finding a sufficiently accurate solution in a reasonable

computing time. Moreover, the optimum aerial-BS locations

obtained through computationally-expensive calculations for a

snapshot of the dynamic network may become highly subopti-

mal as the topology changes, and accordingly the spatial load

distribution evolves. For these reasons, reinforcement learning

is an attractive candidate solution framework for the outlined

aerial-BS positioning problem in a dynamic wireless network.

We propose a solution based on reinforcement learning and
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compare it with other possible existing solutions in this area

which are mainly heuristic algorithms. Not only do existing

algorithms not promise the best results, they also yield so-

lutions that are valid only for a snapshot of the system. We

consider a wireless network composed of ground-BSs assisted

by an aerial-BS to maintain a high level of fairness among

users despite the user mobility as presented in Section II.B.

The backhaul link of the aerial-BS is an important constraint

in the overall design; we assigned one of the ground-BSs to

provide a backhaul link for the aerial-BS. Finally, we assume

the presence of high-capacity fiber links to carry the data from

ground-BSs to the core network.

The rest of this paper is organized as follows. Section II

presents the path loss and mobility models used in this paper.

Section III outlines the problem formulation and the proposed

novel approach to solve it. Section IV presents the simulation

results, and Section V concludes the paper.

II. SYSTEM MODEL

We consider the downlink of a wireless cellular network that

includes some ground-BSs and several users. The network

topology undergoes rapid changes due to user mobility. To

ensure a high level of fairness in such dynamic environment,

we exploit an aerial base station. This is beneficial to the

network since the location of the aerial-BS can be adapted to

the current status of the network. For the impartial assessment

of the systems with and without the aerial-BS, we keep the

number of BSs constant in both scenarios. In fact, once the

aerial-BS is added to the network, we use one of the ground-

BSs as the backhaul of the aerial-BS. For the backhaul of the

ground-BSs, we use fiber links which will not be congested.

We denote the set of ground-BSs and the set of cellular users

by J and I, respectively. The cardinality of these sets are

denoted by J = |J | and I = |I|. We also show the association

of the users to base stations by a binary parameter Uij . If the

i-th cellular user is associated to the j-th base station, Uij = 1,

otherwise Uij = 0. The signal-to-interference-plus-noise ratio

(SINR) for transmission from the j-th base station to the i-th

user is denoted by γij . The corresponding rate for this pair is

presented by Rij .

A. Air-to-Ground Path Loss Model

In the context of aerial-BS assisted terrestrial networks, path

loss is widely considered the dominant term in the air-to-

ground channel model. The path loss can be modeled as

PL (dB) = τ + Λ, (1)
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where τ , the free space path loss, is

τ = 20 log(d) + 20 log(f) + 20 log(
4π

c
), (2)

in which f is the carrier frequency (in Hz), c is the speed

of light, and d denotes the distance between the aerial-BS

and user (in meters). The parameter Λ is the average path

loss which is obtained by taking the average of two cases

of establishing a line-of-sight (LoS) or non-LoS (NLoS) link

between the aerial-BS and the ground user. This can be

expressed as

Λ = Pr(LoS)PLLoS + Pr(NLoS)PLNLoS, (3)

where Pr(LoS) and Pr(NLoS) denote the probability of es-

tablishing a LoS or NLoS link between the aerial-BS and

the ground user [19], [20]. These probabilities depend on

the height of the aerial-BS and the elevation angle between

the ground user and the aerial-BS. The losses due to LoS or

NLoS links are denoted by PLLoS and PLNLoS, respectively.

The value of PLLoS and PLNLoS depend on the environment.

B. User Mobility Model

The prediction of users’ traces based on real data has gained

attention in various applications. In [21] an approach was

presented to capture user mobility in cellular networks. This

model, which is designed on the basis of real-life data, assigns

specific destinations to each user as its point of interest. As

users become more clustered in the network, ensuring fairness

among them gets harder for ground-BSs. It is particularly

situations like these that motivate the use of aerial-BSs in

assisting the network. In this paper, we modify the model

presented in [21] by considering ν social attractions and a

random point as our destinations. In this model, we consider

a plane that includes several users and ν places which are

social attractions. We model the user movements by means of

a Markov process which eventually clusters most of the users

at these ν places. In fact, we assume that each user might

select one of the ν places or a random point as its destination.

These events are equiprobable with the probability of 1
ν+1 .

Once each user’s destination is determined, we assume the

user moves towards their destinations with a random speed

between 0 and the maximum pedestrians speed, which is 1.3

m/s.

C. Fairness Model

Fairness plays an important role in the operation of a wireless

network. It should be noted that fairness does not necessarily

mean equal resource allocation. There are a number of fairness

criteria which can be classified as quantitative or qualitative

[22]. The most common quantitative criteria are the Jain’s

index [23], entropy measure [24], unfairness measure [25] and

Lorenz Curve [26]. The last two have received little attention

in the fairness literature. The most common qualitative criteria

are max-min fairness [27] and proportional fairness [28].

The advantage of proportional fairness is that it ptovides a

reasonable tradeoff between rate and fairness of the system.

For this reason, in this paper we consider proportional fairness.

III. PLACING THE AERIAL-BS TO MAXIMIZE FAIRNESS

A. Optimization Problem

Let us denote the rate obtained by the i-th user when it is

connected to the j-th BS as

Rij = bi log2(1 + γij), (4)

where bi is the assigned bandwidth to the i-th user. Without

loss of generality, we assume bi = b for all users. The SINR

can be expressed as γij =
P̃ij

σ2 +
∑J

k=1 Iik
, where P̃ij is the

received power from j-th BS at the i-th user and σ2 is the zero-

mean white Gaussian noise power. The term Iik illustrates the

co-channel interference generated by the k-th BS on the i-th

user. To maximize the proportional fairness, we have to solve

the following optimization problem

max
xχ,yχ,hχ,Uij

J
∑

j=1

I
∑

i=1

log(RijUij), (5)

s.t.

N ′

∑

i=1

Riχ ≤ cζ , (6)

RijUij ≥ RminUij , ∀i ∈ I, ∀j ∈ J , (7)

N ′

∑

i=1

Piχ ≤ Pmax, (8)

J
∑

j=1

Uij = 1, (9)

Uij ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J , (10)

where χ denotes the aerial-BS and N ′ is the number of users

assigned to the aerial-BS. The coordinates xχ, yχ, hχ denote

the 3D location of the aerial-BS. These parameters can vary in

the following ranges [xmin, xmax], [ymin, ymax], and [hmin, hmax].
Uij is determined by maximum SINR criteria. Constraint (6)

guarantees that the sum-rate of the aerial-BS does not exceed

cζ which is the maximum capacity of its backhaul. Constraint

(7) illustrates the minimum rate requirements for the users.

Constraint (8) presents the power limit for the aerial-BS.

Constraint (9) assigns each user to only one BS. The last

constraint shows that the user association coefficient can only

take binary values.

B. Efficient Placement of the Aerial-BS

The optimization problem of (5) can be reduced to an NP-

hard problem. Since the problem is NP-hard, deriving a

closed form solution is not feasible. This fact, combined with

the dynamic nature of the network, motivate us to exploit

alternative solutions. The solution has to be adapted quickly to

dynamic network alterations. Taking these points into account,

approaches based on reinforcement learning provide an appro-

priate platform to solve this problem. We consider simulated

annealing (SA) Q-learning whose convergence speed is rea-

sonable [29]. The SA algorithm is an optimization algorithm

which modifies the solution based on the Metropolis criterion.

In SA-Q-learning, Q-learning is used to obtain the optimal

procedure. Then, the Metropolis criterion, which is the core



of the SA algorithm, is applied to select between the policy

π, which is the exploration and exploitation of the action

in the learning procedure. In [29], it has been shown that

SA-Q-learning outperforms ǫ-greedy Q-learning in terms of

convergence speed.

Algorithm 1 Proposed Algorithm

1: Initialize Q matrix as the previous session matrix in which

the aerial-BS was being used;

2: while System is running do

3: Users are moving in the area for tmin;

4: Repeat for each episode;

5: Repeat for each step in the episode;

6: Select a random action ar in A(s);
7: Select an action ap in A(s) which maximizes reward;

8: Generate a random value ǫ ∈ (0, 1);

9: if (ǫ < exp
Q(s,ar)−Q(s,ap)

ψ
) then

10: Take the action ar;

11: else

12: Take the action ap;

13: end if

14: Q(st, at) = α[rt+1+ηmax{Q(st+1, at+1)}−Q(st, at)]

15: Update the state of the aerial-BS;

16: Update the assignment of users to BSs (Uij) by maxi-

mum SINR constraint;

17: Update ψ as follows, ψt+1 = λψt.

18: end while

The Q-learning algorithm is a model free reinforcement learn-

ing algorithm. It is notable that Q-learning is an off-policy

algorithm, meaning that it learns to optimize the target function

while following the action policy. In these methods no matter

what sequence of actions the agent takes, it will converge to the

optimum point if it has enough learning time. This algorithm

is a Markov decision process that consists of the following el-

ements: states, policy, actions, transition probabilities, reward,

and knowledge metric. The set of states, S = s1, s2, ..., sv,

describes the system. The policy π determines the action to

be taken in the current state of the system. We show the set of

actions by A = a1, a2, ..., aw. The transition from one state to

another occurs according to a specific action. The probability

of this event is called transition probability. Each transition

entails a specific reward. The performance of the policy is

measured by the knowledge matrix, Q. Each element of the

Q-matrix is associated with one of the state-action pairs. In

the learning phase, the matrix is first initialized with proper

values. Once we run the algorithm, the matrix components

are updated, as several states are visited. In each state, an

action is exploited or explored which leads to a transition to

the next state. The reward involved in each transition is used

to update the Q-matrix. At the end of the learning phase, the

action whose Q-factor has the highest value for each state is

selected as the best action. In our problem, the geographical

coordinates of the aerial-BS determine the state of the system.

In fact, we discretize the 3D flying zone of the aerial-BS into

smaller cubes whose side length is υ. The center of each cube

is the state of the system. The action is the movement of the

aerial-BS υ meters towards any of the six faces of the cube.

Defining a proper reward in the learning algorithm is essential

to solving the problem of (5). We consider a reward as

rt = r+t − r−t (11)

where t denotes the state number. The terms of rt are

r+t = Θt − Θt−1 + ωt − ωt−1, (12)

r−t = δ1(βt − βt−1), (13)

where Θt, βt, and ωt are defined as follows

Θt =

J
∑

j=1

I
∑

i=1

log(RijUij), (14)

βt = η1H[Riχ − cζ ], (15)

ωt =

J
∑

j=1

I
∑

i=1

UijγijH[Rij −Rmin]. (16)

In fact, Θt is the fairness achieved at the t-th iteration, and ωt
is the sum of SINRs for the users who satisfy the minimum

rate requirement at the t-th iteration. The term βt presents

the penalty if the backhaul capacity constraint of the aerial-

BS is violated, and H[.] is the step function. Thus, the reward

presented in (11) reflects the objective function and constraints

(6) and (7).

The Q matrix at the t-th time interval is modified as

Q(st, at) = α[rt+1 + ηmax{Q(stt+ 1, at+1)} − Q(st, at)],
where α is the decreasing learning rate and η is the discount

factor. In SA-Q-learning, the state transition algorithm is

f(λ1 → λ2) =

{

ar, if ǫ < exp
Q(s,ar)−Q(s,ap)

ψ

ap, otherwise,
(17)

where λ1 and λ2 represent the current and future states,

respectively. The parameter ψ is a decreasing parameter in

the process, and ǫ ∈ (0, 1) is a random number. Random and

optimum actions for each state are presented by ar and ap.

The learning algorithm requires specific conditions to converge

to the global optimum point, which can be found in [30].

These conditions are all satisfied is our scenario. Learning

parameters are presented in Table I. These values are tuned

through a simulation-based search. Algorithm 1 shows the SA-

Q-learning algorithm that we used.

IV. SIMULATION RESULTS

We consider the problem of an urban cellular network, where

18 ground-BSs are positioned according to a binomial point

process (BPP) in a 4 km x 4 km region. A random number of

users in the interval [mmin,mmax] (with uniform distribution)

are also placed in the same region using another BPP; the

two BPPs are independent. At t = 0, the users start moving

according to the mobility model presented in Section II.B.

In this network, ν social attracting points are placed on the

basis of another independent BPP. As time passes, some

users tend to cluster around the attracting points, while others

move randomly. Users associations to BSs change after each

iteration. Simulation parameters are shown in Table I. Fig. 1

presents the user and ground-BS distribution at t = 25 mins.
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Fig. 1: 2D Users, ground-BSs and attracting point distribution

after moving with the proposed mobility model at t = 25 min.
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Fig. 2: Proportional fairness from (5) for traditional ground-BS

system and proposed system assisted with an aerial-BS.

As we can see, some users tend to cluster around the attracting

points, denoted by stars in Fig. 1, while others move randomly.

We compare the performance of a traditional system with 18

ground-BSs with an aerial-BS assisted system with 17 ground-

BSs and one aerial-BS. For the optimal placement of the

aerial-BS, we considered 3 methods for solving the mentioned

problem, an exhaustive search method, our proposed SA-Q-

learning method, and a particle swarm optimization (PSO)

method [7]. Fig. 2 presents the proportional fairness, and Fig.

3 shows the cumulative distribution function (CDF) of average

SINR for these scenarios. As presented, our method obtains

the proportional fairness near to the results from exhaustive

search which is higher than that of PSO and significantly

higher than that of the traditional system. It is notable that

the proportional fairness from (5) is a logarithmic function of

rate; hence from Fig. 2, the rate improvement is impressive.

In Fig. 2 the proportional fairness from traditional ground-

BSs system is decreasing over time while users are moving in

accordance with the the mobility model presented in Section
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Fig. 3: CDF of average SINR of users for the traditional

ground-BS system and proposed system assisted with an

aerial-BS.

TABLE I: Simulation Parameters
Parameter Value Parameter Value

(P LoS, PNLoS) (1 dB, 20 dB) f 2 GHz

(mmin, mmax) (200, 300) BW 20 MHz

(hmin, hmax) (25 m, 525 m) Rmin 0

(xmin, xmax) (-2000 m, 2000 m) Pmax 49 dBm

(ymin, ymax) (-2000 m, 2000 m) ν 5

ψ 10 λ 0.99

(η1, δ1) (1000, 100) tmin 2.5 mins

η 0.9 υ 10 m

II.B and cluster. This shows the effectiveness of our proposed

model since it can attain fairness in any situation. As we

can see in Fig. 3, SA-Q-learning and PSO perform similar to

exhaustive search. The results from Fig. 3 indicate that cell-

edge performance from the proposed method has improved

30 dB. Other simulation results show convergence rate of

both SA-Q-learning and ǫ-greedy Q-learning are good for

our use case. They also show our SA-Q-learning method can

reach to the optimum point in an acceptable computing time.

The simulation results conclude that the main benefit of our

solution is its fast adaptation to continuous changes of the

network topology while achieving the optimum solution.

V. CONCLUSION

In this paper, we proposed a method to achieve fairness among

users in an aerial-BS empowered terrestrial network with user

mobility. To obtain the optimal placement of the aerial-BS

when the network is dynamic, we used SA-Q-learning method.

We showed that the aerial-BS can significantly improve the

proportional fairness among users. We also showed that for

the aerial-BS assisted network, the SA-Q-learning method is

the optimal performance achieved by exhaustive search while

at the same time being faster and adaptable to new situations

in the system.
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