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Abstract—In this paper, the closed-form Cramér-Rao bound
(CRB) is derived for direction-of-arrival (DOA) estimation under
the unconditional model assumption (UMA) for uncorrelated
wideband sources. The existence of the CRB is proved based on
the rank condition of the introduced augmented co-array mani-
fold (ACM) matrix. The resolution capacity is then investigated
and it is found that the number of resolvable sources for the
wideband model can exceed the limitation in the narrowband
case without requirement of any special array structure.

I. INTRODUCTION

The Cramér-Rao bound (CRB) is a fundamental and uni-

versal statistical metric for evaluating the performance of

direction-of-arrival (DOA) estimation algorithms, by providing

a lower bound on the variance of unbiased DOA estimation

results. In the past few decades, the narrowband CRB for DOA

estimation exploiting linear sensor arrays has been system-

atically studied [1]–[5]. In [1], [2], the authors summarized

two typical signal models: the conditional model assumption

(CMA) and the unconditional model assumption (UMA),

under which the signals are deterministic and stochastic,

respectively. Explicit CRB expressions under both CMA and

UMA were derived, and comparative studies were conducted.

However, almost all of the aforementioned research is focused

on the uniform linear array (ULA) structure, which can only

resolve fewer sources than the number of physical sensors.

Thus, the CRB expressions therein are only applicable to the

overdetermined case.

In the underdetermined case, sparse arrays such as nested

arrays (NA) [6], coprime arrays [7]–[9], and their extensions

[10], [11] have provided increased degrees of freedom (DOFs)

to identify more sources than sensors. Recently, several closed-

form CRB expressions have been derived pertaining to unde-

termined DOA estimation problems in the narrowband case

[12]–[17]. These derivations commonly adopt UMA and as-

sume the sources are known a priori to be uncorrelated. The

number of resolvable sources are bounded by the number

of unique lags in the virtual difference co-array generated

from the underlying sparse array structures [12], [13]. On

the other hand, although there are a variety of wideband

DOA estimation approaches [18]–[24], the wideband CRB
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is often evaluated numerically [18], [19], [25]–[27]. In [28],

a closed-form wideband CRB expression under UMA was

provided, which indicates that the wideband Gaussian model

without any prior information cannot identify more sources

than the number of sensors. The assumption that the sources

are uncorrelated is widely considered in underdetermined

DOA estimation algorithms in the wideband scenario with

the assistance of sparse arrays [20], [23], [29]. However,

the maximum achievable accuracy and number of resolvable

sources of these algorithms have not been studied yet. For

further performance analysis, it is necessary to derive a closed-

form wideband CRB expression for the corresponding signal

model, especially in the underdetermined case.

In this paper, we will mainly focus on UMA, since under-

determined DOA estimation has been proved to be infeasible

under CMA [12]. We start by exploiting the statistical char-

acteristics of the frequency domain data, and then directly

derive the closed-form wideband CRB expression for DOA

estimates with the prior information that the sources are

uncorrelated. After defining the augmented co-array manifold

(ACM) matrix, we prove that the CRB exists if and only if

the ACM matrix is of full column rank. According to this

rank condition, the proposed CRB expression is applicable to

both overdetermined and undetermined cases. The resolution

capacity is then investigated and it is found that undetermined

DOA estimation can be achieved under the wideband model

while no special array structures are needed, which is different

from the narrowband scenario. Finally, simulation results are

provided to verify our theoretical analysis.

II. FREQUENCY DOMAIN SIGNAL MODEL

Assume that there are K uncorrelated signals {sk (t)}
K
k=1

with the same bandwidth impinging from K distinct incident

angles {θk}
K
k=1 in the far field. These signals are received

by a linear array consisting of M sensors. Let d denote the

smallest distance between two adjacent sensors and set the

sensor locations to be an integer multiple of d, i.e., zmd, m =
1, 2, · · · ,M . Therefore, the array structure can be described

by an integer set such that S = {zm zm ∈ Z, 1 ≤ m ≤ M},

where Z denotes the set of all integers. The sensor locations in

the virtual difference co-array are represented by the difference

set D = {z1 − z2 z1, z2 ∈ S}.



The output signal at the m-th sensor is sampled into N time

snapshots {xm [i]}Ni=1 with a sampling frequency fs. Then,

each received signal is divided into Q non-overlapping groups

with the same length L, and the time duration of each group

is ∆t = L
fs

. The time delay between two sensors (indexed by

m1 and m2 respectively) is denoted by τm1m2
(θ) ,m1,m2 ∈

{1, 2, · · · ,M}. Following the widely adopted wideband model

assumptions [19]–[22], [25], [26], [28]–[30], we also assume

that:

A1 The noise is circularly-symmetric Gaussian distributed,

and uncorrelated with the source signals.

A2 ∆t is sufficiently large, and is much larger than the

maximum of τm1m2
(θ).

Applying an L-point DFT, we can obtain the output signal

model in the DFT domain, given by

Xl (q) = Al (θ)Sl (q) +Nl (q) ,

where Al (θ) denotes the steering matrix for the l-th frequency

bin. Xl (q), Sl (q), and Nl (q) are column vectors collecting

all DFT results of signals {xm [i]}Mm=1, {sk [i]}
K
k=1, and

additive noise {nm [i]}Mm=1, respectively, in the q-th group.

Al (θ) = [al (θ1),al (θ2), · · ·,al (θK)] , and

al (θk) =

[

e
−j2π

z1d

λ(fl)
sin θk

, · · · , e
−j2π

zMd

λ(fl)
sin θk

]T

,

where {·}T denotes the transpose operation, and λ (fl) = c/fl
with c representing the wave speed and fl denoting the central

frequency at the l-th frequency bin.

As mentioned in Section I, we focus on UMA instead

of CMA in this paper. Denote the covariance matrices

of {Xl (q)}
Q
q=1, {Sl (q)}

Q
q=1, and {Nl (q)}

Q
q=1 as RX (l),

RS (l), and RN (l), respectively. Since the sources are un-

correlated, we have RS (l) = blkdiag[p1(l), p2(l), · · · , pk(l)],
where blkdiag(·) is the block diagonalizing operation and

{pk (l)}
K
k=1 denotes the source power at the l-th frequency

bin. By A1, we know that {RN (l) = pN (l) IM}Ll=1, where

{pN (l)}Ll=1 denotes the noise power at the l-th frequency bin,

and IM denotes the M -by-M identity matrix. Furthermore, the

source signals are assumed to be zero-mean and stationary, and

hence {Xl (q)}
Q
q=1 are independent and identically distributed

M -variate circularly-symmetric Gaussian random vectors with

zero-mean. We have

(1)RX (l) = Al (θ)RS (l)AH
l (θ) +RN (l) ,

where {·}H denotes the Hermitian transpose operation. If ∆t

is chosen to be large enough as A2, then {Xl (q)}
L
l=1 are

asymptotically uncorrelated across frequency bins.

III. DERIVATION AND ANALYSIS OF THE WIDEBAND CRB

A. Closed-Form Wideband CRB Expression

We are dealing with an overall data vector ξ̄ that incorpo-

rates L data vectors {ξl}
L
l=1 from L frequency bins, and each

ξl contains Q snapshots. If only a certain part of frequency

bins are of interest, we can simply remove the uninterested ξl
from ξ̄ and then follow the derivation that comes afterwards.

Denote the overall data vector as ξ̄ =
[
ξT1 , ξ

T
2 , · · · , ξ

T
L

]T
,

where ξl =
[
XT

l (1),XT
l (2), · · · ,XT

l (Q)
]T

. To proceed

with notational convenience, we use {φk = sin θk}
K
k=1 to

replace the original DOAs {θk}
K
k=1 to be estimated. Besides,

we use Al to represent Al

(
φ̄
)
, where φ̄ = [φ1, φ2, · · · , φk]

T
.

The received data ξ̄ is a function of a K+KL+L dimensional

unknown parameter vector

α =
[
φ̄T , p̄T , p̄T

N

]T
,

where
p̄ =

[
pT
1 ,p

T
2 , · · · ,p

T
L

]T
,

pl = [p1 (l), p2 (l), · · · , pK (l)]
T
,

p̄N = [pN (1), pN (2), · · · , pN (L)]
T
.

According to the signal model, ξ̄ follows a complex normal

distribution such that ξ̄ ∼ CN
[
0, Γ̄ (α)

]
, where the whole

covariance matrix is expressed as

Γ̄ (α) = blkdiag [Γ1 (α), · · · ,ΓL (α)] ,

where Γl (α)=IQ⊗RX (l). Denote the CRB matrix as B (α).
Assume the Fisher information matrix (FIM) is invertible, and

then the (i, j)-th element of the FIM is given by [4], [31], [32]

[
B−1 (α)

]

i,j
= Q

L∑

l=1

{[
RT

X (l)⊗RX (l)
]− 1

2 ∂rX(l)
∂[α]i

}H

·
{[

RT
X (l)⊗RX (l)

]− 1

2 ∂rX(l)
∂[α]j

}

, (2)

where ∂f (α)/∂α is the partial derivative of a function f(α)
with respect to the variable α, and ⊗ denotes the Kronecker

product. rX (l) = vec [RX (l)] , where vec(·) is the vector-

ization operation. According to (1), rX (l) can be expressed

as
(3)rX (l) = Ad (l)pl + pN (l) iM2 ,

where Ad (l) = Al
∗ ⊙ Al, iM2 = vec (IM ), and ⊙ denotes

the Khatri-Rao product. Computing the derivatives of rX (l)
with respect to αT yields

(4a)
∂rX (l)

∂φ̄T
= A′

d (l)RS (l) ,

(4b)
∂rX (l)

∂p̄T
= [0, · · · , Ad (l)

︸ ︷︷ ︸

the l-th block

, · · · ,0],

(4c)
∂rX (l)

∂p̄T
N

= [0, · · · , iM2

︸︷︷︸

the l-th column

, · · · ,0],

where
(5)A′

d (l) = A′

l
∗
⊙Al +Al

∗ ⊙A′

l,

(6)A′
l = [a′

l (1),a
′

l (2), · · · ,a
′

l (K)] ,

(7)a′

l (k) =
∂al (φk)

∂φk

,

and {·}∗ is the conjugate operation. Substituting (4) into (2),

we obtain

(8)B−1 (α) = Q

[

ḠH
φ̄

G̃H
p

]
[

Ḡφ̄, G̃p

]

,



where

(9a)Ḡφ̄ = W̃ Ã′
dR̄S ,

(9b)G̃p = W̃
[

Ãd, ĩ
]

,

W̃ = blkdiag (W1,W2, · · · ,WL) ,

(9c)Ãd = blkdiag [Ad (1) ,Ad (2) , · · · ,Ad (L)] ,

Ã′
d = blkdiag [A′

d (1) ,A
′

d (2) , · · · ,A
′

d (L)] ,

R̄S =
[
RT

S (1) ,RT
S (2) , · · · ,RT

S (L)
]T

,

ĩ = IL ⊗ iM2 ,

Wl =
[
RT

X (l)⊗RX (l)
]− 1

2 .

We are only interested in the principal sub-matrix in B (α)
corresponding to normalized DOAs, denoted by B

(
φ̄
)
. Fol-

lowing the inversion of a partitioned matrix [31], we obtain

(10)B
(
φ̄
)
=

(

QḠH
φ̄
Π

⊥
G̃p

Ḡφ̄

)−1

,

where Π
⊥
G̃p

= IM2L− G̃p

(

G̃H
p G̃p

)−1

G̃H
p is the orthogonal

projector onto the null space of G̃H
p . Furthermore, we can

rewrite G̃p as G̃p =
[

Ṽ , ũ
]

, where

Ṽ = blkdiag (V1,V2, · · · ,VL) = W̃ Ãd,

ũ = blkdiag (u1,u2, · · · ,uL) = W̃ ĩ,

Vl = WlAd (l) , ul = WliM2 .

Since G̃p shares the same null space with
[

Ṽ ,Π⊥
Ṽ
ũ
]

, we

have

Π
⊥
G̃p

= IM2L −
[

Ṽ ,Π⊥
Ṽ
ũ
] [

Ṽ H Ṽ 0

0 ũH
Π

⊥
Ṽ
ũ

]−1 [
Ṽ H

ũH
Π

⊥
Ṽ

]

= Π
⊥
Ṽ

−Π
⊥
Ṽ
ũ
(
ũH

Π
⊥
Ṽ
ũ
)−1

ũH
Π

⊥
Ṽ
. (11)

Notice that

(12a)Π
⊥
Ṽ

= blkdiag
(
Π

⊥
V1
, · · · ,Π⊥

VL

)
,

(12b)ũH
Π

⊥
Ṽ
ũ = blkdiag

(
uH
1 Π

⊥
V1
u1, · · · ,u

H
LΠ

⊥
VL

uL

)
.

Substituting (12) into (11) yields

(13)Π
⊥
G̃p

= blkdiag
[

Π
⊥
Gp(1)

,Π⊥
Gp(2)

, · · · ,Π⊥
Gp(L)

]

,

where

Π
⊥
Gp(l)

= Π
⊥
Vl

−
Π

⊥
Vl
ulu

H
l Π

⊥
Vl

uH
l Π⊥

Vl
ul

.

Note that Π
⊥
Gp(l)

is the orthogonal projector onto the null

space of GH
p (l), where Gp (l) = Wl [Ad (l), iM2 ] . Based on

these results, (10) can be transformed into

(14)Bu

(
φ̄
)
=

[

Q

L∑

l=1

GH
φ̄
(l)Π⊥

Gp(l)
Gφ̄ (l)

]−1

,

which is the closed-form wideband CRB expression.

B. Rank Condition

In previous derivations, we simply assume that the FIM is

nonsingular, but the specific condition under which the CRB

exists is not investigated. In this subsection, we first introduce

the definition of the augmented co-array manifold (ACM)

matrix, and then clarify the rank condition for the existence

of the CRB.

Definition 1: The augmented co-array manifold matrix con-

taining L frequency bins is defined as

(15)Σ , [Ã′
dR̄S , Ãd, ĩ].

Theorem 1: The wideband CRB exists if and only if the

ACM matrix Σ is full column rank, i.e., if and only if

(16)rank(Σ) = K +KL+ L.

Proof: According to (8), (9a), (9b), and (15), we have

B−1 (α) = QΣHW̃HW̃Σ. Therefore, it is equivalent to

proving that ΣHW̃HW̃Σ is positive definite if and only if

Σ has full column rank. To continue, we introduce a vector

g ∈ C
K+KL+L.

(Sufficiency) Since W̃HW̃ is a positive definite and Her-

mitian matrix, ΣH(W̃HW̃ )Σ is also a Hermitian matrix.

If Σ is of full column rank, then Σg = 0 if and only

if g = 0. For any g 6= 0, we have Σg 6= 0. Hence

(Σg)H(W̃HW̃ )(Σg) > 0, i.e., gH(ΣHW̃HW̃Σ)g > 0,

which means ΣHW̃HW̃Σ is positive definite.

(Necessity) If ΣHW̃HW̃Σ is positive definite, then for

any g 6= 0, we have (Σg)H(W̃HW̃ )(Σg) > 0. Since

W̃HW̃ is positive definite, we know that Σg 6= 0. As a

result, Σg = 0 if and only if g = 0, indicating Σ has full

column rank.

With these statements, the whole proof is completed. �

C. Resolution Capacity

Consider an M -sensor linear array S, whose difference set is

denoted by D. In the narrowband case, the maximum number

of resolvable uncorrelated sources K is bounded by K ≤
|D|−1

2 [12], [13], where |D| is the cardinality of D. In the

wideband case, however, we have the following proposition

concerning the resolution capacity:

Proposition 1: Assume that K ≤ min{|D| , L(M2−1)
L+1 }. It is

possible to identify K >
|D|−1

2 sources under the wideband

model, which exceeds the limitation in the narrowband case.

Proof: For a start, we shall explain the upper bound in this

proposition. Since Σ has a size of M2L-by-(K +KL+ L),

the rank condition in Theorem 1 requires K ≤ L(M2−1)
L+1 . If

we apply the concept of ACM matrix to each frequency bin,

we can obtain a group of sub-band ACM matrices:

Σl = [A′

d (l)RS (l),Ad (l) , iM2 ] , l = 1, 2, · · · , L.

Note that Σl has a dimension of M2-by-(2K+1), while only

|D| rows in A′

d (l) and Ad (l) are linearly independent [12],

[13]. A necessary condition for Σ to be of full column rank is

that its sub-matrix Ãd should have full column rank. Accord-

ing to (9c), it is equivalent to {Ad (l)}
L
l=1 all having full col-

umn rank, which requires K ≤ |D|. On the other hand, Ad (l)
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Fig. 1. Wideband CRB versus SNR for different K.

can be treated as the equivalent array manifold matrix linked

to D, whose columns are always linearly independent when

K ≤ |D|. Hence, we assume K ≤ min{|D| , L(M2−1)
L+1 } in the

proposition, so that A′

d (l)RS (l), Ad (l), iM2 , Ã′
dR̄S , Ãd,

and ĩ are all of full column rank.

The narrow sub-band property will be definitely inherited

directly by the wideband scenario. However, based on the

introduced ACM matrix with a larger dimension, we discuss

the possibility of increased resolvable source number. Some

columns in A′

d (l)RS (l) and Ad (l) become linearly de-

pendent when K >
|D|−1

2 . The second sub-matrix in Σ,

namely, Ãd, is an M2L-by-KL matrix holding all sub-band

components on its diagonal. In contrast, the first sub-matrix

Ã′
dR̄S stacks the sub-band components following the column

direction, and the number of rows are extended to M2L.

Consequently, the number of linearly independent rows in

Σ will possibly approach |D|L, and the linear dependence

between the columns in {A′

d (l)RS (l)}Ll=1 and {Ad (l)}
L
l=1

might be eliminated. Therefore, Σ might have full column

rank for K >
|D|−1

2 , which completes the proof. �

Remark 1: It has been demonstrated in [28] that the number

of resolvable sources is smaller than the sensor number

without prior knowledge. Nonetheless, Proposition 1 indicates

that if the sources are known a priori to be uncorrelated, it is

feasible to identify more sources than the number of sensors

by the division of a group of frequency bins, while no special

array structure is required. This will be verified by numerical

results in Section IV.

IV. SIMULATIONS

In all simulations, we set the sources to be uncorrelated and

examine the CRB for the first source φ1. The number of DFT

points is L = 64, and the frequency bins of interest cover from

17 to 32. The K sources are uniformly distributed between

−60◦ and 60◦ and have equal powers in each frequency

bin. The unit spacing between two sensors is half of the

minimum signal-of-interest wavelength with d =
λmin
2 . The

central frequency of the l-th frequency bin is fl = fs(l−1)
L

,

and the number of snapshots is Q = 500.

We first focus on the dependence of the CRB on SNR in

both overdetermined and determined/underdetermined cases,

which is shown in Fig. 1. We use a 6-sensor ULA whose

sensor positions are given by SULA = {1, 2, 3, 4, 5, 6}, and set

0 5 10 15 20 25 30 35 40
10

-10

10
-5

10
0

10
5

10
10

Fig. 2. Wideband CRB versus K.

the number of sources K to vary from 4 to 8. We can see that

the CRB decreases monotonically with the increase of SNR

in the overdetermined case (K = 4, 5). When SNR exceeds 0

dB, the two curves show an inverse logarithmic dependence

on SNR. However, in the determined/underdetermined case

(K = 6, 7, 8), the CRB tends to a constant above some certain

SNR threshold values. Note that the wideband CRB exists

in the determined/undetermined regime even if a spare array

structure is not employed, which verifies Proposition 1.

Next, we evaluate the resolution capacity for the wideband

model with two array structures. We use a 10-sensor ULA with

S
′

ULA = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and a 10-sensor NA with

Snested = {1, 2, 3, 4, 5, 6, 12, 18, 24, 30} [6], whose difference

co-array is Dnested = {0,±1, · · · ,±29}. We keep SNR at 0 dB

and let the number of sources K vary from 1 to 40. As plotted

in Fig. 2, the wideband CRB with ULA diverges at K = 17,

while the wideband CRB with NA stays lower than 101 in the

region K ≤ 32. This not only verifies Proposition 1, but also

indicates that the resolution capacity is further improved with

the assistance of sparse arrays. Moreover, compared with the

narrowband CRB curve corresponding to the 32nd frequency

bin, the wideband CRB exceed the bound of K ≤ 29, which

validates Proposition 1.

V. CONCLUSION

The closed-form CRB expression for DOA estimation for

wideband uncorrelated sources has been derived. The existence

of the CRB was proved by the rank condition of the introduced

ACM matrix, and the wideband resolution capacity was then

discussed. If the sources are known a priori to be uncorrelated,

the wideband model is capable of identifying more sources

than the number of physical sensors without the assistance of

sparse array structures, which overcomes the limitation on the

resolution capacity inherited based on individual narrowband

frequency bins. Finally, it has been verified by simulations

that the derived closed-form CRB expression is valid in both

overdetermined and underdetermined cases with more sources

being resolved based on a ULA. It has also been shown by

simulations that the maximum number of resolvable sources

exceeds that employing a single narrowband frequency bin

with a lower bound achieved.
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