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Abstract—A “wireless fingerprint” which exploits hardware
imperfections unique to each device is a potentially powerful
tool for wireless security. Such a fingerprint should be able
to distinguish between devices sending the same message, and
should be robust against standard spoofing techniques. Since
the information in wireless signals resides in complex baseband,
in this paper, we explore the use of neural networks with
complex-valued weights to learn fingerprints using supervised
learning. We demonstrate that, while there are potential benefits
to using sections of the signal beyond just the preamble to learn
fingerprints, the network cheats when it can, using information
such as transmitter ID (which can be easily spoofed) to artificially
inflate performance. We also show that noise augmentation by
inserting additional white Gaussian noise can lead to significant
performance gains, which indicates that this counter-intuitive
strategy helps in learning more robust fingerprints. We provide
results for two different wireless protocols, WiFi and ADS-B,
demonstrating the effectiveness of the proposed method.

Index Terms—wireless fingerprinting, complex-valued neural
networks

I. INTRODUCTION

With the proliferation of wireless devices in everyday life,
assuring the security of such devices becomes a critical concern.
We focus here on a potentially powerful tool for this purpose:
wireless fingerprints based on hardware imperfections unique
to each device. Prior work shows that it is possible to extract
such fingerprints, but it is often based on handcrafted features
extracted with knowledge of the underlying protocol [1, 2].
In this paper, we investigate the use of a protocol-agnostic
approach, employing supervised learning of fingerprints via a
neural network.

Our goal is to extract a fingerprint that enables us to
distinguish between two devices sending exactly the same
message, using as input the complex baseband signal at
the receiver. Since the input is complex-valued and one-
dimensional (1D), we employ a 1D convolutional neural
network (CNN) with complex-valued weights. When compared
to prior approaches [3, 4] that use real-valued networks (with
real and imaginary parts of input data treated as independent
channels), these networks have a smaller degree of freedom
available at the synaptic level. It has been observed that this
confers generalization benefits [5].

While we would like to develop wireless fingerprinting
techniques that are protocol-agnostic, we must remain vig-
ilant against locking onto easily spoofed features. A naive
∗Joint first authors.

protocol-agnostic scheme would not distinguish between any
segments of the message from which the fingerprint is being
extracted. However, for any communication protocol, the
message contains transmitter ID information, e.g. the MAC
address in WiFi packets, the ICAO aircraft address in ADS-
B (Automatic Dependent Surveillance-Broadcast) air traffic
control signals, etc. Such ID information can be spoofed, hence
any fingerprinting technique that uses the entire message must
prove that it does not “cheat” by focusing just on the ID.
We demonstrate that a completely protocol-agnostic CNN is
vulnerable to such involuntary cheating, and then show that
using the preamble, which is common to all packets from all
transmitters, suffices to obtain reasonable accuracies, despite
the relatively short length of the preamble compared to the
length of the entire message. We then explore the impact of
noise on training, and propose a noise augmentation strategy
for enhancing performance.

Contributions

We propose a protocol-agnostic fingerprinting technique
using complex-valued CNNs and demonstrate its robustness
to various real-world imperfections. Our main contributions
are as follows:
• We demonstrate that supervised learning using complex-

valued CNNs works well for two different wireless proto-
cols, WiFi and ADS-B, and compare the performance of
different complex activation functions and architectures.

• When making use of portions of the signal beyond just the
preamble, we show that networks will “cheat” whenever
given the chance, resulting in artificially high accuracies
(that are independent of the noise level) by focusing on
the transmitter ID information present in these sections.

• We then focus on learning fingerprints from the preamble.
Restricting to the preamble is not strictly protocol-agnostic,
but, in principle, the location and extent of the preamble
can be identified in unsupervised fashion for any given
protocol by correlating packets across different transmitters.
We study the robustness of our approach to noise in the
data, and find that performance is better when the training
set has lower SNR than the test set.

• We show that noise augmentation, or insertion of additional
white Gaussian noise (AWGN), can significantly improve
performance, presumably because it aids in learning more
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Fig. 1: Complex-valued 1D CNN architecture for ADS-B signals.

robust fingerprints. In particular, it is important to add
noise to test data as well as the training data (with more
noise added to training data) to yield benefits.

II. RELATED WORK

Wireless device fingerprinting can be accomplished using
either the transient (microsecond-length) signals transmitted
during the on/off operation of wireless devices, or via the
steady-state packet information present in between the start
and end transients. We focus here on work that employs the
steady-state method since it is of more practical utility [6].
Work in this area can be broadly divided into two categories:
traditional approaches that use handcrafted features as device
characteristics, and techniques that employ machine learning
to obtain fingerprints.

A. Traditional approaches

Remote physical device fingerprinting using small, micro-
scopic deviations in device hardware called clock skews was
introduced in [7]. The clock skew of a single device was
observed to be fairly consistent over time, but clock skews
varied significantly across devices, enabling fingerprinting. For
wired devices in wide area networks, [7] estimated clock skews
using TCP/IP packet headers. This technique was extended
by [8] to wireless local area networks where more accurate
measurements are possible from the Time Synchronization
Function timestamps in IEEE 802.11 frames. However, these
two detection methods were defeated by [9] which devised
attacks to spoof the clock skew of a fake device to mimic that
of a real one. Using more parameters such as jitter and fitting
errors to measure the authenticity of the skew can mitigate
these spoofing attempts. More recently, [2] proposed using the
carrier frequency offset (CFO) as a long-term device fingerprint,
with the offset estimated using channel state information (CSI)
measurements. While application layer spoofing of CFO is
difficult [2], using the CFO as a mechanism for physical
security has two key drawbacks: first, it does not provide a
stable signature, since the oscillator frequency drifts over time;
second, an adversary manipulating baseband signals can easily
alter the CFO.

B. Machine learning based approaches

The first use of discriminatory classifiers for fingerprinting
was in [6], which used a k-nearest neighbor (k-NN) classifier
after preprocessing WiFi data to extract the log-spectral-energy
of the preamble. A different preprocessing step was proposed
in [1], involving demodulation error metrics such as frequency
offset and I/Q offset, followed by a support vector machine
(SVM). For the ADS-B air traffic control protocol, [10]
performed k-means clustering on features based on inter-arrival
times of aircraft position, velocity and identification messages.
A similar inter-arrival approach was shown in [11] to be
effective for WiFi fingerprinting, with a real-valued neural
network (NN) operating on the extracted features. In [12], the
carrier phase offset of ADS-B signals was used as input to an
NN to learn fingerprints. For IEEE 802.15.4 ZigBee devices,
[13] proposed the use of a real-valued CNN operating on an
error signal obtained by subtracting out the ideal estimated
signal from received data. These techniques work well, but they
rely on protocol-specific signal modeling and preprocessing
prior to learning, in contrast to our approach.

A purely learning based approach was studied in [3, 14],
albeit for modulation recognition and not device fingerprinting.
Each packet was sliced into multiple training examples using
sliding windows, with the real and imaginary parts of complex
data treated as independent channels. These were then input
to a real-valued CNN capable of recognizing different analog
and digital modulation types. The use of a real-valued CNN
for WiFi device fingerprinting was studied in [4], with sliding
window preprocessing similar to prior work. As discussed in
Section I, our proposed method of learning complex-valued
representations has potential generalization benefits over real-
valued approaches [5].

III. COMPLEX VALUED CNN ARCHITECTURE

A. Overview

We use neural networks with complex-valued weights and
biases to learn features from complex-valued wireless signals.
Such complex-valued embeddings have found use in speech,
music and vision tasks [15, 16]. Here we employ the framework
of [15] which performs complex backpropagation by using
partial derivatives of the cost with respect to the real and
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Fig. 2: ModReLU and CReLU activation functions in the
complex plane. ModReLU preserves the phase of all inputs
outside a disc of radius b, while CReLU distorts all phases
outside [0, π/2] (the first quadrant). Figure adapted from [15].

imaginary parts of each parameter. We make use of 1D complex
convolutional layers with the following choices of activation
functions (depicted in Fig. 2):

• ModReLU - This function preserves input phase and
affects only the absolute value. Here b is a learned bias.

ModReLU(z) = max(|z| − b, 0) ej z .

• CReLU - Unlike ModReLU this function does not
preserve phase, with separate ReLUs applied on the real
and imaginary parts of the input. The phase of the output
is therefore limited to [0, π/2].

CReLU(z) = max(Re(z), 0) + jmax(Im(z), 0).

The loss in phase information can be potentially compen-
sated by using filters with a larger number of channels
that are capable of providing phase derotation.

Fig. 1 depicts a sample complex convolutional architecture for
ADS-B signals. We use a series of complex 1D convolutions
followed by an | · |2 layer to convert complex representations
to real ones, and then a series of real-valued layers after a
temporal averaging layer to obtain the fingerprint.

B. Performance

We provide results for an external database for two different
wireless protocols: WiFi 802.11a (5.8 GHz) and 802.11g
(2.4 GHz) commercial off-the-shelf emitters with a signal
bandwidth of 20 MHz, and ADS-B (1.09 GHz) narrowband
air traffic control signals. We start by using only the preamble
for fingerprinting, with signals normalized to unit power. When
sampled at 20 MHz, the length of the preamble is 320 I/Q
samples for both protocol types.

We report accuracies for the following networks:
• ADS-B: 100C 40×20 – 100C 5×1 – | · |2 – Avg – 100D.
• WiFi: 100C 20×10 – 100C 10×1 – | · |2 – Avg – 100D.
The notation should be read as follows: <number of
filters>C <convolution size>×<stride>, and <number of
neurons>D, where C represents a convolutional layer and D
a fully connected layer, with complex-valued layers prior to
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Fig. 3: Evolution of training accuracy over epochs for
ModReLU and CReLU architectures (ADS-B, 100 devices).
ModReLU provides a small (5%) gain in train and test
accuracies over CReLU, with similar convergence behavior.

the | · |2 layer and real-valued layers afterward. ‘Avg’ denotes
a temporal averaging layer. We train networks for 200 epochs
with a batch size of 100, using the Adam optimizer with
default hyperparameters and `2 regularization constant of 10-3.

We achieve 99.53% fingerprinting accuracy for 19 WiFi
devices without channel distortion, using 200 samples per
device for training and 100 for testing. For the ADS-B protocol,
we obtain 81.66% accuracy with 100 devices (using 400
samples per device for training and testing). Fig. 3 compares
the convergence of ModReLU and CReLU architectures.
Both activation functions have similar convergence time, with
ModReLU resulting in slightly higher accuracy for both the
training and test sets.

Table I compares the performance of complex-valued and
real-valued networks (for which real and imaginary parts of
data are treated as different channels). If we fix the number of
feature maps, a complex filter would contain twice as many
parameters as an equivalent real filter. Therefore, we consider
real networks where the number of channels is scaled by
factors of 1, 1.4 and 2. We find that the complex network
outperforms its real counterparts, with a gain in accuracy of
6.66% for ADS-B and 1.64% for WiFi.

Fig. 4 visualizes the first and second convolutional layer
of the ADS-B architecture, showing the input signal that
maximizes the activations of each filter. Since transmitter-

TABLE I: Performance comparison between networks with
complex and real weights (when using only the preamble).

Dataset Network type Accuracy No. of real
parameters

ADS-B Complex 81.66 128,400
Real 73.84 78,400
Real (1.4x) 73.25 133,680
Real (2x) 75.00 246,600

WiFi Complex 99.53 216,219
Real 97.32 116,219
Real (1.4x) 97.53 217,899
Real (2x) 97.89 430,419
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Fig. 4: Visualizations of the first and second convolutional layer for ADS-B (ModReLU architecture). Each row shows the
input signal that maximizes the activation of a particular filter, computed using gradient ascent starting from random noise.
Convolutional filters in the first layer span 2 input symbols; filters in the second layer span 6 symbols.

characteristic nonlinear effects manifest themselves primarily
in short-term transitions of amplitude and phase, the filters in
the first layer can capture these effects by spanning a small
multiple of the symbol interval (2 symbols). To compute these
signals, we start from randomly generated noise and use 200
steps of gradient ascent to maximize the absolute value of
each filter output, with the signal normalized to unit power at
each step.

IV. ROBUSTNESS TO ID

In this section, we investigate the potential benefits to using
post-preamble portions of the signal and analyze the robustness
of our network to the presence of device ID information in
such portions. We would like the network to focus on nonlinear
transmitter characteristics embedded in the packets rather than
the device ID which can be easily spoofed. We expect these
nonlinear features to be stable over time, as compared to the
device ID which is localized in time. Here we focus on the
ADS-B protocol and begin by describing its packet structure.

A. ADS-B Packet Structure

We consider two different types of ADS-B packets: Mode S
and Mode S Extended, depicted in Fig. 5. For both packet types,
the first 16 symbols consist of a preamble that is identical
across devices, while symbols 17-40 contain the ICAO address
which is unique to each device. The two modes have different
packet lengths, with 64 symbols in Mode S and 120 symbols in
Mode S Extended. For this reason, we prune Mode S Extended

packets to 64 consecutive symbols, using an offset to determine
the first selected symbol. We consider three different scenarios
for the offset: an offset of zero, a randomly chosen offset and
a fixed offset where we choose the last 64 symbols.

B. Performance

Performance for each scenario is shown in Fig. 6. We report
on accuracies for 100 devices, using 400 samples per device
for training and testing. We obtain a very high accuracy of
99.29% when we do not use any offset, but this reduces to
65.64% and 75.49% in the scenarios with offsets. The picture
becomes clearer when we examine the performance for Mode
S and Mode S Extended: the two packet types have identical
accuracies in the scenario without offset, but in the other
scenarios, Mode S dominates performance. Such a temporal
dependence indicates that the network is not learning the true
nonlinearities, but rather focusing on device IDs from the
payload for Mode S. It is easy to obtain 99% accuracy by
restricting attention to just the ICAO address (which can be
easily spoofed), which is a clear indicator of “cheating”.

A natural approach to prevent such involuntary cheating
might be to delete symbols 17-40 (which correspond to the
ICAO address). However the presence of parity bits towards
the end of the packet makes this approach insufficient. One
can observe that a combination of parity and preamble sections
can potentially reconstruct the ICAO address, and indeed in
practice we obtain artificially high accuracies similar to the
previous scenarios. In contrast, when we restrict attention to
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Fig. 5: Packet structure of ADS-B signals. Top: Mode S;
bottom: Mode S Extended. The first 16 symbols of both packet
types are device-independent, while the next 24 symbols are
highly device-dependent.

the preamble alone, performance decreases to 81.66%, which
is still much better than pure chance. Another approach might
be to set the kernel size of the first convolutional layer to
2 symbols, so as to prohibit the network from learning the
ICAO address even if we allow access to the entire packet.
This reduces accuracy to 97.28%, but it is still much higher
than when we use only the preamble. At first glance it may
seem like small filter sizes at the first layer are sufficient to
prevent cheating, but one just needs to look at the second layer
to see that its filters actually extend over 6 symbols.

These experiments show that allowing networks to access
ID information is unwise: networks “cheat” whenever given
the chance and ignore transmitter-characteristic nonlinearities
in favor of localized device information. We can mitigate this
by allowing access to only the preamble, in which case we
obtain the nonlinear fingerprints we are looking for.

V. ROBUSTNESS TO NOISE

In this section, we investigate the impact of noise on
classification accuracy. We first study the effect of real-world
noise and then discuss noise augmentation strategies to enhance
performance.

A. Impact of naturally occurring noise

We study the effect of different levels of noise in the
training and test sets, using ADS-B data with 100 devices in
each scenario. When we cheat by using the ICAO address as
described in the previous section, we obtain artificially high
accuracies that are independent of the noise level, indicating
that such a network can be easily spoofed even when the data
is noisy.

When we use only the preamble, we observe a surprising
trend (shown in Table II): performance improves when the
training data is noisier than the test data. In contrast, when
the training SNR is higher than the test SNR, we obtain
high training accuracies but low test accuracies. While this
result might seem initially counter-intuitive, it is a reasonable
hypothesis that noise forces the network to learn features that
are more robust to perturbations.

No offset Random offset Fixed offset
0

20

40

60

80

100 Overall accuracy

Mode S

Mode S Extended

Fig. 6: Classification accuracies for ADS-B (100 devices)
when using post-preamble data. Here we use architecture
100C 100×50 – | · |2 – 100C 10×2 – Avg – 100D. For
details on notation, see Section III-B.

B. Noise augmentation

We perform noise augmentation by inserting various levels
of additional white Gaussian noise (AWGN) in the training
and test sets, and report on accuracies as a function of injected
noise levels in Table III. Here SNRaug denotes the signal to
artificially injected noise ratio, so that SNRaug =∞ corresponds
to no noise injection. We consider two datasets: 100 ADS-
B devices corresponding to the first row of Table II, with
400 signals per device for training and testing; and 100 WiFi
devices in an outdoor environment, with 800 signals per device
for training and 200 for testing.

Noise insertion yields significant performance benefits, with
19.83% improvement for ADS-B and 7.64% improvement for
outdoor WiFi. We note, however, that it is important to add
noise to both the training and test sets. Adding noise to only
the training set can result in poor performance: for the WiFi
data, at 20 dB train SNRaug, test accuracy drops to 2.09%
(with 76.32% training accuracy).

TABLE II: Accuracy as a function of SNR for ADS-B (100
devices), using only the preamble. Here low SNR corresponds
to <2 dB, medium SNR to 2-5 dB and high SNR to >5 dB.

Test SNR Train SNR Test accuracy Train accuracy

Low High 32.29 90.50
Medium 51.26 84.83

Medium High 68.85 90.80
Low 71.13 80.51

High Medium 81.66 83.71
Low 73.48 80.53



TABLE III: Effect of noise augmentation on ADS-B and outdoor WiFi fingerprinting. The ADS-B dataset corresponds to the
first row of Table II (with low test SNR, high train SNR). Noise injection improves ADS-B performance from 32.29% (which
corresponds to train SNRaug = test SNRaug = ∞, i.e. no noise insertion) to 52.12% when train SNRaug = 10 dB and test
SNRaug = 50 dB. Outdoor Wifi accuracy improves from 61.73% to 69.37% .

(a) ADS-B (100 devices)

Train
SNRaug

Test
SNRaug 20 dB 50 dB 100 dB ∞

10 dB 48.39 52.12 51.89 43.28

15 dB 52.12 50.75 51.98 40.63

20 dB 35.25 47.63 45.44 15.29

25 dB 36.38 45.74 45.29 11.82

∞ 25.67 33.55 34.77 32.29

(b) WiFi (100 devices, outdoor environment)

Train
SNRaug

Test
SNRaug 20 dB 50 dB 100 dB ∞

10 dB 61.65 62.21 61.90 3.04

15 dB 63.37 62.92 61.00 2.97

20 dB 69.37 69.06 67.83 2.09

25 dB 68.53 69.02 68.17 2.87

∞ 29.90 31.45 30.93 61.73

VI. CONCLUSIONS

In this paper, we have demonstrated the efficacy of complex-
valued CNNs for wireless fingerprinting. This technique does
not rely on signal domain knowledge and, as illustrated by
our experiments with WiFi and ADS-B data, can be used
across diverse wireless protocols. We show the vulnerability
of the approach to “cheating” using transmitter ID when
using the entire message to extract the fingerprint. When
using the preamble alone, reasonably high accuracies are
obtained, and performance is significantly enhanced by noise
augmentation. Open issues worth investigating include (a)
provably non-cheating, protocol-agnostic strategies that use
the entire packet, (b) automatic extraction of the preamble
given data corresponding to any protocol, (c) utilizing multiple
packets for decisionmaking; and (d) developing detailed insight
into the nature of the signatures extracted, and the impact of
noise augmentation.
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