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Abstract—In this paper, we investigate the scheduling design
of a mobile-edge computing (MEC) system, where the random
arrival of mobile devices with computation tasks in both spatial
and temporal domains is considered. The binary computation
offloading model is adopted. Every task is indivisible and can
be computed at either the mobile device or the MEC server. We
formulate the optimization of task offloading decision, uplink
transmission device selection and power allocation in all the
frames as an infinite-horizon Markov decision process (MDP).
Due to the uncertainty in device number and location, conven-
tional approximate MDP approaches to addressing the curse of
dimensionality cannot be applied. A novel low-complexity sub-
optimal solution framework is then proposed. We first introduce
a baseline scheduling policy, whose value function can be derived
analytically. Then, one-step policy iteration is adopted to obtain
a sub-optimal scheduling policy whose performance can be
bounded analytically. Simulation results show that the gain of
the sub-optimal policy over various benchmarks is significant.

I. INTRODUCTION

With the proliferation of smart mobile devices, new applica-

tions with computation-intensive tasks are springing up, such

as image recognition, online gaming and mobile augmented

reality. Mobile-edge computing (MEC) is envisioned as a

promising network architecture to address the conflict between

resource-hungry applications and resource-limited devices.

MEC has been intensively investigated in recent years. In

[1], the authors considered a single user MEC system powered

by wireless energy transfer. The optimal offloading decision,

local CPU frequency and time division between wireless

energy transfer and offloading were derived in closed form via

convex optimization theory. The authors in [2] extended the

work to a multi-user scenario and formulated the multi-user

resource allocation problem as a convex optimization problem.

An insightful threshold-based optimal offloading strategy was

derived. Moreover, game-theory-based algorithms were de-

signed to resolve the contention of multi-user MEC offloading

decision in [3], [4].

The above works ignore the dynamics of mobile devices.

Moreover, they assume the transmission and computation of

a task can be finished within channel coherent time, which
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the Shenzhen Science and Technology Innovation Committee under Grant
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may not be the case in many applications. Considering the

randomness of channel fading and task arrival, the scheduling

in MEC systems becomes a stochastic optimization problem.

Several works have been done to tackle such scheduling

problems in MEC systems. In [5], the authors considered

a single-user MEC system and proposed a Lyapunov opti-

mization algorithm to minimize the long-term average energy

consumption. Also, the authors in [6] investigated the power-

delay tradeoff of a multi-user MEC system via Lyapunov

optimization. Moreover, the authors in [7] solved the power

constrained delay-optimal task scheduling problem for an

MEC system via MDP. Nevertheless, all these works consider

either a single mobile device or a number of fixed mobile

devices. The scheduling design with random arrival of mobile

devices remains open.

In this paper, we would like to shed some light on the

above issue. Specifically, we consider an MEC system, where

a base station (BS) is connected with an MEC server. New

mobile devices, each with a computation task, arrive randomly

in the coverage region of the BS. Every computation task can

be either computed locally or offloaded to the MEC server

via uplink transmission. The optimization of task offloading

decision, uplink device selection and power allocation in all

the frames is formulated as an infinite-horizon MDP with

discounted cost. Due to the dynamics of arrival and departure,

the number of mobile devices in the MEC system is variable.

The conventional approximate MDP approaches cannot be

applied to address the curse of dimensionality, and a novel

solution framework is proposed in this paper. Particularly,

we first propose a baseline scheduling policy, whose value

function can be derived analytically. Then, one-step policy

iteration is applied to obtain the proposed sub-optimal policy.

Since the value function for policy iteration can be calculated

from analytical expression, the conventional value iteration

can be avoided. Moreover, the analytical value function of

the baseline policy provides an upper bound on the average

discounted cost of the proposed sub-optimal policy.

II. SYSTEM MODEL

A. Network Model

We consider an MEC system as illustrated in Fig. 1, where a

BS serves a region C and an MEC server is connected with the

http://arxiv.org/abs/1904.13024v2
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Fig. 1. Illustration of MEC system model.

BS. Mobile devices with computation tasks arrive randomly

in the service region C. Binary computation offloading model

is adopted, and every task is assumed to be indivisible in the

sense of computing. Each task can be either computed locally

or offloaded to the MEC server via uplink transmission.

There are a number of mobile devices in the cell region C,

which may be quasi-static, moving inside or out of the region

C. The mobile devices with computation tasks are named as

active devices in the remainder of this paper. The time axis of

computation and uplink transmission scheduling is organized

by frames, each with a time duration Ts. In each frame,

there is at most one new active device arrived in the cell

with probability PN ∈ (0, 1]. We have no restriction on the

distribution and mobility model of the mobile devices in the

cell. Instead, the distribution density of the new active device

is represented as λ(l) for arbitrary location in the cell region

l ∈ C. Thus,
∫
C
λ(l)ds(l) = 1, and

Pr[New active device is in region C
′

]=

∫

C′
λ(l)ds(l), ∀C

′

⊆C.

Moreover, it is assumed that the location of each active device

is quasi-statistic in the cell when its task is being transmitted

to the MEC server. The active devices become inactive when

their computation tasks have been completed either locally or

remotely at the MEC server.

Every new active device in the cell is assigned with a unique

index. Let UL(t) and UE(t) be the sets of active devices in

the t-th frame whose tasks are computed locally and at the

MEC server respectively, DL(t) ⊆ UL(t) and DE(t) ⊆ UE(t)
be the subsets of active devices whose computation tasks are

accomplished in the t-th frame locally and at the MEC server

respectively, nt be the index of the new active device arriving

at the beginning of t-th frame. If there is no active device

arrival at the beginning of t-th frame, {nt} = ∅ where ∅
represents the empty set. On the other hand, if there is a

new active device arrival, the BS should determine if the

computation task is computed at the device or the MEC server.

Let e(t) ∈ {0, 1} represents the decision, where e(t) = 1
means the task is offloaded to the MEC server and e(t) = 0
means otherwise. Hence, the dynamics of active devices can

be represented as

UE(t+ 1) =

{
UE(t) ∪ {nt}/DE(t) when e(t) = 1

UE(t)/DE(t) otherwise,
(1)

UL(t+ 1) =

{
UL(t) ∪ {nt}/DL(t) when e(t) = 0

UL(t)/DL(t) otherwise,
(2)

where operator “/” denotes the set subtraction.

B. Task Offloading Model

The input data for each computation task is organized by

segments, each with bs information bits. Let dk be the number

of input segments for the task at the k-th active device. It

is assumed that the number of segments for each task is a

uniformly distributed random integer between dmin and dmax,

i.e. dk ∼ U(dmin, dmax). For the computation tasks offloaded

to the MEC server, the input data should be delivered to the

BS via uplink transmission. Hence, an uplink transmission

queue is established at each active edge computing device.

Let QE
k (t), ∀k ∈ UE(t), be the number of segments in the

uplink transmission queue of the k-th device at the beginning

of the t-th frame. Hence, ∀t with {nt} 6= ∅ and e(t) = 1,

QE
nt
(t+ 1) = dnt .

In uplink, it is assumed that only one active device is

selected in one uplink frame and the uplink transmission

bandwidth is denoted as W . Let Hk(t) =
√

ρk(t)hk(t), ∀k ∈
UE(t), be the uplink channel state information (CSI) from the

k-th active device to the BS, where hk(t) and ρk(t) represent

the small-scale fading and pathloss coefficients respectively.

hk(t) ∼ CN(0, 1) is complex Gaussian distributed with zero

mean and variance 1. Moreover, it is assumed that hk(t) is

independently and identically distributed (i.i.d.) for different

t or k. Let pk(t) be the uplink transmission power of the k-th

active device if it is selected in the t-th frame. The uplink

channel capacity of the k-th active device, if it is selected in

the t-th frame, can be represented by

rk(t) = W log2

(
1 +

pk(t)ρk(t)|hk(t)|2

σ2
z

)
,

where σ2
z is the power of white Gaussian noise. Furthermore,

the number of segments transmitted within the t-th frame can

be obtained by

φk(t) =

⌊
rk(t)Ts

bs

⌋
, (3)

where ⌊X⌋ is the maximum integer less than or equal to X .

Hence, let at be the index of the selected uplink transmis-

sion device in the t-th frame, we have the following queue

dynamics for all k ∈ UE(t),

QE
k (t+ 1) =

{ [
QE

k (t)− φk(t)
]+

if k = at
QE

k (t) if k 6= at,
(4)

where [X ]+ = max{0, X}.

As in many of the existing works [1], [8], [9], it is assumed

that there are sufficiently many high-performance CPUs at

the MEC server so that the computing latency at the MEC

server can be neglected compared with the latency of local

computing or uplink transmission. Moreover, due to relatively

smaller sizes of computation results, the downloading latency

of computation results is also neglected as in [6], [8], [9].



C. Local Computing Model

Following the computation models in [2], [6], the average

number of CPU cycles for computing one bit of the input

task data in the k active device is denoted as Lk, which

is determined by the types of applications. Denote the local

CPU frequency of the k-th active device as fk. We assume

Lk and fk are both uniformly distributed random variables,

i.e. Lk ∼ U(Lmin, Lmax) and fk ∼ U(fmin, fmax). An

input data queue is established at each active local computing

device. Let QL
k (t), ∀k ∈ UL(t), be the number of segments in

the input data queue of the k-th active device at the beginning

of the t-th frame. Hence, ∀t with {nt} 6= ∅ and e(t) = 0,

QL
nt
(t+ 1) = dnt .

Moreover, the queue dynamics at all active local computing

devices can be written as

QL
k (t+ 1) =

[
QL

k (t)−
fkTs

Lkbs

]+
, ∀k ∈ UL(t). (5)

Hence, the total computation time (measured in terms of

frames) for k-th active device, whose task is computed locally,

is given by

Tloc(dk, fk, Lk) =

⌈
dkbsLk

fkTs

⌉
, (6)

where ⌈X⌉ is the minimum integer greater than or equal to

X . Moreover, the local computation power of k-th device is

ploc(fk) = κf3
k , (7)

where κ is the effective switched capacitance related to the

CPU architecture [10].

III. PROBLEM FORMULATION

In this section, we formulate the optimization of task

offloading decision, uplink device selection and power allo-

cation as an infinite-horizon MDP with discounted cost.

A. System State and Scheduling Policy

The system state and scheduling policy are defined as

follows.

Definition 1 (System State). At the beginning of t-th frame,

the state of the MEC system is uniquely specified by St =
(SE

t ,S
L
t ,S

N
t ), where

• SE
t specifies the system status regarding the task offload-

ing, including the set of edge computing devices UE(t),
their uplink small-scale fading coefficients HE(t) ,

{hk(t)|k ∈ UE(t)} and pathloss coefficients GE(t) ,

{ρk(t)|k ∈ UE(t)}, and their uplink queue state infor-

mation (QSI) QE(t) , {QE
k (t)|k ∈ UE(t)}.

• SL
t specifies the system status regarding the local com-

puting, including the set of local computing devices

UL(t), the application-dependent parameters L(t) ,

{Lk(t)|k ∈ UL(t)}, their CPU frequencies F(t) ,

{fk(t)|k ∈ UL(t)}, and their QSI QL(t) , {QL
k (t)|k ∈

UL(t)}.

• SN
t specifies the system status regarding the new active

device, including the indicator of new arrival IN (t) ,

I({nt} 6= ∅) where I(·) is the indicator function, its

index nt, pathloss coefficient ρnt(t), size of input data

dnt , CPU frequency fnt and Lnt .

Definition 2 (Scheduling Policy). The scheduling policy

Ω(St) , (at, p(t), e(t)) is a mapping from the system state

St to the scheduling actions, i.e, the index at of the selected

uplink transmission device in the t-th frame, the transmission

power p(t) and the offloading decision e(t) for the new

arriving active device (if any).

B. Problem Formulation of MEC Scheduling

According to Little’s law, the average latency of one task

is proportional to the average number of active devices in the

system. Hence, we define the following weighted sum of the

number of active devices and their power consumption as the

system cost in the t-th frame.

g(St,Ω(St)), |UE(t)|+ |UL(t)|+ w[p(t) +
∑

k∈UL(t)

ploc(fk)],

where w is the weight on the power consumption of mobile

devices. The overall minimization objective with the initial

system state S1 is then given by

G(Ω,S1), lim
T→+∞

E{SN
t ,HE(t)|∀t}

[ T∑

t=1

γt−1g(St,Ω(St))

∣∣∣∣S1

]
,

where γ is the discount factor. As a result, the MEC schedul-

ing is formulated as the following infinite-horizon MDP.

Problem 1 (MEC Scheduling Problem).

Ω∗ = argmin
Ω

G(Ω,S1). (8)

According to [11], the optimal policy of Problem 1 can be

obtained by solving the following Bellman’s equations.

V(St)=min
Ω(St)

[
g(St,Ω(St)) +

∑

St+1

γPr(St+1|St,Ω(St))V(St+1)

]
,

where V (S) is the value function for system state S. Par-

ticularly, standard value iteration can be used to solve the

value function, and the optimal policy can be derived by

solving the minimization problem of the right-hand-side of

the above Bellman’s equations. In our problem, however, the

traditional value iteration is intractable due to the following

reasons: (1) the number of active devices is not fixed and the

state space grows exponentially with the increasing number

of active devices; (2) the spaces of small-scale fading and

pathloss are continuous.

In order to address the above issues, we first reduce the

system state space by exploiting (1) the independent distribu-

tions of small-scale fading and new active devices, and (2) the

deterministic cost of local computing devices. The conclusion

is summarized below.



Lemma 1 (Bellman’s Equations with Reduced State Space).

Define C(nt) ,
∑Tloc(dnt ,fnt ,Lnt)

τ=1 γτ [1 + wploc(fnt)], and

S̃t , SE
t /HE(t) = (UE(t),GE(t),QE(t)). Let

g′(St,Ω(St)) , |UE(t)|+ wp(t) + IN (t)(1 − e(t))C(nt),

W (S̃),min
Ω

lim
T→+∞

E

[ T∑

t=1

γt−1g′(St,Ω(St))

∣∣∣∣S̃1 = S̃

]
.

The optimal scheduling action for the system state St, denoted

as Ω∗(St), can be obtained as follows.

Ω∗(St) = arg min
Ω(St)

{
g′(St,Ω(St))

+
∑

S̃t+1

γPr
(
S̃t+1|St,Ω(St)

)
W(S̃t+1)

}
. (9)

Proof. Please refer to appendix A.

IV. LOW-COMPLEXITY SOLUTION

In this section, we first introduce a heuristic scheduling

policy as the baseline policy, whose value function can be

derived analytically. Then, the proposed low-complexity sub-

optimal policy can be obtained via the above value function

and one-step policy iteration. The derived value function

becomes the cost upper bound of the proposed policy.

A. Baseline Scheduling Policy

The baseline scheduling policy is elaborated below.

Policy 1 (Baseline Scheduling Policy Π). Given the sys-

tem state St, the baseline scheduling policy Π(St) =
(at, p(t), e(t)) is provided below

• Uplink transmission device selection at = minUE(t),
∀t. Thus, the BS schedules the uplink device in a first-

come-first-serve manner.

• The transmission power p(t) compensates the large-scale

fading (link compensation). Thus,

p(t) =
pr
ρat

, ∀t, (10)

where pr is the average receiving power at the BS.

• The task of the new active device is offloaded to MEC

server only when there is currently no active edge

computing device, i.e.,

e(t) = I

(
UE(t) = ∅

)
, ∀t. (11)

Given system state S̃, the value function of policy Π is

defined as

WΠ(S̃), lim
T→+∞

E

[ T∑

t=1

γt−1g′ (St,Π(St))

∣∣∣∣S̃1 = S̃

]
. (12)

Denote the index of the k-th arrived active edge computing

device in UE ∈ S̃ as mk. Let Tk be the number of frames

for completing the uplink transmission of the mk-th device.

WΠ(S̃) can be written as

WΠ(S̃)=E{Tk |∀k}



|UE |∑

k=1


wγ

k−1∑
i=1

Ti 1−γTk

1−γ

pr
ρmk

+
1−γ

k∑
i=1

Ti

1− γ







+PNE
{Tk|∀k},{C(nt)|∀t≤

∑|UE |

k=1 Tk}

[∑|UE |

k=1 Tk∑

t=1

γt−1C(nt)

]

+ lim
T→+∞

E
{Tk|∀k},{SN

t |∀t>
∑|UE |

k=1 Tk}

[ T∑

t=1+
∑|UE |

k=1
Tk

γt−1g′(St,Π(St))

]
,

(13)

where the first term is the average offloading cost of the

existing active edge computing devices, the second term is

the average local computing cost from the first frame to the

(
∑|UE |

k=1 Tk)-th frame, and the last term is the average cost

after the (
∑|UE|

k=1 Tk)-th frame. The first two terms can be

calculated by noticing the following factors.

• Since the amount of input data of one task is usually

much larger than the throughput of one frame, we have

the following approximation

Tk ≈




Qmk
bs

EhW log2

(
1 + pr |h|2

σ2
z

)
Ts



, ∀k, (14)

where Eh is the expectation w.r.t. small-scale fading.

• E[C(nt)] =

∑dmax
dmin

∫ fmax
fmin

∫
Lmax
Lmin

C(nt)dfdL

(dmax−dmin+1)(fmax−fmin)(Lmax−Lmin)
.

Define the state without any edge computing device as S̃∗ ,

[UE = ∅,GE = ∅,QE = ∅]. The third term of (13) can be

written as γ
∑|UE |

k=1 TkWΠ(S̃
∗), whose expression is derived in

the following lemma.

Lemma 2 (Analytical Expression of WΠ(S̃
∗)). Let u =

[1 0 0 0 ...]T ∈ R(dmax+1)×1 be the vector whose elements are

all 0 except the first one, and aT be the transpose of vector a.

Let g = [g1 g2 ... gdmax+1]
T ∈ R(dmax+1)×1, where g1 = 0,

gi = 1+ wEρnt
[ pr

ρnt
] + PNE[C(nt)], ∀i = 2, 3, ..., dmax + 1.

The analytical expression of WΠ(S̃
∗) is given by

WΠ(S̃
∗) =

+∞∑

t=1

uT(γM)t−1g = uT(I− γM)−1g, (15)

where I ∈ R(dmax+1)×(dmax+1) is the identity matrix. More-

over, the elements of the transition probability matrix M ∈
R(dmax+1)×(dmax+1) are given by

• M1,1 = 1− PN ,

• M1,j = 0, for j = 2, 3, ..., dmin,

• M1,j = PN

dmax−dmin+1 , for j = dmin + 1, dmin +
2, ..., dmax + 1,

• Mi,j = 0, for 1 < i < j,

• Mi,1 = exp{− [2
(i−1)bs
WTs −1]σ2

z

pr
}, for i = 2, 3, ..., dmax+1,



• Mi,j =exp{− [2
(i−j)bs
WTs −1]σ2

z

pr
}− exp{− [2

(i−j+1)bs
WTs −1]σ2

z

pr
},

otherwise.

Proof. Please refer to Appendix B.

B. Scheduling with Approximate Value Function

In this part, we use the value function of the baseline policy

WΠ(S̃) to approximate the value function of the optimal

policy W (S̃) in optimization problem (9). Hence, in the t-th
frame, the scheduling actions can be derived by the following

problem.

Problem 2 (Sub-optimal Scheduling Problem).

Π′ = arg min
Ω(St)

{
g′ (St,Ω(St))

+
∑

s̃t+1

γ Pr
(
S̃t+1|St,Ω(St)

)
WΠ(S̃t+1)

}
. (16)

Problem 2 can be solved by the following steps.

• Step 1: For each k ∈ UE(t), calculate

Gk
E = min

pk(t)

{
wpk(t)

+
∑

S̃t+1

γPr
(
S̃t+1|St,e(t)=1,at=k,pk(t)

)
WΠ(S̃t+1)

}
,

and

Gk
L = C(nt) + min

pk(t)

{
wpk(t)

+
∑

S̃t+1

γPr
(
S̃t+1|St,e(t)=0,at=k,pk(t)

)
WΠ(S̃t+1)

}
.

Let p∗k,E(t) and p∗k,L(t) be the optimal power allocation

of the above two problems respectively. Note that if there

is no arrival of new active device, C(nt) = 0, and the

above two problems are the same.

• Step 2: If mink G
k
E < mink G

k
L, the solution of Problem

2 is given by (e(t) = 1, at = k∗E , pk(t) = p∗k∗
E ,E(t)),

where k∗E = argmink G
k
E . Otherwise, the solution of

Problem 2 is given by (e(t) = 0, at = k∗L, pk(t) =
p∗k∗

L,L(t)), where k∗L = argmink G
k
L.

Moreover, we have the following bounds on the proposed

scheduling policy.

Lemma 3 (Performance Bounds). Let WΠ′(S̃) ,

lim
T→+∞

E

[∑T
t=1γ

t−1g′ (St,Π
′(St))

∣∣∣∣S̃1 = S̃

]
be the value

function of the policy Π′, then

W (S̃t) ≤ WΠ′(S̃t) ≤ WΠ(S̃t), ∀S̃t. (17)

Proof. Since policy Π′ is not the optimal scheduling pol-

icy, W (S̃t) ≤ WΠ′(S̃t) is straightforward. The proof of

WΠ′(S̃t) ≤ WΠ(S̃t) is similar to the proof of Policy

Improvement Property in chapter II of [11].

Remark 1. In most of the existing literature on wireless

resource allocation with approximate MDP [12], [13], [14],
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the performance can hardly be bounded analytically. The

novel solution framework proposed in this paper provides a

low-complexity policy whose performance can be bounded an-

alytically. Particularly, since the approximate value function

is derived analytically, the conventional value iteration can be

avoided, which reduces the computation complexity. Moreover,

since the proposed policy is obtained from the baseline policy

with analytical value function, its average cost is naturally

upper-bounded by the value function of the baseline policy.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed

low-complexity sub-optimal scheduling policy by numerical

simulations. In the simulation, the frame duration is Ts = 10
ms. The input data size of each task is uniformly distributed

between 200 and 300 segments, each of a size of 10 Kb. Local

CPU frequency is 1GHz and 500 CPU cycles are needed to

compute 1-bit input data. The effective switched capacitance is

κ = 10−28. Moreover, the uplink bandwidth is W = 10 MHz,

noise power is σ2
z = −104 dBm. We compare our proposed

scheduling policy with three benchmark policies including (1)

the baseline policy (BSL) as elaborated in section IV-A; (2)

all local computing policy (ALC), where all the active devices

execute their tasks locally; and (3) all edge computing policy

(AEC), where all the active devices offload their tasks to the

MEC server.

Fig. 2 shows the average per-device costs versus the arrival

rates of active devices. It can be observed that the average

per-device costs of all the policies grow with the increase of

arrival rate except ALC policy. For ALC policy, since all the

active devices computed their tasks locally, the arrival rate



has no influence on the average per-device cost. For AEC

policy, the average per-device cost grows quickly with the

increase of arrival rate due to limited wireless transmission

capability. It is also shown that our proposed policy always

outperforms BSL policy especially when the arrival rate falls

in the region of (0, 0.4). Besides, it can be seen that when the

arrival rate is sufficiently large, the costs of both BSL policy

and our proposed policy converge to the cost of ALC policy.

This observation can be explained by Fig. 3 which shows that

the ratio of edge computing devices tends to 0 for sufficiently

large arrival rate. Moreover, as shown in Fig. 3, the ratio of

edge computing devices of our proposed policy is remarkably

lager than that of BSL policy. Hence, our proposed policy can

better exploit the MEC server to save the energy consumption

of mobile devices and reduce latency.

VI. SUMMARY

In this paper, we formulate the scheduling design of a

multi-user MEC system as an infinite-horizon MDP, and

propose a novel low-complexity solution framework to ob-

tain a sub-optimal policy via an analytical approximation of

value function. The performance of the sub-optimal policy

can be analytically bounded. Simulation results demonstrate

the significant performance gain of the proposed scheduling

policy over various benchmarks.

APPENDIX A: PROOF OF LEMMA 1

Due to limited space, we only provide the sketch of the

proof. Since lim
T→+∞

E

[∑T

t=1 γ
t−1g′(St,Ω(St))

∣∣∣∣S̃1

]
=

lim
T→+∞

E

[∑T

t=1 γ
t−1g(St,Ω(St))

∣∣∣∣S1

]
, minimizing

the right-hand-side is equivalent to minimizing the

left-hand-side. The conclusion of Lemma 1 can be

obtained by writing down the Bellman’s equations for

minΩ lim
T→+∞

E

[∑T
t=1 γ

t−1g′(St,Ω(St))

∣∣∣∣S̃1

]
, and taking

expectation w.r.t. small-scale fading and SN
t .

APPENDIX B: PROOF OF LEMMA 2

With baseline policy Π and initial system state S̃∗, there

is at most one edge computing device. In fact, the i-th
element of vector u represents the probability that there is

one edge computing device with (i − 1) segments in the

uplink transmission queue; the (i, j)-th element of matrix M

represents the probability that there is one edge computing

device with (j−1) segments in the uplink transmission queue

in the next frame, given (i−1) segments in the current frame.

Hence, we have the following discussion on Mi,j .

• i = 1, j = 1: Transition from 1st state (0 segment) to

1st state means that there is no new active device arrival.

Hence M1,1 = 1− PN .

• i = 1, j = 2, 3, ..., dmin: Since the minimum size of a

new task is dmin segments, it is impossible to transit

from 0 segment to (j − 1) segments. Hence, Mi,j = 0.

• i = 1, j = dmin +1, dmin +2, ..., dmax +1: This means

there is a new active device arrival. The probability of

a new active device arrival is PN and the task size of

the new active device is uniformly distributed between

dmin to dmax. Thus, the probability of transiting from

1st state (0 segment) to j-th state (j−1 segments) for j =
dmin+1, dmin+2, ..., dmax+1 is Mi,j =

PN

dmax−dmin+1 .

• 1 < i < j ≤ dmax + 1: i > 1 indicates that the current

uplink transmission queue is not empty. Hence, the edge

computing queue will not increase since the new arrival

will be scheduled for local computing under policy Π.

Therefore, Mi,j = 0, for ∀1 < i < j.

• i = 2, 3, ..., dmax + 1, j = 1: This means that the

current edge computing device will finish transmitting

the remaining (i − 1) segments within current frame.

Hence, Mi,1 = Pr
(
W log2(1 +

pr |h|
2

σ2
z

≥ (i − 1)bs)
)
=

exp{− [2(i−1)bs/(WTs)−1]σ2
z

pr
}.

• dmax + 1 ≥ i ≥ j > 1: This means that

the edge computing device will transmit (i − j)

segments within current frame. Hence, Mi,j =

Pr
(
(i− j)bs ≤ W log2(1 +

pr |h|
2

σ2
z

≤ (i− j + 1)bs

)
=

exp{−
[2(i−j)bs/(WTs)−1]σ2

z

pr
} − exp{−

[2(i−j+1)bs/(WTs)−1]σ2
z

pr
}.
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