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Abstract—Supported by the technical development of electric
battery and charging facilities, plug-in electric vehicle (PEV) has
the potential to be mobile energy storage (MES) for energy deliv-
ery from resourceful charging stations (RCSs) to limited-capacity
charging stations (LCSs). In this paper, we study the problem of
using on-road PEVs as MESs for energy compensation service
to compensate charging station (CS) overload. A price-incentive
scheme is proposed for power system operator (PSO) to stimulate
on-road MESs fulfilling energy compensation tasks. The price-
service interaction between the PSO and MESs is characterized
as a one-leader, multiple-follower Stackelberg game. The PSO
acts as a leader to schedule on-road MESs by posting service
price and on-road MESs respond to the price by choosing their
service amount. The existence and uniqueness of the Stackelberg
equilibrium are validated, and an algorithm is developed to find
the equilibrium. Simulation results show the effectiveness of the
proposed scheme in utility optimization and overload mitigation.

I. INTRODUCTION

Recently, the advancement of electric battery technology

pushes forward the prevalence of plug-in electric vehicles

(PEVs) in the automobile market [1]. The increasing PEV

charging demand, especially at peak hours, puts great pressure

on the charging stations (CSs) that have limited charging

capacities. The potential overload at CS feeders could incur

severe power quality issues and transformer degradation [2].

Therefore, additional power supply is required by infras-

tructure upgrade such as deploying flexible energy storages.

Thanks to the experimental success of the bi-directional

charger, the PEV can transmit energy from its rechargeable

battery to the power system as a mobile energy storage

(MES) [3], [4]. When limited-capacity CSs (LCSs) encounter

power shortages in peak hours, MESs can deliver energy

from CSs with redundant power (i.e., resourceful CSs (RCSs))

to LCSs. By fully utilizing the system energy resource,

potential overload issues at LCSs can be mitigated without

excessive infrastructure upgrade expenditure. As the PEV

commercialization proceeds, and PEV becomes one of regular

transportation options, a considerable portion of on-road PEVs
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can be stimulated to serve as MESs to compensate the LCS

overload.

In the literature, many research works study MES schedul-

ing to balance the power supply and demand effectively. The

work in [5] utilizes MESs to transmit energy from renewable

energy plants to CSs and minimizes the MES transmission

loss. MESs can also provide demand response service to

charge or discharge energy depending on user needs as in the

work [6]. In our previous work [4], we propose to use MESs

that belong to the PSO to fulfill energy compensation tasks

among a group of CSs (GCS). Most related works consider

that MESs fully comply with PSO commands. However, the

MESs we schedule in this work are private-owned. These

MESs have their own travelling plans, and the energy com-

pensation service is considered as an additional on-road task

rather than a mandatory task. Therefore, the PSO needs to

provide additional incentive for these MESs to accomplish the

overload compensation task.

As a well-developed mathematical model, game theory can

precisely characterize incentive interactions between MESs

and the PSO. Specifically, the PSO first posts the service price

of energy compensation and then, in response to the posted

price, MESs decide their service amount. This price-service

interaction can be formulated by a sequential game model,

such as the Stackelberg game for the interaction analysis. The

Stackelberg game model has been applied in PEV charging

scheduling [7]-[9]. In the work [7], the CS is considered as

the leader to maximize its charging revenue while PEVs are

considered as followers to maximize their charging energy

fairly. When scheduling PEV charging among a GCS, the

GCS can be managed together by the PSO to maximize the

overall energy utilization and revenue as in the work [8], or

CSs can compete with each other to form a multi-leader multi-

follower game as in the work [9]. Stackelberg game can also

be applied for PEV discharging as in the work [10], where

the CS adjusts its price to maximize its charging and vehicle-

to-grid service revenue. While PEV charging and discharging

scheduling has been explored in the above works, their primary

focus is on PEV in-station scheduling. However, in the case

of MES scheduling, the service process becomes much more

complicated. For MESs to accomplish energy compensation

tasks, they are motivated to charge and discharge at the CSs

along their travel routes. Therefore, the costs of additional
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battery degradation and service time should be considered.

In this paper, we consider a scenario where the PSO

stimulates on-road MESs by providing service incentive to

mitigate the LCS overload. Our main contributions are as

follows:

• A price-incentive scheme is proposed to stimulate MESs

participating in the service by increasing their service

revenues. The proposed scheme also guarantees a cost-

efficient overload mitigation from the PSO perspective.

• A Stackelberg game is formulated to characterize the

interaction between the PSO and MESs, where the PSO

acts as the leader and MESs act as followers. The

existence and uniqueness of the Stackelberg equilibrium

are validated, and an algorithm is designed to find the

equilibrium.

The remainder of the paper is organized as follows. The

system model is introduced in Section II. The Stackelberg

game is formulated in Section III, followed by the game

analysis in Section IV. The simulation results are presented

in Section V. Finally, the conclusion is given in Section VI.

II. SYSTEM MODEL

As shown in Fig. 1, the system model consists of a GCS, on-

road MESs, the PSO, and communication infrastructures. The

system model analysis time window H is partitioned into H
time slots with equal interval of ∆t. Consider the MES energy

compensation service is fulfilled within ∆t, and the MES

scheduling is regularly conducted at each time slot h ∈ H.

We consider that a GCS is composed of RCSs and LCSs

that are geographically reachable by vehicles. RCSs, a set of

CSs denoted by R = {R1, R2 . . . Ri}, are normally deployed

at urban areas with sufficient power supplies. In addition to

charging arriving PEVs with charging demands, the surplus

energy of RCSs can be stored by MESs and delivered to

LCSs. LCSs, a set of CSs denoted by L = {L1, L2 . . . Lj}, are

usually deployed at rural areas with limited power capacities

and thus could encounter overload issues at peak hours. At

time h, RCS Ri sends information of its surplus energy Ei,h

to the PSO while LCS Lj sends information of its minimal

demanding energy DL
j,h and maximal demanding energy DU

j,h

to the PSO. Both information is sent via wired communication

technology such as fiber optic.

A set of on-road MESs, denoted as K = {1, . . . k, . . .K},

can serve the energy compensation tasks when their planned

travel routes pass the PSO’s targeted RCSs and LCSs. Upon

receiving service requests, on-road MESs send information of

their planned travel routes and energy compensation capacities

to the PSO. As MESs are constantly moving along the road,

mobile-support wireless communication technology can be

adopted for the information exchange between MESs and the

PSO. For example, vehicle ad-hoc networks (VANETs) can be

adopted to transmit the vehicle information to the PSO through

vehicle-to-vehicle (V2V)/vehicle-to-infrastructure (V2I) com-

munication.

Upon receiving information from MESs and CSs, the PSO

first estimates the on-road MES service capacity. If an MES

RCS
LCS

Fig. 1. System model.

plans to travel from RCS Ri to LCS Lj, the MES is counted

as an energy compensation server for Ri−Lj pair. By the end,

PSO knows the number of MESs Nij that can deliver energy

from RCS Ri to LCS Lj. Then, by analyzing the energy states

of CSs, the PSO posts the service price to on-road MESs to

stimulate them providing energy compensation service.

III. GAME FORMULATION

In terms of time-variant GCS balance states, the interaction

between the PSO and MESs is formulated as a Stackelberg

game at h-th time slot. As the MES scheduling is conducted

at each time slot, the notation h is omitted.

A. Game Process

We define the game in its strategic form: G = {{K ∪
{PSO}}, {p}, {ek}k∈K, {UP}, {Uk}k∈K}, where {ek}k∈K

denotes the set of strategies of MESs. {p} denotes the PSO

strategy (i.e., pricing); {UP} and {Uk}k∈K represent utility

functions of the PSO and MESs, respectively. For a given

service price p by the PSO, the interaction between MESs is

characterized as a non-cooperative game as follows:

• Players: the set of MESs K.

• Strategies: MES k ∈ K, chooses an energy service

amount ek.

• Payoffs: the k-th MES receives utility Uk(ek, p).

To find the Nash equilibrium, we need to find the best

response function e⋆k(p) of k-th MES under the service price

p. The set of best response functions {e⋆k(p)}k∈K is then sent

to the PSO. PSO chooses the optimal service price p⋆ that

maximizes its utility function UP(p, {e
⋆
k(p)}k∈K).

B. MES Model

For MES k ∈ K, its utility function is defined as:

Uk(ek, p) = pek + p(ek − ē)− αT
k C

T
k − αD

k CD
k . (1)

The first term in equation (1) is the service reward calculated

by multiplying the MES served energy amount with the service

price. The second term is the motivation reward that motivates

MES providing energy more than the expected average service

amount ē. ē is calculated by averaging the overall LCS min-

imal demands by the overall on-road MES number, denoted



as ē = (
∑

Lj∈L DL
j )/(

∑

Ri∈R

∑

Lj∈L Nij). When the MES

provides less energy than ē, the motivation reward is negative,

meaning that the MES receives less reward than the service

reward. On the contrary, when the MES provides more service

energy than ē, it will be rewarded more than service reward.

The third term is the weighted service time cost that is the

multiplication of the service time weight αT
k of MES k, and

the service time CT
k of MES k. The service time consists of

MES charging time at its passing RCS Ri and discharging

time at its destined LCS Lj, which is denoted as:

CT
k =

ek
Pi

+
ek
Pj

, (2)

where Pi and Pj denote average charging/discharging power

of Ri and Lj respectively. The travelling time is excluded

from the utility function as Ri and Lj are on the MES planed

travel route. The weight of service time cost αT
k indicates the

MES driver preference towards service time and αT
k > 0. A

high αT
k indicates that MES driver is unwilling to spend too

much time in-station. The forth term of the function is the

weighted battery degradation cost of MES discharging at LCS.

It is calculated as the multiplication of the battery degradation

weight αD
k of k-th MES and the battery degradation cost CD

k

of k-th MES. The battery degradation cost refers to a modified

model as in the work [11]:

CD
k = (β1P

3
j + β2P

2
j + β3Pj + β4)(α1

e2k
B2

k

+ α2
ek
Bk

). (3)

The term of discharging power degradation, β1P
3
j + β2P

2
j +

β3Pj + β4, is a cubic function with coefficients β1, β2, β3,

and β4. It is positively related to discharging power Pj at the

MES destined LCS Lj. The term of depth-of-discharge (DoD)

degradation, α1
e2k
B2

k

+ α2
ek
Bk

, is a quadratic function that is

positively related to the battery DoD ek
Bk

, and thus coefficient

α1 > 0. Similar to αT
k , a high degradation weight αD

k denotes

a high unwillingness to discharge. To simplify the equation,

we denote Dk = β1P
3
j + β2P

2
j + β3Pj + β4 > 0.

Meanwhile, the MES service energy should be within its

feasible range:

0 ≤ ek ≤ Bk − eIk, (4)

where Bk denotes the k-th MES battery capacity and eIk
denotes the initial state-of-charge (SoC) of MES k. MESs

will not participate in the service when they cannot obtain

any profit, and thus the utility function needs to satisfy:

Uk(ek, p) > 0. (5)

Therefore, given the posted price p, the MES decision making

process is formulated as an optimization problem:

max
ek

Uk(ek, p) (6)

s.t. (4), (5), ∀k ∈ K.

C. PSO Model

As the operator of the GCS, the PSO adjusts the posted

price to maximize its utility function, which is denoted as:

UP(p, ek) = αL

∑

Lj∈L

(−(aj
∑

k∈Λj

ek − bj)
2 + cj)

− (
∑

k∈K

pek +
∑

k∈K

p(ek − ē)). (7)

The first term is the weighted loading revenue that is the prod-

uct of loading weight αL and the summation of LCS loading

revenues. Denote a set of MESs whose destined LCS is Lj as

Λj. For LCS Lj, the loading revenue increases as more energy

delivered to the station and reaches the peak revenue at the

maximal demanding load DU
j . Therefore, the loading revenue

of LCS Lj is characterized as a quadratic function with its peak

value at DU
j . We set aj = 5 × 10−4DU

j , bj = ajD
U
j , cj = b2j .

The second term of the function is the summation of all MES

service costs and motivation costs, as introduced in Section

III-B.

For LCS Lj, the MES delivered energy should be within

its demanding energy range [DL
j , D

U
j ]. Thus, the LCS energy

constraint is denoted as:

DL
j ≤

∑

k∈Λj

ek ≤ DU
j , ∀Lj ∈ L. (8)

On the energy supplier side, the energy stored by MESs cannot

exceed the maximal surplus energy capacities at RCSs. Denote

a set of MESs whose passing RCS is Ri as Ωi. Then, the RCS

energy constraint is denoted as:

∑

k∈Ωi

ek ≤ Ei, ∀Ri ∈ R. (9)

Therefore, the price decision process is formulated as an

optimization problem as:

max
p

UP(ek, p) (10)

s.t. (8), (9).

IV. GAME ANALYSIS

A. Existence and Uniqueness of Stackelberg Game

By solving problem (6), we can obtain the best-response

strategy of MES k, denoted as e⋆k(p). When followers are

at Nash equilibrium, all followers choose their best-response

strategies and the strategy set is denoted as {e⋆k(p)}k∈K =
{e⋆1(p), . . . , e

⋆
K(p)}. Given MES best-response strategy profile,

the optimal price p⋆ can be obtained by solving problem (10).

Therefore, the profile of (p⋆, {e⋆k(p)}k∈K) is the Stackelberg

equilibrium for the proposed game, which is calculated as:

(p⋆, {e⋆k(p)}k∈K) = argmax
p

UP(p, {e
⋆
k(p)}k∈K) (11)

s.t. e⋆k(p) = argmaxUk(ek, p), k ∈ K.



We first analyze the follower-level game by computing MES

best-response strategy in the following lemma.

Lemma 1. MES k has a unique best-response strategy e⋆k(p)
for a given service price p, denoted as:

e⋆k(p) =















0, p ≤ pLk
2p−αT

k

Pi+Pj
PiPj

−αD
k α2Dk/Bk

2α1αD
k
Dk/B2

k

, pLk < p < pUk

Bk − eIk, p ≥ pUk

(12)

where pLk is the rejection price, below which MES k will not

provide service. pUk is the saturated price at which MES k
provides maximal service capacity. pLk and pUk are denoted

as:







pLk = 0.5(αT
k

Pi+Pj

PiPj
+ αD

k α2Dk/Bk)

pUk = pLk + α1α
D
k Dk(Bk − eIk)/B

2
k

(13)

Proof: For MES k, the strategy set is denoted as {ek|ek ∈
R, 0 ≤ ek ≤ Bk − eIk}, which is the intersection of two half-

spaces. Thus, the MES strategy set is non-empty and convex.

To find the best-response strategy of k-th MES, we solve the

optimization problem (6). First, we analyze the property of the

objective function Uk(ek, p) by calculating the second-order

derivative of the function:

∂2Uk(ek, p)

∂e2k
= −2αD

k α1Dk. (14)

As αD
k , α1, Dk > 0, the value of equation (14) is negative.

Thus, problem (6) is proven to be a convex optimization

problem, and the best response strategy for MES k is the

global optimum. By applying Lagrangian function and Karush-

Kuhn-Tucker (KKT) conditions to problem (6), we can obtain

the best response strategy of MES k. The detailed calculation

is omitted due to space limitations.

Based on the MES best-response strategy, we define the

feasible range of service price p. The PSO adjusts its price

within the range between the minimal and maximal value

of prange , [pL1 . . . pLK, p
U
1 . . . pUK]. When the price is below

min{prange}, all MESs will not participate in the service.

When the price reaches max{prange}, all MESs will use up

their battery space for the service and no higher price is

needed. By calculating pLk and pUk for MES k using equation

(13), and sorting all pLk and pUk in an ascending order, we have

the feasible set of the price. The price set is an M -element

vector γ, where γ1 ≤ γ2 ≤ · · · ≤ γm ≤ γm+1 . . . γM. Further,

define Γm , [γm, γm+1] for m = 1, 2, . . .M − 1, we can

divide the price p range into M − 1 intervals.

To find the optimal price for PSO, we decompose problem

(10) into M − 1 sub-problems where the m-th sub-problem

aims to find the optimal price within the range Γm, similar to

the work in [12].

Lemma 2. In the sub-domain of Γm, ∀m, problem (10) is a

convex optimization problem.

Proof: As the price is continuous within Γm, the price

set is convex. By substituting the MES best-response strategy

into problem (10), the objective function is calculated as:

UP(p,Γm) =

αL

∑

Lj∈L

(−(aj(
∑

k∈Λj∩φ1

(ykp−zk)+
∑

k∈Λj∩φ2

(Bk−eIk))−bj)
2+cj)

− 2p(
∑

k∈φ1

(ykp− zk) +
∑

k∈φ2

(Bk − eIk)) +
∑

k∈K

pē, (15)

where ykp−zk is the simplied function of e⋆k for pLk < p < pUk .

For MESs with non-zero best-response value within Γm, they

are divided into two sets: φ1 and φ2, where φ1 = {k|ykp −
zk < Bk − eIk} and φ2 = {k|ykp − zk ≥ Bk − eIk}. As pLk
and pUk are deterministic and irrelevant to p, φ1 and φ2 are

deterministic and fixed. The second derivative of the utility

function is calculated as:

∂2UP(p,Γm)

∂p2
= −2αL

∑

Lj∈L

a2j
∑

k∈Λi∩φ1

y2k − 4
∑

k∈φ1

yk, (16)

where αL, aj, yk > 0. Thus, ∂2UP(p,Γm)/∂p
2 < 0, making

the utility function concave and differential. Moreover, by sub-

stituting equation (13) to constraints (8), (9), both constraints

are convex (half-space). Therefore, problem (10) within the

sub-domain Γm is a convex optimization problem.

Lemma 3. The PSO has a globally optimal price, given the

best-response strategies of MESs.

Proof: By decomposing problem (10) into M − 1 sub-

problems as defined in Lemma 2, the original problem can be

rewritten as:

max
m

max
p∈Γm

UP(p,Γm) (17)

s.t. (8), (9).

By obtaining the optimal result p⋆m of the convex sub-

problem following Lemma 2, we can find the globally op-

timal price p⋆ by searching the maximum utility value from

[p⋆1, . . . , p
⋆
m, . . . , p

⋆
M−1]:

p⋆ = argmax
p∈[p⋆

1 ,...,p
⋆
m,...,p⋆

M−1
]

UP(p,Γm) (18)

s.t. (8), (9).

Thus, the existences and uniqueness of Stackelberg equilib-

rium can be proved in the following proposition.

Proposition 1. For the formulated game, a unique Stackelberg

equilibrium exists.

Proof: As shown in Lemma 1, each MES has a unique

best-response strategy e⋆k(p) given a posted price p . Then,

by substituting e⋆k(p) to problem (10), we prove the global



optimum of PSO strategy as in Lemma 2 and Lemma 3. As the

PSO achieves its global optimum and each MES has a unique

best-response strategy, the unique Stackelberg equilibrium is

obtained.

B. Stackelberg Game Algorithm

During each scheduling time slot h, the PSO scheduling

price can be obtained as in Algorithm 1.

Algorithm 1: Stackelberg game solution.

1 for k=1 to K do

2 Calculate p
L

k
and p

L

k
according to equation (13) ;

3 Sorting p
L

k
and p

L

k
in an ascending order to form vectors γ and Γ

for m=1 to M-1 do

4 Find p
⋆
m by solving problem (10) within [Γm,Γm+1];

5 Find the optimal p⋆ with the maximal utility value according to
equation (18).

The proposed algorithm does not require iterations to ana-

lyze the Stackelberg game. As the number of MESs increases,

the algorithm complexity increases accordingly. Thus, the

proposed algorithm can be applied to schedule a large number

of MESs.

V. SIMULATION RESULTS

To validate the effectiveness of the proposed scheme, we

present simulation results in this section. The parameter setting

is shown in Table I. RCSs R1 has 1.6MWh and R2 has

900kWh surplus energy for MESs to deliver. LCS L1 demands

100-200kWh energy to be delivered while L2 demands energy

between 150-300kWh. RCSs adopt society of automotive engi-

neers (SAE) combined charging system (CCS) level 2 charging

standard at 90kW and LCSs adopt SAE CCS charging standard

at 60kW [13]. The number of MESs Nij along the Ri-Lj

pair is also included in Table I. The MES service capacities

are considered as random variables that follow a normal

distribution with a mean value of 14 and a standard deviation

of 5 (kWh). Similarly, the MES battery capacities also follow

a normal distribution with an 80kWh mean and a standard

deviation of 10kWh. The battery degradation parameters Dk,

α1, α2, α3 are calculated according to data in the work [14].

While the MES battery degradation cost is relatively low (e.g.,

4×10−4) per cycle, it is still a great concern for MES drivers.

Thus, αD
k is set to 105 and αT

k is set to 30 to make them

comparable with service reward and motivation reward. The

loading cost weight αL is set to 0.5.

We compare the proposed scheme with the price-minimized

scheme and random scheme in terms of PSO utility revenue,

as shown in Fig. 2. In the price-minimized scheme, the PSO

aims to minimize its service price. In the random scheme, the

PSO randomly adjusts the service price to meet LCS energy

demands. It can be seen that the proposed scheme has the

highest utility revenue compared with both price-minimized

and random schemes as the price-minimized scheme only tries

to minimize the price, but ignores the loading revenue impact

on the utility function. Compared to the price-minimized

TABLE I
SIMULATION PARAMETERS

Para. Value Para. Value

E1 1.6MWh E2 900kWh

DL
1 100kWh DU

1 200kWh

DL
2 150kWh DU

2 300kWh

PR1/R2
90kW PL1/L2

60kW

N11 6 N12 8

N21 7 N22 4

E(ek) 14kWh σ(ek) 5kWh

E(Bk) 80kWh σ(Bk) 10kWh

αT
k 30 αD

k 105

Dk 5.08×10−4 α1 1

α2 -0.222 αL 0.5
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Fig. 2. PSO utility revenue with different MES service capacities.
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Fig. 3. Impact of on-road MES number on energy scheduling.

scheme, the random scheme schedules more MESs and can

achieve higher revenue as it does not put strict constraints to

achieve minimal loading demands. Moreover, as MES service

capacities increase, the PSO utility increases. Since there are

more on-road service capacities, a lower service price can be

posted and the PSO can have a high loading revenue. For the

price-minimized scheme, the revenue increment is smaller as

it provides minimal LCS loading demands and the loading

revenue stays almost the same.

We also discuss the energy scheduling scheme under differ-

ent operation scenarios. The impact of on-road MES number
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Fig. 5. Impact of the battery degradation weight on energy scheduling.

on the scheduling result is shown in Fig. 3. It can be seen

that as the on-road MES number increases, the service price

decreases since the PSO has more potential energy servers, and

less motivation is required. Correspondingly, the PSO utility

revenue increases. Moreover, with more MESs participating

in the service, more energy can be delivered to LCSs, which

increases the loading revenue part of the utility.

Depending on the PSO operation goal, the MES scheduling

could lean towards operation cost minimization or loading

revenue maximization. By adjusting the loading weight αL,

the operation objectives vary, and the scheduling result also

changes, as shown in Fig. 4. It can be seen that as the loading

weight increases, the MES scheduling mainly focuses on

loading revenue maximization. To encourage MESs delivering

more energy, the service price increases until αL reaches

0.6. We can observe from the figure that when αL = 0.6,

the loading at L1 reaches its maximal demanding load DU
1 .

Therefore, a higher loading weight will result in the same

loading results as limited by the loading constraints, and the

service price will remain the same.

As the battery technology advances, the MES driver’s pref-

erence towards energy discharging also changes. Therefore, we

discuss the battery degradation weight impact on scheduling

results, as shown in Fig. 5. As the weight αD
k increases, MES

drivers are more reluctant to discharge energy, and the price

range prange becomes wider. Therefore, to stimulate MESs

actively fulfilling the tasks, PSO needs to post a higher service

price. As a result, the operation cost increases, and the PSO

utility revenue decreases accordingly.

VI. CONCLUSION

In this paper, a price-incentive scheme that stimulates MESs

fulfilling energy compensation tasks has been proposed to

mitigate overload issues at LCSs. The interaction between the

PSO and on-road MESs has been formulated as a Stackelberg

game. The existence and uniqueness of Stackelberg equilib-

rium have been proven, and an algorithm has been designed

to find the equilibrium. Simulation results have validated the

effectiveness of the proposed scheme under different operation

scenarios. The proposed scheme can be applied by the local

PSO to balance the system energy without excessive power

infrastructure upgrade while MESs are stimulated to fulfill

tasks in a cost-efficient way.

For our future works, we will consider unexpected errors

during MES service (e.g., human behaviour, loading change,

etc.) to enable robust energy scheduling.
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