
Trajectory Optimization for Rotary-Wing UAVs in
Wireless Networks with Random Requests

Matthew Bliss and Nicolò Michelusi

Abstract—This paper studies the trajectory optimization prob-
lem in a scenario where a single rotary-wing UAV acts as a relay
of data payloads for downlink transmission requests generated
randomly by two ground nodes (GNs) in a wireless network. The
goal is to optimize the UAV trajectory in order to minimize the
expected average communication delay to serve these random re-
quests. It is shown that the problem can be cast as a semi-Markov
decision process (SMDP), and the resulting minimization problem
is solved via multi-chain policy iteration. The optimality of a two-
scale optimization approach is proved: the optimal trajectory in
the communication phase greedily minimizes the communication
delay of the current request while moving between the current
start position and a target end position (inner optimization);
the end positions are selected to minimize the expected average
long-term delay in the SMDP (outer optimization). Numerical
simulations show that the expected average delay is minimized
when the UAV moves towards the geometric center of the GNs
during phases in which it is not actively servicing transmission
requests, and demonstrate significant improvements over sensible
heuristics. Finally, it is revealed that the optimal end positions of
communication phases become increasingly independent of the
data payload, for large data payload values.

Index Terms—UAV-assisted wireless networks, adaptive trajec-
tory optimization, semi-Markov decision process

I. INTRODUCTION

Recently, much research has gone into UAVs operating
in wireless networks [1]–[5]. The drive for this is due to
the unique benefits that UAVs acting as flying base stations,
mobile relays, etc., provide in enhancing the overall network
performance, thanks to their unique advantages over terrestrial
counterparts in terms of mobility, maneuverability, and im-
proved line-of-sight (LoS) link probability [1]. However, the
design of UAV deployment strategies comes with challenges,
namely the determination of optimal positioning or trajectories
in the face of constraints imposed on UAV energy consump-
tion, network throughput, and/or delay requirements [1]–[4].

Some research has focused on the trajectory optimization
under energy constraints, as in [2] and [3]. In [6], the fine-
grained structure of LoS conditions is exploited to position
UAVs optimally with the goal to maximize throughput. In [4],
a model-free Q-learning approach is taken in the trajectory
design so as to maximize the transmission sum-rate.

All of these efforts consider situations that are solved in the
offline case, i.e., the pattern of transmission requests is known
in advance, so that the trajectory may be pre-planned accord-
ingly. However, this may be impractical as transmission re-
quests are often random and cannot be determined in advance.
In these cases, trajectory design is much more challenging,
since it must be continuously adjusted based on the realization
of these random processes, and incorporate the uncertainty in
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the future evolution of the system dynamics. In this paper,
we investigate this problem by developing policies that adapt
the trajectory based on the random realization of downlink
transmission requests generated by two ground nodes (GNs),
so as to optimize the average long-term performance.

To further motivate the need for this new formulation,
consider the scenario depicted in Fig. 1. In this context, the
minimum communication delay to serve GN1 is achieved by
flying towards it to improve the distance-dependent pathloss.
With this design, for a sufficiently large data payload, the
UAV will terminate the data transmission hovering above GN1,
where channel conditions are most favorable. However, if
the UAV is to service a random request generated by GN2

shortly after terminating the transmission to GN1, the delay
incurred to serve this second request may be large due to
the large distance that separates the UAV from GN2, causing
severe pathloss conditions. In other words, under random
transmission requests, the greedy delay minimization to serve
a certain request may lead the UAV to a position where subse-
quent random requests cannot be served effectively, yielding
poor delay performance in an average long-term sense. This
example points to the need to incorporate the random nature
of transmission requests in the trajectory design.

To address this question, we consider a scenario in which an
UAV is serving two GNs far apart, and receives transmission
requests according to a Poisson random process. We formulate
the problem as that of designing an adaptive trajectory, so as to
minimize the average long-term communication delay incurred
to serve the requests of both GNs. We prove that the optimal
trajectory in the communication phase operates according to
a two-scale optimization: in the outer optimization, the UAV
selects a target end position, which optimizes the trade-off
between minimizing the delay of the current request, and
minimizing the expected average long-term delay; then, in the
inner optimization, the UAV travels greedily from the current
position to the selected end position while communicating,
following the trajectory that greedily minimizes the commu-
nication delay for the current request, provided in closed form.
We utilize a multi-chain policy iteration algorithm to optimize
the selection of the end position in the communication phase
and the trajectory during the waiting phase, in which the
UAV is not actively servicing downlink transmission requests.
Our numerical results reveal that the UAV should always
move towards the geometric center of the two GNs during
the waiting phase, and that the optimal trajectory during
communication phases becomes increasingly independent of
the data payload and only determined by system parameters
as the data payload value becomes sufficiently large.

The rest of the paper is organized as follows. In Sec. II,
we introduce the system model and state the optimization
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problem; in Sec. III, we formalize the problem as a semi-
Markov decision process (SMDP); in Sec. IV, we provide
numerical results; lastly, in Sec. V, we conclude the paper
with some final remarks.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider the scenario depicted in Fig. 1, where one rotary-
wing UAV services two ground nodes (GNs) with random
downlink1 transmission requests of L bits. The two ground
units GN1 and GN2 are located at positions x1=−a and x2=a
along the x-axis, respectively, both at ground level (height
0). The UAV moves along the line segment connecting the
two GNs, at height H from the ground. We let q(t)∈[−a, a]
be the UAV’s position along the x-axis at time t, and we
assume that it is either hovering or moving at speed V , hence
|q′(t)|∈{0, V }, where f ′ denotes derivative of f over time.

A base station (BS) connected to the rest of the network
is the source of downlink traffic to the two GNs. When
a downlink request is generated by a certain GN, the BS
transmits the data payload to the UAV, which then relays it to
the GN using a decode and forward strategy [7]. We assume
that the UAV has a high-capacity link to the BS, hence the
communication link between the UAV and the GN constitutes
the bottleneck of the overall BS-UAV-GN communication.
In the rest of the paper, we thus focus on the UAV-GN
communication and neglect the delay over the BS-UAV link.
We assume that the UAV transmits at fixed power Pc and
that the communication intervals experience LoS links with no
probabilistic elements. This is motivated by the fact that UAVs
in low-altitude platforms generally tend to have a much higher
occurrence of LoS links [8]. We model the instantaneous
communication rate between the UAV in position q(t) and
GNr, r ∈ {1, 2} in position xr as

Rr(q(t)) = B log2

(
1 +

γ

H2 + (q(t)− xr)2

)
, (1)

where H2 + (q(t)− xr)2 is the squared distance between the
UAV and GNr, B is the channel bandwidth, and γ is the SNR
referenced at 1 meter (see [3]).

When the UAV has no active transmission requests, future
requests arrive according to a Poisson process with mean
λ/2 requests/second, independently at each GN. Each request
requires the transmission of L bits to the corresponding des-
tination. Upon receiving a request from GNr, the UAV enters
the communication phase, where it services it by transmitting
the L bits to GNr; any additional requests received during
this communication interval are dropped (see also Fig. 1).
After the data transmission is completed, the UAV enters the
waiting phase, where it awaits for new requests (with rate λ/2
for each GN), and the process is repeated indefinitely. During
this periodic process of communication and waiting for new
requests, the UAV follows a trajectory, part of our design, with
the goal to minimize the average long-term communication
delay, as discussed next.

1This formulation and the analysis can be directly applied to uplink
transmissions as well.

Request

at t = 0
Downlink

Tx

Request at t > 0

dropped

GN1, 

x1 = -a

GN2,

x2 = a

V

UAV,

q(t)

H

Fig. 1: System model depicting a downlink transmission request from GN1;
the request from GN2 is dropped during the active communication interval.

B. Problem Formulation

In this work, we consider the unconstrained delay minimiza-
tion and neglect the propulsion energy consumption from our
problem. In fact, it has been shown that a rotary-wing UAV
exhibits comparable energy consumption when either moving
or hovering [3]; in the special case when the moving and
hovering powers are equal (for instance, based on the model
in [3], this occurs at speed V=38 m/s), the finite energy in
the UAV battery translates into a constraint on the total service
time of the UAV, independent of the trajectory followed.

The goal is to define the optimal policy (UAV trajectory)
so as to minimize the average communication delay. To this
end, let ∆l be the delay incurred to complete the transmission
of the lth request serviced by the UAV. Let Mt be the total
number of requests served and completed up to time t. Then,
we define the expected average delay under a given trajectory
policy µ (to be defined), starting from q(0) = 0 as2

D̄µ = lim
t→∞

E

[∑Mt−1
l=0 ∆l

Mt

∣∣∣∣∣q(0) = 0

]
. (2)

We then seek to determine µ∗ to minimize D̄µ, i.e.,

µ∗ = arg min
µ

D̄µ. (3)

Note that this is a non-trivial optimization problem. While
the minimum delay to serve a request, say from GN1, is
achieved by flying towards GN1 at maximum speed to improve
the link quality, this strategy may not be optimal in an average
delay sense: if the UAV receives a new request from GN2

shortly after completing the request to GN1, the delay to serve
this second request may be large due to the large distance that
must be covered by the UAV.

C. Semi-Markov Decision Process (SMDP) formulation

In general, a solution to (3) would involve the optimization
of an intractable number of variables over time (i.e., all
possible trajectories followed by the UAV at any given time),
over a continuous state space (the interval [−a, a]). Therefore,

2While in practice the operation time of the UAV is constrained by the
amount of energy stored in its battery, and the policy should depend on the
amount of time left, the asymptotic case t→∞ is convenient since it gives
rise to stationary policies (i.e., time-independent); this is a good approximation
when the dynamics of the waiting and communication phases occur at much
faster time scales than the total travel time, i.e., when Mt in (2) is large
for practical values of the travel time t. For perspective, [9] places typical
rotary-wing hovering endurance times in the 15-30 minute range.



it is advantageous to approximate the system model through
discretization and reformulate (3) as an average-cost SMDP.

We define the state space as S=I×R, where R={0, 1, 2}
denotes the request status, i.e., no active request (0), or a
request is received from GNr (r ∈ {1, 2}), and

I , {−N,N + 1, . . . , N − 1, N} (4)

is the set of 2N + 1 indices corresponding to discretized
positions Q , {qi = i

N a, ∀i ∈ I} along the interval q(t) ∈
[−a, a]. This is a good approximation for sufficiently large
N , as a

NV λ � 1, making the expected number of requests
received over the travel time between two adjacent discretized
positions much smaller than one. It is also useful to further
partition the state space into waiting states, Swait = I × {0},
and communication states, Scomm = I × {1, 2}.

To define this SMDP, we sample the continuous time inter-
val to define a discrete sequence of states {sn, n ≥ 0} ⊆ S
with the Markov property. We now define the actions available,
the transition probabilities, duration and cost of each state visit.

If the UAV is in state sn=(i, 0)∈Swait at time t, i.e., it is
in the discretized position qi and there are no active requests,
then the actions available are an∈{−1, 0, 1}, i.e. move right
(an=1 to position qi+1), hover (an=0), or move left by one
discretized position (an=−1 to qi−1). The amount of time
required to take this action, i.e., to fly between two adjacent
discretized positions, is

∆0 ,
a

NV
. (5)

The new state is then sampled at time t+∆0, and is given
by sn+1=(i+an, rn+1). The transition probability from state
sn=(i, 0) under action an ∈ {−1, 0, 1} is then given by

P(sn+1=(i+m, 0)|sn=(i, 0), an=m) = e−λ∆0 , (6)

P(sn+1=(i+m, r)|sn=(i, 0), an=m)=
1−e−λ∆0

2
,∀ r∈{1, 2},

depending on whether no request is received during this
time interval (rn+1=0, with probability e−λ∆0 ), or a request
is received from GNr (rn+1=r ∈ {1, 2}, with probability
[1− e−λ∆0 ]/2 for each GN).

Upon reaching state sn=(i, r)∈Scomm with r∈{1, 2} at
time t, the UAV has received a request to serve L bits to GNr.
The actions available at this point are all trajectories that start
from qi and allow the UAV to transmit the entire data payload
of L bits. Assuming a move and transmit strategy (see [3]),
the selected trajectory q(·) of duration ∆ must satisfy

ˆ ∆

0

Rr(q(τ))dτ ≥ L, (7)

since all bits need to be transmitted during this phase. Under
this trajectory, the communication delay is thus ∆. We define
the action space in state (i, r) ∈ Scomm as the set of all feasible
trajectories, Tr(i) = ∪jTr(i → j), where we have defined
Tr(i → j) as the set of feasible trajectories starting in qi,
ending in qj , and serving GNr, i.e.,

Tr(i→ j) =

{
q : [0,∆]→ [−a, a] :

ˆ ∆

0

Rr(q(τ))dτ ≥ L,

|q′(t)|≤ V, q(0) = qi, q(∆) = qj , ∃∆ > 0

}
. (8)

Upon completing the communication phase, the UAV enters
the waiting phase again; the new state is then sampled at time
t+∆ (the amount of time elapsed to complete the selected
trajectory), and is given by sn+1=(j, 0)∈Swait, corresponding
to the position qj reached at the end of the communication
phase. Thus, we have defined the transition probability in the
SMDP from state sn = (i, r) under action q ∈ Tr(i→ j) as

P(sn+1 = (j, 0)|sn = (i, r), q) = 1, ∀q ∈ Tr(i→ j). (9)

In other words, the trajectory selection process in the com-
munication phase can be described via a two-scale decision
process: 1) given (i, r), i.e., the current position qi of the UAV
and the request received from GNr, the UAV first selects some
j ∈ I, which defines the target position qj to be reached at the
end of the communication phase; 2) the UAV selects a feasible
trajectory q from Tr(i → j), executes the trajectory while
communicating to GNr, and terminates the communication
phase in the new position qj , corresponding to state (j, 0).
After this point, the UAV is in the waiting phase again.

With the states and actions defined, we can define a policy
µ. Specifically, for states (i, 0) ∈ Swait, µ(i, 0) ∈ {−1, 0, 1}.
Likewise, for states (i, r) ∈ Scomm, µ(i, r) = (j, q(·)), where
j ∈ I (position reached at the end of the communication
phase) and q(·) ∈ Tr(i → j) (feasible trajectory starting in
qi, ending in qj , to serve GNr).

The communication delay cost during the waiting phase is
zero, i.e. ∆i,0(m) = 0, for all states (i, 0) ∈ Swait and actions
m ∈ {−1, 0, 1}. When the UAV is in a communicating phase,
we denote the communication delay incurred in state (i, r)
under action (j, q(·)) as ∆i,r(j, q(·)). Compactly, we write
∆s(µ(s)) to denote the delay incurred in state s ∈ S under
the action µ(s) dictated by policy µ.

With this notation, and having now defined a stationary
policy µ, we can rewrite the average delay D̄µ in (2) in the
context of the SMDP as

D̄µ= lim
K→∞

E

[
1
K

∑K−1
n=0 ∆sn(µ(sn))

1
K

∑K−1
n=0 χ(sn ∈ Scomm)

∣∣∣∣∣s0 = (0, 0)

]
, (10)

where χ(A) is the indicator function of the event A. In fact, the
numerator in (2) counts the sample average delay incurred in
the communication phases up to slot K of the SMDP, whereas
the denominator in (2) counts the sample average number of
communication slots in the SMDP up to slot K. Now, using
Little’s Theorem [10], we can rewrite (10) as

D̄µ=

∑
s∈S Πµ(s)∆s(µ(s))∑
s∈SΠµ(s)χ(s∈Scomm)

=

∑
s∈Scomm

Πµ(s)∆s(µ(s))∑
s∈Scomm

Πµ(s)
, (11)

where Πµ(s) is the steady-state probability in the SMDP of the
UAV being in state s under policy µ, and the second equality
holds since ∆s(µ(s)) = 0 and χ(s∈Scomm) = 0 for s ∈ Swait.



III. POLICY OPTIMIZATION AND ANALYSIS

In this section, we tackle the solution to the optimization
problem (3), with D̄µ given by (11). However, (3) cannot be
directly solved using dynamic programming techniques, due
to the presence of the denominator in (11), which depends on
the policy selected µ, hence it affects the optimization. The
next lemma demonstrates that the denominator of (11) can be
expressed as a positive constant, independent from policy µ
and only dependent on system parameters. In doing so, the
optimization of µ only needs to focus on the minimization
of
∑
s∈S Πµ(s)∆s(µ(s)), so that (3) can be cast as an aver-

age cost per stage problem, solvable with standard dynamic
programming techniques.

Lemma 1. Let πwait and πcomm be the steady-state probabili-
ties that the UAV is in the waiting and communication phases,
πcomm=

∑
s∈Scomm

Πµ(s) and πwait=1−πcomm. We have that

πwait =
1

2− e−λ∆0
, πcomm =

1− e−λ∆0

2− e−λ∆0
. (12)

Proof. Let pww, pwc, pcw, and pcc be the probabilities of
a state request status, r ∈ R = {0, 1, 2}, transitioning in
the SMDP as 0→0, 0→{1, 2}, {1, 2}→0, and {1, 2}→{1, 2},
respectively. Then, pww = e−λ∆0 (if no request is received,
the SMDP remains in the waiting state), pwc = 1 − pww,
pcw = 1, and pcc = 0 (if the SMDP is in the communication
state, the next state of the SMDP will be a waiting state, see
(9)). Therefore, the steady-state probabilities of being in the
waiting and communication states, πwait and πcomm, satisfy

πwait = pwwπwait + pcwπcomm = e−λ∆0πwait + πcomm,

πcomm = pwcπwait + pccπcomm = (1− e−λ∆0)πwait,

πwait + πcomm = 1,

whose solution is given as in the statement of the lemma. �

When we refer to the denominator of (11), it is evident
that it is equal to the steady-state probability that the UAV is
in a communication state while following policy µ, πcomm.
However, with the result of Lemma 1, πcomm is simply a
positive constant determined by system parameters, yielding

D̄µ =

∑
s∈S Πµ(s)∆s(µ(s))

πcomm
, (13)

which we now aim to minimize with respect to policy µ.
As the problem stands now, the communication phase

selects an action from Tr(i), which is a set containing an un-
countable number of trajectories. By exploiting the two-scale
structure of the problem outlined earlier, we now demonstrate
that only a finite set of trajectories from Tr(i) are eligible to
be optimal, for each state (i, r) ∈ Scomm, hence making the
problem a finite state and action SMDP.

A. Decomposition of Policy µ

Note from (9) that the transition probability from a com-
munication state sn=(i, r) under action (j, q(·)) is only af-
fected by the selection of j and not the particular trajectory
q(·)∈Tr(i → j) that leads from qi to qj during the commu-
nication phase. It follows that the steady-state probability Πµ

under µ(i, r)=(j, q(·)) is only affected by the selection of j
and not the specific trajectory within Tr(i→ j).

By establishing this property, we decompose the policy µ
into the waiting policy θ(i)∈{−1, 0, 1}, which defines the
optimal action in state (i, 0)∈Swait of the waiting phase; the
end position policy J(i, r), which selects the end position qj
with j=J(i, r) to be reached at the end of the communica-
tion phase; and the trajectory policy ρ(i, r, j) which, given
j=J(i, r), selects a trajectory q(·)=ρ(i, r, j) from Tr(i→ j).
Owing to the independence of Πµ on the trajectory policy ρ,
the delay minimization problem can then be rewritten as

D̄∗µ =

min
θ,J

∑
s∈Scomm

Πθ,J(s) min
ρ(s,J(s)))

∆s(J(s), ρ(s, J(s)))

πcomm
.

Letting

∆∗r(i, j), min
q(·)∈Tr(i→j)

∆i,r(j, q), ∀ (i, r)∈Scomm,∀j ∈ I, (14)

we can finally write

D̄∗µ =

min
θ,J

∑
(i,r)∈Scomm

Πθ,J(i, r)∆∗r(i, J(i, r))

πcomm
. (15)

Note that ∆∗r(i, j) yields the trajectory that greedily min-
imizes the communication delay when starting from state
(i, r), ending in position qj while serving GNr. This result
proves that, for any communication state (i, r), there exist
only 2N + 1 trajectories that are eligible to be optimal, one
for each possible ending position qj ∈ Q. Hence, the problem
is finally reduced to that of finding the optimal waiting policy
θ and end position policy J , which can be solved efficiently
via dynamic programming (Algorithm 1). In the next section,
we provide a closed form expression of ∆∗r(i, j).

B. Closed-form Delay Minimizing Trajectory

With the independence of the steady-state probabilities from
ρ, we can proceed to solve (14) and then provide the dynamic
programming algorithm to solve for θ∗ and J∗ in (15). By
definition of Tr(i→j) in (II-C), we can rewrite ∆∗r(i, j) as

∆∗r(i, j) = min
∆,q

{
∆
∣∣∣ ˆ ∆

0

Rr(q(τ))dτ ≥ L,

|q′(τ)|≤ V, q(0) = qi, q(∆) = qj

}
. (16)

The minimizer q∗ is the trajectory that the UAV should follow
when receiving a request from GNr starting in position qi and
ending in position qj , selected by the end position policy J .

In defining the optimal trajectory, the following definitions
will be useful. Let τp1,p2,

|p2−p1|
V be the time needed to fly

at maximum speed from p1 to p2∈[−a, a]. Along this straight
trajectory, let

`(r)p1,p2 ,
ˆ τp1,p2

0

Rr

(
p1 +

τ

τp1,p2
(p2 − p1)

)
dτ (17)

be the amount of bits transmitted to serve GNr.
Clearly, `(r)p1,p1=0 (τp1,p1=0), `(r)p1,p2=`

(r)
p2,p1 (τp1,p2=τp2,p1 ),

and `
(1)
p1,p2=`

(2)
−p1,−p2 (τp1,p2=τ−p1,−p2 ). The integral `(r)p1,p2

can be determined in closed form and is found in [2], for exam-
ple. We also define the trajectory υ{p1→(p2, δ)→p3}(τ), τ ∈



[0, δ+τp1,p2+τp2,p3 ], as the one in which the UAV starts at
position p1, flies at maximum speed to p2, hovers at p2 for δ
amount of time, and finally flies at maximum speed from p2

to p3. Mathematically,

υ{p1 → (p2, δ)→ p3}(τ) (18)

=


p1 + τ

τp1,p2
(p2 − p1), τ∈[0, τp1,p2 ]

p2, τ∈[τp1,p2 , τp1,p2 + δ]

p2+
τ−τp1,p2

−δ
τp2,p3

(p3−p2), τ∈[τp1,p2+δ, τp1,p2+τp2,p3+δ].

The traffic delivered to GNr when following this trajectory
is `

(r)
p1,p2+δRr(p2)+`

(r)
p2,p3 , with delay τp1,p2+δ+τp2,p3 . With

these definitions, we are now ready to state the main result.

Theorem 1. Let q∗(·)∈Tr(i → j) be the trajectory that
minimizes the communication delay ∆∗r(i, j). If `(r)qi,qj≥L, then

q∗(·) = υ{qi → (qj , 0)→ qj}(·), ∆∗r(i, j) = τqi,qj , (19)

i.e., the UAV flies at maximum speed from qi to qj without
interruption; otherwise, if `(r)qi,xr + `

(r)
xr,qj ≤ L, then

q∗(·)=υ{qi → (xr, δ
∗)→qj}(·), ∆∗r(i, j)=τqi,xr+τxr,qj+δ∗,

where

δ∗ =
L− `(r)qi,xr − `

(r)
xr,qj

Rr(xr)
; (20)

i.e., the UAV flies at maximum speed from qi to xr, hovers
over xr for δ∗ amount of time, and then flies to qj; finally, if
`
(r)
qi,xr + `

(r)
xr,qj > L, but `(r)qi,qj < L, then

q∗(·) = υ{qi → (p∗, 0)→ qj}(·), ∆∗r(i, j) = τqi,p∗ + τp∗,qj ,

where p∗ is the unique solution in [xr,min{qi, qj}] (if r=1) or
[max{qi, qj}, xr] (if r=2) of `(r)qi,p∗+`

(r)
p∗,qj=L; i.e., the UAV

flies at maximum speed towards xr to the farthest point p∗

and then back to qj , with p∗ uniquely defined in such a way
as to transmit exactly the data payload upon reaching qj .

Proof. Due to space limitations, we provide an outline of the
proof. Assume r=2 (a similar argument applies to r=1 by
symmetry). 1) for any trajectory q(·) ∈ T2(i→ j) of duration
∆, one can construct another trajectory q̃(·) ∈ T2(i → j) of
same duration ∆, and such that |q(t)−xr|≥ |q̃(t)−xr|, ∀t ∈
[0,∆]; such trajectory is obtained by flying at maximum speed
towards GN2, possibly hovering on top of GN2 for δ amount
of time (if time allows), and then returning to qj , yielding
q̃(·)=υ{qi→(p∗, δ∗)→qj}(·), for a proper choice of p∗ and δ∗

such that τqi,p∗+τp∗,qj+δ=∆; 2) note that the UAV is always
closer to GN2 under q̃(·) than it is under q(·), hence it delivers
a larger data payload than q(·) while incurring the same delay;
therefore, q(·) is suboptimal; 3) q̃(·) can be further improved
by minimizing the delay (by optimizing (p∗, δ∗)), yielding the
three cases provided in the statement of the theorem. �

C. Multi-chain Policy Iteration (PI) Algorithm

We opt to use a multi-chain PI algorithm to solve (15),
as there exist some policies whose induced Markov chain
structures are multi-chain. For example, if the waiting policy
is θ(i) = 0, and the end position policy is J(i, r) = i, then

the induced Markov chain has 2N+1 recurrent classes (hence
multi-chain). To accommodate this structure, the pseudocode
that follows is based upon the multi-chain PI methods of [11]
and succinctly describes how to solve for µ∗.

In Algorithm 1, we use a vector notation for D̄k and hk,
which denote the average delay and relative value for all states,
respectively, following the kth policy iterate µ(k). Likewise, cµ
is the vector notation for the delay cost function under policy
µ, supplemented by the optimal minimized communication
delays described by (14) and (16), and Pµ is the transition
matrix under policy µ.

Algorithm 1 Multi-chain PI to solve (15)

1: Initialize k = −1, arbitrary policy µ(0);
2: repeat
3: k ← k + 1
4: Evaluation: Solve for gain D̄k and relative value

hk under policy µ(k) by gain-relative value optimality
equations [11];

5: Improvement: Find µ(k+1)∈ arg minµ {PµD̄k};
choose µ(k+1) = µ(k) if minµ {PµD̄k} = Pµ(k)

D̄k;
6: if µ(k+1) = µ(k) then
7: Find µ(k+1)∈ arg minµ {cµ+Pµhk}; choose
µ(k+1)=µ(k) if minµ {cµ+Pµhk} = cµ(k)

+Pµ(k)
hk;

8: end if
9: until µ(k+1) = µ(k); return µ∗ = µ(k+1).

IV. NUMERICAL RESULTS

We use the following system parameters, unless specified
otherwise: number of states 2N+1=101; channel bandwidth
B=1MHz; 1-meter reference SNR γdB=40dB; UAV height
H=100m; GN locations x1=−400m, x2=400m; UAV speed
V=20m/s; and request arrival rate λ=0.4 requests/second.

We vary the data payload L across a range of values and find
numerically that, regardless, the optimal policy in the waiting
phase optimized with Algorithm 1 is

θ∗(i)=

 1, i ∈ {−N,−N + 1, ...,−1}
0, i = 0
−1, i ∈ {1, 2, ..., N}.

(21)

In other words, in the waiting phase it is optimal for the UAV
to move towards the geometric center of the two GNs along
the line segment connecting the two. Intuitively, the UAV can
more readily service a request that is originated equally likely
from GN1 or GN2, if it is located in the geometric center when
the request arrives, since the UAV is equally distant from both
GNs, and can thus serve them equally well.

In Fig. 2, we plot the optimal end position policy J∗(i, 2)
for different data payload values.3 We note that, for large data
payload values L, the optimal end position in the communi-
cation phase becomes independent of the initial position i (in
this case, J∗(i, 2)≈336m, irrespective of i for L�1). In fact,
for large data payload L, the UAV hovers over the receiver for
a significant amount of time during the communication phase

3We omit the figure for states (i, 1) ∈ Scomm, due to the inherent
symmetry of the problem. Specifically, if the optimal end point J∗(i, 2) = j
is observed, then J∗(−i, 1) = −j is also observed.
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Fig. 2: End position in the communication phase as a function of the start
position under the optimal policy, when transmitting to GN2 in position a,
for different values of the data payload. The small fluctuations are due to the
discretization of the state space.
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Fig. 3: End position for all states (i, 2) in the communication phase as a
function 1/λ, when transmitting to GN2 in position a, for a fixed large data
payload L = 15 Mbits (varied across UAV height).

(case `(r)qi,xr+`
(r)
xr,qj≤L in Theorem 1), hence the final part of

the trajectory from xr to the selected end position qj becomes
irrespective of the actual data payload value. However, J∗(i, 2)
does depend on other system parameters, such as the request
rate λ and UAV height H , as seen in Fig. 3. Interestingly,
as the request rate increases (the inter-arrival request time
1/λ decreases) the end position is closer to the geometric
center (i.e., farther away from the receiver); this is because
requests arrive more often, hence it is desirable for the UAV
to terminate the communication phase closer to the center, in
order to more readily serve future requests.

Next, we illustrate how the optimal expected average
delay D̄∗µ, across the same set of data payload values,
fares against a heuristic policy which operates as follows:
in the waiting phase, hover in the current position; in the
data communication phase, greedily minimize the delay by
flying at maximum speed towards the receiver until comple-
tion. The comparison between the optimal policy µ∗ and the
heuristic policy is shown for the span of data payload values
in Fig. 4. Note that the slope of the line for both the optimal
and heuristic policies saturates to [B log2(1+γ/H2)]−1. In
fact, when L�1, the UAV spends most of the communication
time hovering above the receiver (case `

(r)
qi,xr+`

(r)
xr,qj≤L in

Theorem 1), hence ∆∗r(i, j)≈ L
Rr(xr) in (15), yielding

D̄∗µ ≈
min
θ,J

∑
(i,r)∈Scomm

Πθ,J(i, r)L

πcommB log2(1 + γ/H2)
=

L

B log2(1 + γ/H2)
.
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Fig. 4: Comparison of expected average delay D̄µ vs. data payload L for
both optimal and heuristic policy.

Overall, the heuristic scheme performs worse, roughly by 2
seconds for large L. In fact, when hovering during the waiting
phase instead of moving towards the center, the UAV incurs a
larger delay to serve a request generated by the more distant
GN, due to the longer distance that needs to be covered.

V. CONCLUSIONS

In this paper, we studied the trajectory optimization problem
of one UAV servicing random downlink transmission requests
by two GNs, to minimize the expected communication delay.
We formulated the problem as an SMDP, and exploited the
structure of the problem to simplify the trajectory design in the
communication phase. We showed that the problem exhibits an
interesting two-scale structure in the optimal trajectory design,
and can be solved efficiently via dynamic programming.
Numerical evaluations demonstrate consistent improvements
in the delay performance over a sensible heuristic, for a variety
of data payload values.
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