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Abstract—The 3rd Generation Partnership Project (3GPP)
proposes a centralized architecture for the 5G radio access
network (RAN) in order to reduce costs and mitigate inter-cell
interference, which helps to increase user data rates. However,
the limited capacity of current fronthaul networks renders it
impossible for many RANs to be fully centralized. Instead, the
operators can opt for a partially centralized architecture, in
which only some of the functions of the RAN’s processing chain
are centralized. Previous work has tackled the optimal selection
of these functions in a static or semi-static manner. In this paper,
we present a 5G RAN that is able to dynamically adapt the subset
of centralized functions to maximize data rates at runtime. We
analyze the dynamics of a dense 5G RAN to derive a maximum
convergence time for the selection algorithms and show that a
dynamic functional split significantly improves data rates with
respect to statically centralized solutions.

Index Terms—dynamic, functional split, flexible, 5G, eMBB

I. INTRODUCTION

The fifth generation of mobile networks (5G) aims at

substantial performance improvements with respect to 4G

networks. This is reflected by the three 5G use cases: en-

hanced mobile broadband (eMBB), which envisions data

rates ten times higher than those provided by 4G networks;

ultra reliable low-latency communications (URLLC), which

promises delays ten times lower; and massive machine-type

communications (mMTC), which will support hundreds of

thousands of connected devices [1]. In order to achieve these

ambitious objectives, the usage of network resources must be

performed in a highly efficient manner.

The increment of data rates envisioned in eMBB nec-

essarily entails denser mobile networks to provide strong

radio signals to the users and improve frequency reuse. This

densification, however, leads to an increase in the uplink

and downlink interferences, which may actually hinder the

achievement of high data rates. As a consequence, interference

management techniques need to be used to allow for high-

density 5G networks. With the intention of reducing costs

and providing the fast communication between base stations

that these techniques require, the 3GPP proposes a partially

centralized architecture for the radio access network (RAN).

In this architecture, each base station (gNodeB) in the RAN

is divided into a distributed unit (DU), located close to the

radio equipment, and a centralized unit (CU), deployed in

a central location. The functions of the processing chain of

each gNodeB are split between these two units, leading to

the so-called functional split [2]. Since centralized units can

take over the functions of multiple gNodeBs, this architec-

ture allows for fast communication between functions, thus

enabling interference management. In addition, a centralized

architecture may reduce infrastructure and operating costs, as

it reduces power consumption and rental fees [3].

Given the aforementioned advantages, mobile network op-

erators are motivated to centralize as many RAN functions

as possible. Nevertheless, in realistic scenarios the amount of

functions that can be centralized is limited by the capacity

of the fronthaul network connecting the CU and DUs, as

well as by the processing capacity of the CU [4]. Therefore,

operators can centralize only a subset of the RAN functions,

which introduces the problem of optimally selecting them.

This problem is complicated by the continuous variation in the

interference situation caused by the movement of the users,

which may lead to frequent changes in the optimal solution.

One way to address this challenge would be to consider only

static parameters, such as average user density or number of

interfered resource blocks. However, such an approach has

two important disadvantages. On the one hand, it relies on

an estimation of the traffic and mobility that the network will

face, which may be inaccurate. On the other hand, even if

the estimated parameters are accurate in the long run, any

temporary deviation from them will lead to wasted resources.

In this work, we opt instead for dynamically adapting the

functional split to the instantaneous interference situation.

This approach maximizes the data rates of the users and avoids

wasting resources, thus being suitable for eMBB. In order to

do this, we formulate the dynamic centralization problem for

the 5G RAN and propose multiple strategies to solve it. As the

complexity of the problem makes its solving time comparable

to the time it takes for the optimal solution to change, we

derive an analytical model to estimate the coherence time

of a 5G RAN, i. e., the time during which the solution of

the centralization problem does not change significantly, and

use it to select the most appropriate strategy. In summary,

our contributions are threefold: (i) we formulate the dynamic

centralization problem and propose different algorithms to

tackle it, (ii) we analyze the dynamics of a dense RAN to

derive the time available for the algorithms to converge, and
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Fig. 1. Architecture of the 5G RAN, functional processing chain, and possible
functional splits (depicted with dashed lines).

(iii) we evaluate the performance of the proposed algorithms

for different network conditions.

The rest of the paper is organized as follows. Sec. II

introduces related work on the topic. In Sec. III the model

of a dense 5G RAN is presented. In Sec. IV we formulate

the dynamic centralization problem, along with a quadratic

relaxation. In Sec. V we derive the coherence time of a 5G

RAN. Sec. VI presents a simulative evaluation of the proposed

algorithms. Finally, Sec. VII concludes the paper.

II. RELATED WORK

The optimal selection of functional splits has been tackled,

to a greater or lesser extent, by previous research. For instance,

the authors in [5] envision a flexible 5G RAN that supports

multiple functional splits to match the expected user traffic.

Another example is [6], which tackles the optimal selection of

the functions to be centralized as part of the network design. In

FlexCRAN [7], a framework for a partially centralized RAN

is presented, featuring on-the-fly changes in the functional

split as a desired characteristic. The authors of [8] address the

problem of selecting the optimal functional split when a new

virtual network is added. Finally, in [9] the authors describe a

real implementation that can switch between functional splits

at runtime in a few milliseconds. This previous research sets

the basis for our work, which is, to the best of our knowledge,

the first addressing the problem of dynamically selecting the

functional split.

III. NETWORK MODEL

In this section we provide details about the RAN configura-

tion required to formulate the dynamic centralization problem.

A. General aspects

We consider a dense 5G scenario with G gNodeBs (gNBs),

including macro and small cells, and U active user equipments

(UEs). The use case considered is eMBB, which implies

that the main objective of the network is to provide high

data rates to the users. In our analysis, we focus on the

downlink and assume that UEs are continuously receiving (full

buffer assumption). These assumptions are not required for the

conclusions to hold, but they simplify the analysis.

B. Functional split

We assume that each gNB in the RAN hosts a processing

chain of RAN functions as depicted in Fig. 1. Each gNB can

switch between two different functional splits: one enabling

interference management (such as MAC-PHY or C-RAN), and

one reducing the load on the fronthaul and on the CU (such

as PDCP-RLC) [2]. We refer to the gNBs implementing the

former split type as centralized gNBs and to the latter as

distributed gNBs. The binary variable cg is used to indicate

whether gNB g is implementing a centralized (cg = 1) or

a distributed split (cg = 0) at any given time. We assume

that each gNB g can change the value of cg at runtime

without service disruption and with a latency lower or equal

than 10 ms, as previous research shows [9]. The decision to

change the split is taken by a central entity in the CU that

has information from all gNBs and UEs. Finally, we model

the maximum number of centralized gNodeBs that the RAN

can support at any given time with the variable C. The value

of C reflects the limited fronthaul capacity and the limited

computing resources at the CU [4].

C. Interference management

We assume that centralized MAC, PHY, or RF functions

can communicate to one another so as to prevent or cancel

their mutual interference. This is accomplished either by

coordinating transmissions or by jointly processing signals

[10]. Formally, we state that the interference between gNBs

g and g′ is canceled if and only if cg = cg′ = 1.

IV. DYNAMIC CENTRALIZATION PROBLEM

In this section, we present the dynamic centralization prob-

lem for a dense 5G RAN.

A. Full problem

The instantaneous data rate ru(t) of UE u at time t is

proportional to the allocated bandwidth Bu(t) and to the in-

stantaneous spectral efficiency γu(t). As Bu(t) depends on the

scheduler decisions, we take γu(t) as our main performance

indicator. In the following, we drop the dependence on time to

simplify the notation. According to Shannon’s law, the spectral

efficiency of UE u can be expressed as:

γu(c) = log2

(

1 +
Pu,s(u)

Nu +
∑

g 6=s(u)(1− cgcs(u))Pu,g

)

, (1)

where Nu is the instantaneous noise power, s(u) denotes the

index of the gNB serving UE u, Pu,g is the power received

by UE u from gNB g, cg is the indicator of centralization

of gNB g, and c = 〈c1, ..., cG〉
T

is the centralization vector

for all G gNBs. Note that, as anticipated in Sec. III-C, in (1)

the interference received by UE u from gNB g is canceled if

cs(u) = cg = 1, that is, if both the interfering and the serving

gNBs are centralized.

Dynamic centralization problem (DCP): The objective of

the DCP is to find the centralization vector c that maximizes

the sum of the logarithm of the spectral efficiency (to ensure

proportional fairness [11]) for all UEs:

max
c

R(c) =

U
∑

u=1

log(γu(c)),

s. t.

G
∑

g=1

cg ≤ C, cg ∈ {0, 1}.

(2)



Solving (2) in real time leads to the instantaneous optimal

configuration c
∗ of the RAN, which guarantees operation

at maximum spectral efficiency. Nonetheless, the DCP is an

integer non-linear optimization problem, and hence NP-Hard,

which jeopardizes real-time solving. In this work, we consider

two strategies to allow for fast near-optimal solutions to the

DCP. One is to reformulate the problem into a relaxed version,

which is addressed in the next section. Alternatively, we can

employ an off-the-shelf heuristic such as the genetic algo-

rithm, owing to its good applicability to integer optimization

[12]. In a nutshell, the genetic algorithm works as follows.

First, an initial population 〈c1, ..., cJ 〉
T

of J solutions is

randomly generated. The objective function is evaluated for all

solutions and the best ones are kept for the next generation. In

addition, new solutions are created by crossing and randomly

mutating selected solutions. This process is repeated until

the improvement achieved by new generations is low. The

specific parameters used in our implementation are those

recommended in [12], and thus we skip the details here.

B. Quadratic relaxation

Let us consider a simplified scenario in which the UEs only

report the list of interfering gNBs, but not their signal power.

In that case, we can assume that all interferences are received

with the same power P and rewrite (1) as:

γu(c) = log2

(

1 +
Ps(u)

Nu + P ·
∑G

g=1(1− cgcs(u))ku,g

)

, (3)

where ku,g = 1 if and only if UE u is being interfered by

gNB g. In (3), the summation xu(c) =
∑G

g=1(1−cgcs(u))ku,g
simply yields the number of gNBs that are interfering UE u.

Therefore, we want to maximize the sum of this function:

log(γu(c)) = log

(

log2

(

1 +
Ps(u)

Nu + P · xu(c)

))

. (4)

In a well planned network, we can assume that there are no

more than, say, 10 simultaneous interferers. Thus we can take

advantage of the limited domain xu(c) ∈ {0, ..., 10} and the

slow growth of (4) to approximate it as a linear function:

log(γu(c)) ≈ ·

(

1− β ·

G
∑

g=1

ku,g · (1− cgcs(u))

)

. (5)

The coefficients α and β can be obtained from linear re-

gression of (4) at the desired points. Since these coefficients

depend only on Ps(u) and P , which should be similar among

all UEs in a dense RAN, they do not influence the optimization

problem. Now we can exploit the linear nature of (5) to

express the new objective function in matricial notation:

U
∑

u=1

log(γu(c)) ≈ α ·
(

U − β · (1TK1− c
T
Hc)

)

, (6)

where H = 1
2

(

SK+K
T
S
T
)

is the symmetric coefficient ma-

trix, K = [ku,g] ∈ {0, 1}U×G, and S = [sg,u] ∈ {0, 1}G×U ,

where sg,u = 1 if and only if g = s(u). This new objective

function can be reduced to remove the factors not depending

on c, which results in a new, simplified optimization problem.

Quadratic Dynamic Centralization Problem (QDCP):

The objective of the QDCP is to find the vector c that

maximizes the product cTHc:

max
c

c
T
Hc,

s. t.

G
∑

g=1

cg ≤ C, cg ∈ {0, 1}.
(7)

The QDCP approximates the DCP and allows for faster

resolution. Although still NP-Hard, the QDCP is a special case

of the quadratic 0-1 knapsack problem, in which the weights

of all elements are the same. Thus, we can use algorithms

in the state of the art to tackle it. In this work, we select

three algorithms to solve the QDCP, based on their short

convergence times. The first is Quadknap, a branch-and-bound

algorithm that yields exact solutions reportedly faster than

other exact approaches by applying a Lagrangian relaxation in

the calculation of upper bounds [13]. The second is the greedy

algorithm, which sets the non-zero elements in c as the first C

unique indices associated with the greatest coefficients in H.

Finally, we evaluate an even simpler, faster greedy algorithm,

which simply selects the C gNBs with the highest number of

covered (interfered or served) UEs.

V. COHERENCE TIME OF A DENSE 5G RAN

The motivation behind formulating and solving the DCP

and QDCP is to dynamically adapt the 5G RAN to envi-

ronment changes so as to maximize data rates and usage of

resources at every instant. The ever-changing nature of the

environment implies, however, that the problem itself is also

continuously changing, which forces us to carefully consider

the time it takes for a solution to be found and implemented, as

it may have become useless by the time it is put into operation.

We can guarantee that the optimal solution c
∗ of the

DCP/QDCP at a given time will perform as expected if the

problem has not changed by the time c
∗ is implemented.

Owing to this, in this section we derive an analytical ex-

pression to predict the time between changes in the problem.

Nevertheless, the presence of changes in the problem does

not necessarily mean that the solution c
∗ has varied. That is,

the time between changes in the problem is not equivalent

to the time between changes in the optimal solution, and the

latter is actually more relevant when evaluating whether the

convergence time of an algorithm is low enough. We call the

latter time the coherence time of the RAN, as it is the time

during which we can assume that the RAN exhibits an stable

behavior. In this section, we also provide an estimation of this

coherence time.

A. Time between changes in the problem

Let us define Tp as the random variable modeling the time

between changes in the input parameters of the optimization

problem. In the DCP these parameters are continuous vari-

ables, thus the problem is continuously changing and Tp = 0.



Fig. 2. Depiction of cells, interference regions, and a trajectory line. Green
(purple) squares are left-transitions (right-transitions) on the trajectory line.

Conversely, the input parameters of the QDCP (matrices S and

K) have a discrete (binary) range, which allows for further

analysis. We can relate changes in S and K to changes in

the positions of the UEs. In order to see this, let us picture a

simplified, geometrical model of a 5G RAN. We define cell as

the area covered by one gNB, i. e., the area within which a UE

may be served or interfered by a given gNB. For simplicity, we

model these cells as circles1 centered on the position of their

radio equipment. The cells divide the area into interference

regions, defined as those points covered by the same number

of gNBs. These regions are shown in Fig. 2 as the areas with

different colors. In this scenario, every change in S or K

implies one or more UEs transitioning from one region to

another. Therefore we can model the dynamics of S and K

by analyzing the movement of UEs.

Let us consider a RAN with cell centers distributed accord-

ing to a 2-dimensional homogeneous Poisson point process

(PPP) of density d cell centers per area unit. The PPP has

been shown to accurately model real mobile deployments [14],

and, as we show in the next section, it also provides valid

results for a dense 5G RAN. We assume that each gNB g

is associated with a circular cell of radius ρg and UEs move

in a linear fashion throughout the area, which is accurate for

short periods of time, thus following a trajectory line. We

refer to the intersections between the trajectory line and the

cell borders as transition points. In Fig. 2, these points are

depicted as squares over the trajectory line. For every cell,

there are two transition points, one when entering the cell and

one when leaving it. Without loss of generality, we assume

movement from left to right and thus refer to these points as

left-transition and right-transition points, respectively.

From this layout, we can derive interesting properties of

Tp. We have structured the main statements that lead to them

into four lemmas, whose proofs are included in Appendix A.

The first two lemmas address the distribution of the distance

between transition points, which are the points on the tra-

jectory lines where Tp changes. Lemmas 3 and 4 tackle the

conversion of distance between these points into time.

Lemma 1: The left- and right-transition points are 1-

dimensional PPPs on the trajectory line of density λl = λr =
2dρ̄ (respectively), where ρ̄ is the average cell radius.

1Note that this is also valid for a cell configuration of three 120
◦ sectors,

as their mutual interference can be canceled locally at their common DU.

Lemma 2: If ρ̄ >
√

π
8d , the superposition of the left- and

right-transition processes can be approximated by a PPP with

intensity λt = 4dρ̄.

Lemma 3: The distribution of the random variable T u
p

modeling the time spent by UE u in an interference region

can be approximated by an exponential distribution of mean

λu = 4dρ̄vu.

Lemma 4: In a RAN with U independent UEs, the distribu-

tion of Tp can be approximated by an exponential distribution

of mean λp = 4dρ̄Uv̄, where v̄ is the average UE speed.

The condition ρ̄ >
√

π
8d of Lemma 2 is easily met in

dense scenarios [15]. As a result, we conclude that Tp ∼
Exp(4dρ̄Uv̄), which implies that the average time between

changes in the QDCP, t̄p = 1
4dρ̄Uv̄

, is inversely proportional

to the density of the cells in the RAN d, the number of UEs

U , the average cell radius ρ̄, and the average UE speed v̄.

B. Time between changes in the solution

Let us define Ts as the random variable modeling the time

between changes in the optimal solution of the problem. Since

the solutions of the DCP and QDCP cannot change faster than

the input, we know that Tp is a lower bound (in distribution) of

Ts. However, this bound may not be tight, as the relationship

between problem inputs and solutions is not injective. This

implies that many inputs share the same solution, and it is

likely that those inputs are similar to one another. As a result,

we can conjecture that the more different two inputs are, the

more likely it is that they do not map to the same solution.

In the QDCP case, this means that the higher the ratio of

transitioned UEs with respect to an initial setup, the more

probable a change in the solution is.

In the absence of any other information, we can approxi-

mate the distribution of Ts by assuming a one-to-one relation-

ship between the ratio of transitioned UEs and probability of

a solution change. Thus we define Ts as the random variable

modeling the time required for all UEs in the network to

change its interference region, that is, Ts = max{T u
p } for

all u, where T u
p is defined in Lemma 3 of Sec. V-A. Thus, its

cumulative distribution function (CDF) can be expressed as:

FTs
(t) =

1

U

U
∑

u=1

(

1− e−4dρ̄vut
)

= 1−
∑

i

pvi
e−4dρ̄vit, (8)

where pvi
reflects the proportion of UEs with velocity vi. Note

that Ts does not depend anymore on the number of UEs U .

Now that we have a characterization of Ts, we can use

it to generate an estimation of the coherence time of the

RAN. For instance, we could use its mean t̄s = 1
4dρ̄v̆ as

our estimation, where v̆ is the harmonic mean of all UEs’

velocities. Nevertheless, t̄s is not a robust estimator, since

it tends to infinity when there are static users. We could

use instead the median or the quartiles of Ts as coherence

times, but (8) does not admit analytical expressions for them.

Alternatively, we propose

t̂s =
1

4dρ̄v̄
(9)



Parameter
Scenario’s density

Low Medium High

Layout Macro cells: hex. grid + Small cells: 2-d PPP

Small/macro ratio µ 3 6 9

Cell density d (cells/km2) 110 200 290

Avg. cell radius ρ̄ (m) 58.8 48.6 44.5

UE distribution
Uniform in macro + Clustered in small

10 users per cell

UE speed distribution 80%: 3 km/h, 20%: 30 km/h

Radio propagation model COST Hata model

Table 1. Attributes of a 5G dense urban scenario as specified by 3GPP [15].

Fig. 3. Boxplots of the convergence time of the four proposed approaches
with respect to the number of gNBs in the network.

as the coherence time of a dense 5G RAN, since it provides

a conservative value (it can be trivially proven that t̂s ≤ t̄s)

and is more robust than t̄s.

VI. EVALUATION

In this section, we assess the different strategies to operate

a RAN that can dynamically change its functional split to

maximize data rates. In order to simulate a realistic 5G RAN,

we employ a custom MATLAB/C++ simulator implementing

the recommended 3GPP parameters for a 5G dense urban

scenario (see Table 1). The equipment used for the simulations

is an 8-core Intel Core i7-6700 PC running at 3.40 GHz. In the

following measurements, we assume a high-mobility scenario

corresponding, for example, to the center of an active city. We

consider linear movement of the UEs but still in a clustered

manner, in order that the UE distribution remains the same.

In addition, we always use C = G
2 to allow for consistent

comparisons between measurements.

We first evaluate the convergence time of the four algo-

rithms as a function of the number of G of gNBs in the RAN,

since this is the length of the solution vector c (see Fig. 3).

We observe a substantial difference in the convergence time of

the four algorithms. The greedy and simple greedy algorithm

converge in less than 100 ms in all cases, whereas the genetic

and Quadknap algorithms take longer than 100 s if G > 500
gNBs. In addition, Quadknap exhibits a large increase in its

convergence variance when the number of gNBs exceeds 300,

which may degrade its performance in a real implementation.

Next, we calculate and simulate the time between changes

in the problem Tp and the coherence time of the RAN Ts to

see whether it clashes with the convergence times. In Fig. 4

10
-4

10
-2

10
0

10
2

Time (s)

0

0.2

0.4

0.6

0.8

1

C
D

F

Uniform

Clustered

cells/km²,

cells/km²,

Theoretical

Simulation

Fig. 4. Empirical and theoretical CDFs of Tp and Ts for low- and high-
density scenarios with UEs distributed uniformly and in a clustered manner
(according to the 5G dense urban model).

Fig. 5. Spectral efficiency achieved by four dynamic optimization approaches
in a low-density RAN performing real-time adaptation. The performances of
a static and a non-centralized solution are shown for comparison.

we show empirical and theoretical values of the CDFs of Tp
and Ts for low- and high-density scenarios (see Table 1) and

two types of UE distributions: uniform (as in the theoretical

analysis), and clustered (from the 3GPP dense urban model).

We observe that the theoretical model closely resembles the

simulative data. The median values of Tp are around 20 and

1 ms for low- and high-density scenarios, respectively, which

is shorter than the convergence time of all but the simple

greedy algorithm and comparable to the implementation time

of any solution, as mentioned in Sec. III-B. We conclude

that, in general, it cannot be guaranteed that the optimization

problem has not changed by the time a solution is put into

operation. Regarding Ts, we notice that is several orders of

magnitude higher than Tp and that the differences between

low- and high-density scenarios have been reduced with

respect to Tp. This can be seen via the coherence time:

t̂s = 8.9 s and 17.5 s according to (9), respectively.

Finally, we simulate the spectral efficiency achieved by

the four proposed algorithms right after the calculation of

their solutions to observe the performance degradation due

to their convergence time. For comparison, we also simulate

the performance of a static solution, obtained from solving (2)

with the average parameters of the RAN. The average spectral

efficiencies after 30 repetitions for a low-density network are

shown in Fig. 5, from which we can distinguish two types

of behaviors. The greedy and simple greedy algorithms yield

a constant spectral efficiency, since their convergence time is

always below the coherence time of the RAN. By employing



any of them, the RAN can increase user data rates by a factor

of 150%, compared to static solutions. Conversely, the genetic

and the Quadknap algorithms, although adequate when the

RAN is small, clearly exhibit a maximum G beyond which

their performance degrades due to their long convergence

times. These values of G can be accurately predicted by

searching the points where the coherence time t̂s = 17.5 s

equals their convergence time: G ≈ 280 for the genetic

algorithm and G ≈ 400 for Quadknap. At these points, their

relative performance improvements with respect to the static

solution when G = 64 have decreased by half. We therefore

conclude that these algorithms are not suitable for real-time

optimization of large 5G RANs.

VII. CONCLUSION

The 3GPP currently proposes a partially centralized archi-

tecture for the 5G RAN, in which a subset RAN functions are

deployed in a central location. This architecture reduces costs

and enables interference mitigation, which helps to improve

data rates. In this work, we tackle the problem of dynamically

centralizing these functions to maximize data rates, according

to the state of the network. We show that this can be accom-

plished in real time by using simple optimization algorithms.

Indeed, we foresee a substantial increase in the achievable

data rates with respect to static optimization approaches. In

addition, we provide a theoretical analysis of the dynamics of

a 5G RAN that can be used to select more suitable algorithms

for real time operation.
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APPENDIX A

Proof of Lemma 1: The feet of the perpendiculars between

the cell centers and the trajectory line is a 1-d PPP, given the

symmetry of a 2-d PPP. The left- and right-transition points

are the result of a random displacement of this 1-d PPP.

By the displacement theorem, they are also 1-d PPPs. The

cells with radius ρ generate a left-transition (right-transition)

if and only if their centers are at distance ρ or less from

the trajectory line. If, w. l. o. g., we assume that the trajectory

line is horizontal, the area containing these centers would be a

rectangle whose height and width are 2ρ and W , respectively.

Thus, the density of points in this rectangle is 2dρW
W

= 2dρ,

and hence this is also the intensity of the PPP produced by

cells of radius ρ. Assuming that all centers and radii are

independent, the resulting PPP for all radii is the continuous

superposition of the PPPs for each radius, whose intensity is

λl = λr =
∫∞

0
2dρfP (ρ) dρ = 2dρ̄, where fP (ρ) is the PDF

of the radii of all cells. �

Proof of Lemma 2: Let us define Q as the random variable

modeling the distance between the left- and the right-transition

point belonging to the same cell. This variable models the

chord length distribution of a circle of radius ρ, and thus its

mean is q̄ = E{Q} = 4ρ̄
π

[16]. When the average chord length

between left- and right- transition points is greater than the

average length between two left- or right-transition points, the

processes become loosely correlated and their superposition

behaves like a PPP with intensity λt = λl+λr. This happens

when 4ρ̄
π

> 1
2dρ̄ , which leads to the condition in Lemma 2. �

Proof of Lemma 3: For each user u with velocity vu, the

time between transitions can be obtained by scaling distance

between transitions by the factor 1
vu

, which results in another

PPP of intensity λu = λtvu = 4dρ̄vu. �

Proof of Lemma 4: The process resulting from the super-

position of U independent PPPs is another PPP with intensity

λp =
∑U

u=1 4dρ̄vu = 4dρ̄Uv̄. �
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[4] U. Dötsch, M. Doll, H.-P. Mayer, F. Schaich, J. Segel, and P. Sehier,
“Quantitative analysis of split base station processing and determination
of advantageous architectures for lte,” Bell Labs Technical Journal,
vol. 18, no. 1, pp. 105–128, 2013.

[5] A. Maeder, M. Lalam, A. De Domenico, E. Pateromichelakis,
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