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Abstract—For a seamless deployment of the Internet of Things
(IoT), self-managing solutions are needed to overcome the chal-
lenges of IoT, including massively dense networks and careful
management of constrained resources in terms of calculation,
memory, and battery. Leveraging on artificial intelligence will
enable IoT devices to operate autonomously by using inherently
distributed learning techniques. Fully distributed resource man-
agement will free devices from draining their limited energy
by constantly communicating with a centralized controller. The
present work is devoted to a specific IoT context, that of
LoRaWAN, where devices communicate with the access network
via ALOHA-type access and spread spectrum technology. Con-
current transmissions on different spreading factors increase the
network capacity. However, the bottleneck is inevitable with the
expected massive deployment of LoRa devices. To address this
issue, we resort to the popular EXP3 (Exponential Weights for
Exploration and Exploitation) algorithm to steer autonomously
the decision of LoRa devices towards the least solicited spreading
factors. Furthermore, the spreading factor selection is cast as a
proportional fair optimization problem used as a benchmark for
the learning-based algorithm. Extensive simulations were run in
a realistic environment taking into account physical phenomena
in LoRaWAN such as the capture effect and inter-spreading
factor collision, as well as non-uniform device distribution. In
such a realistic setting, we evaluate the performances of the
EXP3.S algorithm, an efficient variant of the EXP3 algorithm,
and show its relevance against the fair centralized solution and
basic heuristics.

Index Terms—LoRAWAN,
Spreading Factor selection.

reinforcement learning, EXP3,

I. INTRODUCTION

The long-term goal of the Internet of Things is to provide
low-cost, large-scale, and ultra-durable connectivity for every
object that can benefit from being connected. LoORaWAN [1],
[2] is a well-known 10T solution over the unlicensed band with
a simplified connectivity procedure. It is designed to allow
low-powered devices to communicate with the access network
over long-range wireless connections. Transmission is possible
on one of the 8 channels (frequency plans in Europe [1])
and with one of the 6 available spreading factors. A collision
will only occur when two or more devices select the same
channel and spreading factor (SF) [3]. However, the latter is
inevitable due to the use of random access, the shortage of
radio resources and the expected massive deployment of LoRa
devices. Accordingly, astute resource management is vital to
increase the capacity of LoRaWAN. However, only resource

allocation schemes that reduce drastically signaling with the
access network in order to offer ultra-long battery lifetimes
to LoRa devices are feasible. Therefore, each device must be
able to select adequate spreading factors autonomously.

In addition, even with different SFs, a collision between
signals on the same channel can occur due to the imperfect
orthogonality of SFs, called inter-Spreading Factor collision
[4], [5]. Fortunately, if there are concurrent transmissions on
the same resource (the same SF and channel), the gateway
(GW) is able to successfully receive one of them if its
Signal-to-Interference-and-Noise-Ratio (SINR) is higher than
a threshold of 6 dB, for any SF. The latter is deemed capture
effect [2], [3]. In this paper, we will assess the impact of
both phenomena, namely the capture effect (CE) and inter-SF
collision, that were overlooked in the literature.

Recent work on distributed selection of radio resources in
LoRaWAN had recourse to the Multi-Armed Bandit (MAB)
problem [6], [7]. Each end-device is considered as an in-
telligent agent that chooses a given SF and/or channel to
minimize its cumulative regret in comparison with the best
fixed allocation that renders the highest reward.

In general, there are two broad MAB models: stochastic
and non-stochastic [8]. For stochastic MAB, the reward of
each strategy is drawn according to a given probability density
function (PDF). Conversely, for non-stochastic MAB, no sta-
tistical assumptions are made about the generation of rewards.
In particular, adversarial MAB is a non-stochastic MAB where
rewards are chosen by an adversary. This formulation can
model any form of non-stationarity and is hence adequate for
the problem at hand.

In [6], the authors assumed that all end-devices use the same
spreading factor and adopted the stochastic MAB algorithm to
determine the channel selection. However, such an assumption
is impractical in LoRa network due to the mutual coupling
between multiple intelligent end-devices. The work in [7] has
explored adversarial MAB for resource allocation in an IoT
network. However, the capture effect and inter-SF interference
were not taken into consideration. More importantly, only
uniform device distribution is considered. In this work, we
assess the impact of realistic non-uniform device distribution
where smart distributed resource allocation becomes crucial.

In this paper, as the distributed selection of the least con-
gested SFs by uncoordinated devices is appropriately modeled



by the adversarial MAB problem, we resort to the popular
EXP3 (Exponential Weights for Exploration and Exploitation)
algorithm [9], [10]. The goal of EXP3 is to steer autonomously
the decision of each LoRa end-device towards the least so-
licited SF while ensuring reactivity to the possible changes that
can occur in the common resource usage. In particular, we use
the EXP3.S [10], a computationally efficient version of EXP3.
We show that the reinforcement learning approach is much
more efficient in minimizing the number of collisions, as well
as improving the throughput of LoRa network, in comparison
with a uniform distribution or a trivial random distribution over
the set of SFs. More importantly, we define a proportional fair
optimal problem for the SF selection as a benchmark for the
EXP3.S algorithm and show that the latter displays very little
discrepancy with the optimal problem. Moreover, the impact
of the capture effect and inter-SF interference on the system
performance is thoroughly investigated.

The rest of this paper is organized as follows. The system
model is presented in Section II. The optimal formulation for
the spreading factor selection is casted in Section III. In Sec-
tion IV, a distributed learning-based approach is investigated
to minimize the number of collisions for LoRa end-devices,
magnified by inter-SF collision and dense deployment. Perfor-
mances of the proposed approach are evaluated in Section V.
Concluding remarks are given in Section VI.

II. THE SYSTEM MODEL

In this paper, we consider a LoRaWAN-type network com-
posed of one gateway located at the center of a disc-shaped
network of radius R, and N end-devices. Communications
in LoRaWAN occur in one of the 8 channels in the public
ISM band; each channel with a bandwidth of 125 KHz in
Europe (see [1]). High resiliency to noise and interference
is essential to operate efficiently in the ISM band. To this
end, the chirp spread spectrum (CSS) modulation is used in
LoRa, which enables signals with different spreading factors
SF € 8 = {7, ..., 12} to be distinguished and received simul-
taneously, even if they are transmitted at the same time and
on the same channel. Lower SFs lead to higher transmission
rates and shorter transmission time but require a higher SNR
(Signal to Noise Ratio). The sensitivity of LoRa transceivers
and the reception threshold are given in Table I. Following [3],
a collision occurs when two or more devices select the same
channel and spreading factor. However, perfect orthogonality
is not guaranteed, and interference among communications
using different SF, called inter-SF collision, must be accounted
for [4]. In fact, the GW can successfully receive a signal using
SF s if its power is higher by a given threshold (given in Table
I) than the total interference generated by concurrent signals
using SF s # s.

Furthermore, if there are several signals transmitted with the
same SF and on the same channel simultaneously, the GW is
still able to successfully receive the strongest signal if its SINR
is higher than a threshold of 6 dB. This phenomenon is known
as the capture effect [2], [3]. Therefore, apart from considering
the collisions due to selecting the same SF and channel, we

also consider the impact of the inter-SF collision and the
capture effect for their relevance on LoRaWAN performances.

Besides selecting a SF and a channel, each end-device
selects a transmission power between 2 dBm and 14 dBm. Due
to the space limitation of the paper, we assume that all end-
devices use the same channel, and with maximal transmission
power.

Table I: LoRa characteristics at BW = 125 kHz [1], [4]

Bit- rate Rece.i\{el_' Reception | Inter-SF collision
SF [kbps] Sensitivity | Thresh. Thresh.
[dBm] [1] | [dB] [dB] [4]

7 5.47 -123 -6 75

8 3.13 -126 9 9

9 1.76 -129 12 135

10 0.98 -132 15 15

11 0.54 -134.5 -17.5 18

12 0.29 -137 =20 225

To ease the performance assessment and the analysis of
packet collision, we assume that all end-devices have the
same packet generation rate of A packets per hour and that
all packets have the same length of / bytes.

As stated in the LoRaWAN specifications [1], after sending
a packet, the end-device waits for an acknowledgment (ACK)
sent by the GW. We assume that there is no collision between
the ACK and uplink packets. In fact, the ACK can be delivered
on a separate channel with a higher duty cycle. Hence, if an
end-device receives an ACK for its transmitted packet, then
either there was no collision, or the capture effect has occurred.
Conversely, when ACK is not received, either the packet was
lost due to collision with another packet transmitted with the
same SF, or due to the inter-SF collision.

III. OPTIMAL PROPORTIONAL FAIR SPREADING FACTOR
SELECTION IN LORAWAN

In this section, the spreading factor selection is cast as an
optimization problem for LoORaWAN, steered by the GW or the
Network Server. A centralized solution to the spreading factor
selection problem is complex and necessitate signaling that
will drain the energy of LoRa devices, supposed to have ultra-
durable battery life. Thus, the centralized solution will be used
as a benchmark for the distributed learning-based algorithm
sketched below.

Note that all end-devices have the same packet generation
rate of A packets per hour, and the same packet length of
[ bytes. Transmission attempts occur according to a Poisson
distribution of parameter 4. We denote by N the maximum
number of devices that can use SF s and above. Let T be the
time needed to transmit a packet of / bytes on spreading factor
s (time on air). Then, given a duty cycle limitation of d = 1%,
the packet generation rate for each end-device operating on SF
s must verify ATy < d = 1% [1].

We suppose that we have an external traffic (e.g. devices
belonging to a different operator) of intensity A packets per
second on spreading factor s. Let ps be the ratio of devices



using SF s and above. We can write the normalized channel
traffic on SF s as follows:
Gs=(-N-p; +/l§)Ts (D

LoRaWAN uses a simple ALOHA-based algorithm without
sensing, doing away with synchronization and access reser-
vation. Therefore, according to the Poisson traffic arrival, the
normalized total throughput G of the network is given by:

s
G= Z G, exp(—2Gy) 2

s=1

S
DUAN -y + ATy exp(=2(A- N - ps + ) -T;)  (3)
s=1

We consider a network utility under proportional fairness
for the normalized throughput of the network. While con-
ventional resource allocation usually aims at maximizing the
total normalized throughput in (2), it may deprive devices
far away from the GW from having fair access to radio
resources. Hence, in this work, we privilege the device’s
interest by relying on the proportional equity incarnated by
the logarithmic function as in [11]. Accordingly, the spreading
factor selection problem consists in computing the ratios pg
that maximize the following utility function:

s
U= log(Gyexp(-2G,)) @)
s=1
Such a utility function ensures a proportional fair normalized
throughput, which strikes a good balance between fairness and
efficiency. The optimization problem is as follows: (5):

S
log (G, exp(~2Gy)) =
max > log (G exp(-2Gy))

(P):
s=1
s s
log(Gs)—-2 > G 5
H}gxg;og( 5 Z:; (5a)
s
subject to Z ps <1, (5b)
s=1
N N
N.
DIED IR A LE R T A

The utility maximization objective is subject to constraint
(5b) ensuring that the sum of ratios does not exceed 100%.
Constraints (5¢) ensure that the number of devices selecting
SF s and above does not exceed the maximum number Ny
for each SF 5. The optimization problem (5) is convex with
a concave objective function and linear constraints. Hence, it
can be solved very efficiently using solvers such as CVX [12].

IV. DISTRIBUTED LEARNING FOR SPREADING FACTOR
SELECTION IN LORAWAN
We describe the fully distributed learning-based algorithm
suitable for LoRaWAN.
Any end-device is considered as an intelligent agent that
needs to choose at a iven time ¢ a convenient spreading

factor SF s or equivalently a strategy s(f) = {SFs}. Let
S ={7,...,12} be the set of spreading factors. We consider
a realistic setting where devices are unaware of their position
and channel conditions, and thus unaware of their minimal
SF. Therefore, they will select any SF s € S. Accordingly,
the strategy space of any device is S. At each iteration ¢ (at
packet arrival), each device selects a strategy s(f) governed by
some distribution over S, which yields a reward ry(r) € {0, 1}.
Successful packet transmission (acknowledged by the GW)
yields rg(¢) = 1. In case of packet loss, rs(¢) = 0.

Such type of learning corresponds to the framework of the
Multi-Armed Bandit (MAB) problem [8] that only makes use
of local information available at the LoRaWAN end-device
level (received ACK). The result of the devised algorithm in
each device will be a set of SFs that suffers the least from
collisions. To reduce the resource occupation of neighboring
devices, each device follows a set of rules to strike a good
balance between (i) Exploiting the cumulated knowledge by
choosing the most appropriate SF s to transmit, and (ii)
Exploring other SFs that could be interesting to exploit.

As the distributed selection of the best radio resources
by uncoordinated devices is appropriately modeled by the
adversarial MAB problem, we resort to the popular EXP3
algorithm [9], [10].

However, the EXP3 algorithm has an exponential complex-
ity with the size of the strategy set, leading to prohibitive
convergence times. Therefore, we adopt a computationally
efficient version of the EXP3 algorithm, known as the EXP3.S
(or EXP3 with § value) [10], to determine the best SF selection
in LoRaWAN.

At each iteration ¢ (at packet arrival), each device j selects
a strategy s(7) with distribution pj(r) over S, which renders
reward r¢(¢). The goal of any device j is to update pl(¢) in
order to get the largest reward at horizon 7 in comparison
with the best fixed strategy. We initialize the algorithm with
all weights equal to 1, and with the uniform distribution
PL0) = %, where K is the cardinal of strategy set S. Further,
in Algorithm 1, e is the base of the natural logarithm, i.e.,
e ~2.7182818 ..., and « is an input parameter used to adjust
the weights at each iteration time 7. Note that in case of packet
loss, r¢(t) = 0 and no update will take place for the distribution
strategy, and therefore, no learning either.

V. PERFORMANCE EVALUATION

We consider a LoRaWAN-type network with 1 GW and
N = 100 end-devices distributed in a disc of radius 4.5 km.
When we only consider path loss, the network is composed of
concentric discs corresponding to different receiver sensitivity
values (given in Table I) and hence to different minimal
spreading factors. Accordingly, the closest devices to the GW
have a choice spanning from 7 to 12, whereas the furthest
away devices are constrained with SF = 12, as shown in
Figures 1a and 2a. In our simulations, we consider also the log-
distance path loss model with flat fading, where the reference
distance dy = 40m, the path loss at the reference distance
PLy = 107.41 dB, the path loss exponent y = 2.08. To evaluate



Input : Let SF s € S be the strategy chosen by
device j.
Initialization: )
« Set the initial weights w}(0) =1, Vs €S, Vj € N and
the uniform distribution of strategies per device

ph0) = L.

. . K log(KT)
« Set the learning rate y = min {1,/ =—5—}.

« Set the input parameter a = 1/T.
fort =11t T do
initialization ;
foreach end-device j do
At time ¢, draw strategy s € S according to the
distribution p’(¢) ;
if Transmit then
Receive reward

i 1 if ACK is received,
rs (t) = .
0 otherwise.

Update weights and distributions of
available strategies:

. : g(t) e &

wl(t + 1) =wl(t)exp ERAELVEN ol wl(t)
(K-zﬂs(r)) KZ]
J

1) =(1 -y —2U*D ¥

ps(t+1)=(1-7y) ﬁilw‘i(t+1)+’<

end
end

end
Algorithm 1: EXP3.S algorithm for fully distributed resource
allocation in LoRa network

the impact of devices distribution in the network, we consider
two scenarios: a uniform distribution of devices, and a non-
uniform distribution where we choose at random to crowd a
given region (with SF = 10).

We will evaluate the EXP3.S performance in a real setting
that accounts for both capture effect and inter-SF collision.
Further, to fully assess the reinforcement learning based algo-
rithm, we will compare EXP3.S against the fair centralized
algorithm presented in Section III, but also against simple
algorithms such as i) the uniform SF distribution where each
device selects the SF according to a uniform distribution over
S, and ii) the random distribution where each device selects
the SF according to a Gaussian distribution.

We develop a discrete-event simulator in Python with the
Simpy library [13]. It is a flexible simulation tool that captures
specific LoRa link behavior for multiple network settings with
the impact of capture effect and inter-SF collision. For each
scenario, the time horizon for simulation is 7 = 107. The 1%
LoRaWAN duty cycle limitation [1] is respected by setting
the packet generation rate of each end-device to 4 = 15
packet/hour. Data is generated with exponential interarrival.
The other simulation parameters are presented in Table II.

Table II: Parameters for performance analysis.

Parameters Values

Aera Disc of radius 4.5 km
Packet length 50 bytes

Bandwidth (BW) 125 kHz

Code rate 4/5

Frequency set 868100 Hz

Capture Effect Threshold 6 dB

Inter-SF Collision Threshold  Table I

Transmission Power 14 dB

aance ) aistance (km)

(a) Uniform Dist. of Devices (b) SF Distribution

Figure 1: Impact of uniform distribution on SF selection

A. Spreading factor selection for EXP3.S

Figures 1 and 2 display the choice of spreading factors
according to the EXP3.S algorithm 1 by devices uniformly
and non-uniformly distributed respectively. The results are
obtained at the end of horizon time (7 = 107). One sees that
the choice of spreading factors by each end-device depends
on its location and on the distribution of other devices in the
network (proximity of other devices).

For the uniform distribution, devices in outer regions, i.e.,
regions which receiver sensitivity corresponds to spreading
factors equal to or higher than 8, usually choose the SF cor-
responding to their region (their smallest feasible SF, yielding
the highest bit rates). Conversely, devices in the region of SF
7 load balance their traffic between spreading factors 7 and
8, depending on their distance to the GW and the relative
distances of other competing devices. In fact, by displaying
in Figure 3 the strategy evolution of two randomly chosen
devices, namely device 21 and device 45, we can see that
device 21 favors SF =7 over SF = 8 (with probability 0.75),

B
e tkm)

(a) Non-Uniform Dist. of Devices (b) SF Selection

Figure 2: Impact of non-uniform distribution on SF selection



Figure 3: Uniform distribution: Strategy Evolution for two
devices in central region

Figure 4: Non-uniform distribution: Strategy Evolution for two
devices in crowded region

while device 45 equally shares its traffic on both SFs.

For the non-uniform distribution, the same trend is ob-
served in the central region with minimal SF = 7, but more
importantly, we can see that devices in the crowded region
partake their traffic on their three feasible SFs: 10, 11 and
12. This behavior shows the relevance of an intelligent radio
resource allocation. In particular, we display in Figure 4 the
strategy evolution of two randomly chosen devices in region
of SF = 10, namely device 50 and device 52. We can see that
device 50 chooses SF = 10 with probability 0.7 and SF = 11
with probability 0.3, while device 51, that initially took similar
decisions, finally opted for SF = 12 to shield itself from the
harmful interferences generated by device 50.

In both figures 3 and 4, we note the convergence of the
EXP3.S algorithm for spreading factor selection. Convergence
times are long, in the order of 30 kHours, but are nonetheless
acceptable for a static setting that is common in wide area
IoT scenarios (in automated factories, smart cities, smart
agriculture, etc.). We notice that convergence for devices in
the outer region is faster than for those in the inner regions,
because the latter have more feasible strategies.

Finally, to gauge the impact of capture effect, we show
in Figure 5 the SF constellation for the uniform distribution
(upper figures 5b and 5a) and non-uniform distribution (lower
figures 5d and 5c). We can see that in both geographical
distributions, devices load balance their traffic on more SFs
when the CE taken into account, which enhances performances
as will be highlighted in the next subsections.

(a) Uniform distribution with CE (b) Uniform distribution w/o CE

(c) Non-uniform dist. with CE  (d) Non-uniform dist. w/o CE

Figure 5: A snapshot of spreading factor selection for the
EXP3.S algorithm at horizon ¢ = 107, with and without CE

B. Successful transmission rate

In this subsection, we evaluate the rate of successfully
received packets. In order to gain more insight on the impact
of intelligent devices with learning SF capabilities on the
performance of LoRaWAN, we consider three scenarios with
three different ratios of intelligent devices where 0%, 50% and
100% of end-devices use EXP3.S algorithm for their spreading
factor selection. Non-intelligent devices adopt either a uniform
strategy or a random strategy for SF selection.

Figure 6 shows the packet reception rate PRR for the
network in presence of capture effect and inter-SF collision.
We can see clearly that the packet reception rate of the system
with distributed learning is significantly increased compared
to the uniform SF selection and random SF selection. In
addition, the larger the number of intelligent end-devices using
distributed learning, the higher the packet reception rate. We
note that in the uniform distribution, the PRR gets close to
0.9, while in the non-uniform case, PRR surpasses it owing
to the increased efficiency brought by astute SF allocation.

Furthermore, we observe that taking into account CE and
inter-SF collision leads to a slight increase in the packet re-
ception rate. This increase is small since the network is sparse.
However, when the device density increases, the impact of CE
and inter-SF collision will increase, leading to a scalability
limit. Thus, it is necessary to investigate the impact of capture
effect and inter-SF collision.

Recall that convergence times are long, in the order of
30 kHours. However, the packet reception rate PRR of the
network with distributed learning algorithm can reach 0.8 for
the uniform case and 0.9 for the non-uniform case in an
acceptable time (less than 10 kHours).
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Figure 6: Packet reception rate

VI. CONCLUSION

In this paper, we investigated the pertinence of intelligent
radio resource allocation in LoRaWAN. We put emphasis
on spread spectrum allocation through reinforcement-based
learning, in a realistic setting that accounts for the capture
effect, collisions among spreading factors and non-uniform
device distribution. In particular, we applied the EXP3.S
algorithm to autonomously steer the decision of each device
towards the least congested SFs while ensuring reactivity to the
possible changes that can occur in the common resource usage.
Further, we devised an optimal fair centralized SF allocation
problem to use as a benchmark for the fully distributed EXP3.S
algorithm. Extensive simulations show that the distributed
learning-based algorithm outperforms simple heuristics, and
shows small discrepancy with the centralized optimal solution
in terms of normalized total throughput.

In future work, we will address jointly the SF, the chan-
nel and the transmission power selection to further improve
network performances while reducing the LoRaWAN energy
consumption. Moreover, we need to tackle the issue of conver-
gence rate, that will be exacerbated as the number of strategies
increase.
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