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Abstract— A status updating communication system is exam-
ined, in which a transmitter communicates with a receiver over
a noisy channel. The goal is to realize timely delivery of fresh
data over time, which is assessed by an age-of-information (AoI)
metric. Channel coding is used to combat the channel errors,
and feedback is sent to acknowledge updates’ reception. In case
decoding is unsuccessful, a hybrid ARQ protocol is employed,
in which incremental redundancy (IR) bits are transmitted to
enhance the decoding ability. This continues for some amount of
time in case decoding remains unsuccessful, after which a new
(fresh) status update is transmitted instead. In case decoding is
successful, the transmitter has the option to idly wait for a certain
amount of time before sending a new update. A general problem
is formulated that optimizes the codeword and IR lengths for each
update, and the waiting times, such that the long term average
AoI is minimized. Stationary deterministic policies are investigated,
in which the codeword and IR lengths are fixed for each update,
and the waiting time is a deterministic function of the AoI. The
optimal waiting policy is then derived, and is shown to have a
threshold structure, in which the transmitter sends a new update
only if the AoI grows above a certain threshold that is a function
of the codeword and IR lengths. Choosing the codeword and IR
lengths is discussed in the context of binary symmetric channels.

I. INTRODUCTION

Real-time status updating systems require timely infor-

mation delivery of fresh data to interested destinations. A

suitable metric to assess such timeliness/freshness is the age-

of-information (AoI) metric, defined as the time elapsed since

the latest status update has reached the destination. Consid-

ering AoI as a performance metric for timely information

delivery has been considered under various settings in the

recent literature, covering topics in queuing, scheduling and

optimization to assess and improve data freshness, see, e.g.,

[1]–[11]. Of particular relationship to this work are those

pertaining to coding for AoI improvement [12]–[20].

The works in [12]–[15] have the common feature that

updates are externally arriving. Specifically, [12] analyzes AoI

in an M/G/1/1 queue, in which updates are sent through

an erasure channel using different hybrid ARQ (HARQ)

protocols, with and without preemption. [13] considers an

M/G/1 queue, under a first-come first-serve (FCFS) disci-

pline, and analyzes both average and peak AoI. [14] considers

sending updates over an additive white Gaussian noise channel

with ARQ, with updates arriving according to a Bernoulli

process and a FCFS discipline, leveraging finite blocklength

information-theoretic results to characterize peak AoI and
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peak delay violation probabilities. [15] follows an information-

theoretic approach to analyze age-minimal coding design in

erasure channels without feedback, for given update generation

and channel usage rates, and source and channel alphabets.

On the other hand, status updates in [16]–[20] can be gener-

ated at will. Reference [16] analyzes the effect of linear block

coding lengths on AoI in erasure channels, with and without

HARQ. [17] compares two coding techniques for erasure

channels: infinite incremental redundancy (IIR), in which a

rateless code is used to send an update until it is successfully

decoded; and fixed redundancy, in which an update is encoded

using a fixed codeword length. [18] studies AoI minimization

in erasure channels under an average constraint on the number

of transmissions, with ARQ and HARQ, formulated as a

constrained Markov decision process (MDP). [19] considers

a more specific energy harvesting constraint, along with both

rateless and maximum distance separable (MDS) codes, and

derives achievable AoI under best effort and save-and-transmit

strategies. [20] considers IIR HARQ in erasure channels, with

the option of preempting the current update in service and

switching to a new one, through an MDP framework.

In this paper, we consider a transmitter-receiver pair com-

municating through a noisy channel. The main goal is to

keep the receiver informed about the status of some physical

phenomenon over a long period of time, via sending time-

stamped status updates. Updates are generated at will, and are

encoded to combat the channel errors. Different from most

related works that focus on erasure channels, we consider

channels with general error models that depend on the coding

lengths. Utilizing decoding status feedback, a HARQ protocol

is employed, in which a number of incremental redundancy

(IR) bits is sent in case decoding is unsuccessful. Different

from [16]–[20], the transmitter is allowed to idly wait for a

period of time following successful transmission, and then

send a new update. We use an AoI metric to assess the

timeliness of the received updates, where the goal is to design

the codeword and IR lengths, in addition to the waiting times,

such that the long term average AoI is minimized. We focus on

stationary deterministic policies, in which the codeword and

IR lengths are fixed, and the waiting time is a deterministic

function of the instantaneous AoI. We show that the optimal

waiting policy in this case has a threshold structure, in which

a new update is sent only if the AoI grows above a certain

threshold that is a function of the codeword and IR lengths.

We analytically derive the optimal threshold in closed-form,

and discuss some examples showing how to choose the best

codeword and IR lengths for a binary symmetric channel.
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Fig. 1. Measurements are acquired by the sensor, encoded, sent through
the channel and then decoded at the receiver to produce updates. Feedback
indicates successful/failed decoding attempts.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The transmitter that we consider mainly consists of a sensor

and a channel encoder, and the receiver is mainly a channel

decoder, see Fig. 1. Status updates are generated at will

through collecting measurements of the physical phenomenon

by the sensor, and are conveyed to the receiver through

a noisy communication channel. Updates are basically data

packets that contain a time stamp indicating when their

corresponding measurements were acquired. We capture the

timeliness/freshness of data packets at the receiver using an

AoI metric, which is defined at time t as

a(t) = t− u(t), (1)

where u(t) denotes the time stamp of the latest data packet that

has been successfully received before time t. Operationally,

for the receiver to be informed about the process, the AoI (or

merely age) needs to be kept small.

Channel coding with HARQ is employed in order to com-

bat the noisy communication channel. This is illustrated as

follows. The ith raw measurement from the sensor is first

converted into an update data packet of length ℓi bits. This

packet gets mapped into a codeword of length ni bits, to

be sent through the channel. Different from the FR scheme

in [17], the receiver attempts decoding after receiving the

whole codeword. The receiver then sends immediate feedback

ACK/NACK messages to the transmitter following success-

ful/failed decoding attempts. The HARQ protocol is such that

the ith update can have at most ri+1 decoding attempts at the

receiver. Specifically, if the first decoding attempt fails (after

receiving the original ni-bit codeword), the receiver sends a

NACK, and the transmitter responds by sending mi,1 IR bits.

The receiver then combines the originally received ni bits and

the newly received mi,1 bits to perform a second decoding

attempt. If it also fails, the receiver sends another NACK, and

the transmitter responds again by sending mi,2 IR bits. This

continues until either the packet is successfully decoded and

the receiver sends an ACK, or the maximum number of ri+1
decoding attempts is reached. Therefore, in total there can

be at most ri IR transmissions for the ith update, with the

maximum total number of bits used to transmit the ith update

in this case equal to ni +
∑ri

j=1
mi,j .

Now if all the ri + 1 decoding attempts fail, the ith packet

is discarded, and the whole process is repeated with a new

fresher (i+1)th measurement.1 On the other hand, if an ACK

is received for the ith update (following any of the decoding

1We note that the values of ni’s, ri’s and mi,j ’s, are all pre-determined
before communication and shared with both the transmitter and the receiver.
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Fig. 2. An example showing how the AoI may evolve during the kth epoch.
The epoch involves two update transmissions: the ith and the (i+1)th updates.
Red (reps. green) dots represent failed (resp. successful) decoding attempts.

attempts), the transmitter may not send a new packet right

away; it may idly wait for some time before doing so. In

general, this waiting period may differ from one packet to

the other, and may also depend on the number of decoding

attempts involved for each packet.

The communication channel is assumed to be memoryless,

and is such that the success probability of decoding an update

increases with each decoding attempt, and also increases with

the number of bits involved in its transmission (the sum of

the original codeword’s length and the IR bits). We denote

the success probability of decoding the ith update in its jth

attempt by qi,j , j = 1, . . . , ri + 1. We assume that the time

needed to transmit one bit through the channel is normalized,

in the sense that sending, e.g., ni bits consumes ni time units.

We denote by an epoch the time elapsed in between two

successful receptions of update data packets. We now intro-

duce some notation regarding the kth epoch. The epoch starts

with age equal to Yk−1, followed by a potential waiting period

of Wk time units, which is then followed by the channel

busy period Xk, whose value depends on the number of

transmissions needed before decoding is successful. The epoch

ends with age Yk. Let us denote by Qk the area under the AoI

evolution curve during the kth epoch, and by Lk the kth epoch

length. In Fig. 2, we show an example of how the age may

evolve during the kth epoch.

For a given coding scheme, what is designed for each update

are the original codewords’ lengths {ni}, the number of IR

transmissions {ri} and the lengths of the IR bits {mi,j},

along with the waiting times {Wk} following each successful

transmission. We denote all these by a policy π, and the set

of all possible policies by Π. Our goal is to design a policy

such that the long term average AoI is minimized. That is, to

solve the following problem:

min
π∈Π

lim sup
l→∞

∑l

k=1
E [Qk]

∑l

k=1
E [Lk]

, (2)

where E [·] denotes expectation.



III. STATIONARY DETERMINISTIC POLICIES

Observe that in the optimal policy of problem (2), the

choices of the ith update parameters, ni, ri and mi,j , j =
1, . . . , ri, may depend on the history of events prior to the ith
update transmission, e.g., how many successful/failed attempts

occurred. Similarly, the choice of the waiting time in the

kth epoch, Wk, may also depend on the history of events in

previous epochs. To alleviate this hurdle and make problem

(2) tractable, we focus on a class of stationary deterministic

policies, in which the choices of parameters are fixed for each

update, and the waiting policy is a deterministic function w(·)
of the epoch’s starting AoI, i.e.,

Wk , w (Yk−1) , ∀k. (3)

This induces stationary distributions {Qk} ∼ Q and {Lk}
∼ L over all epochs. Considering such class of policies is

motivated by the fact that the channel is memoryless, and also

by its optimality in similar settings considered in the literature,

e.g., [6], and the optimality of renewal policies in [9], [10]. We

also focus on the case in which each packet has a maximum

of two decoding attempts, i.e., ri = 1, ∀i. We note that our

results can be readily extended for more than two decoding

attempts per single packet, albeit more involved computations.

We choose to work with only two attempts in order to better

convey the main ideas of this paper.

It is important to note that while [6] determines optimality

conditions on the waiting policy, its setting is different from

ours. Specifically, in [6] there can only be one packet transmis-

sion during an epoch, and it stays in service (for some random

time) until it reaches the destination. While in our setting,

there can be multiple packet transmission attempts during one

epoch, and the AoI at the end of the epoch does not necessarily

correspond to the service time of the first packet transmission.

Focusing on stationary deterministic policies, we now drop

all subscripts, and (re-)define: ℓ as the update data packet’s

length, n as the codeword length, m as the number of IR

bits, q1 (resp. q2) as the success probability of the first (resp.

second) decoding attempt and X as the channel busy period.

Each epoch now starts with AoI Y that is either equal to n or

n+m. The waiting policy reduces to

w (Y ) =

{

w1, if Y = n

w2, if Y = n+m
. (4)

That is, w1 (resp. w2) is the waiting time following successful

decoding of a packet from the first (resp. second) attempt.

Problem (2) now reduces to an optimization over a single

epoch as follows:

min
n,m,w1,w2

E [Q]

E [L]

s.t. n,m ∈ Z+

w1, w2 ≥ 0, (5)

where Z+ is the set of non-negative integers. We focus on

problem (5) in the remainder of this paper.

IV. OPTIMAL WAITING POLICIES:

THRESHOLD STRUCTURE

In this section, we derive the optimal waiting policy w∗
1 and

w∗
2 that solves problem (5) for fixed n and m and show that

it has a threshold structure. We first observe from Fig. 2 that

E [L] =E [X ] + E [w (Y )] , (6)

E [Q] =E [Y (w (Y ) +X)] +
1

2
E

[

(X + w (Y ))
2
]

=E [Y w (Y )] + E [Y ]E [X ] +
1

2
E
[

X2
]

+ E [X ]E [w (Y )] +
1

2
E

[

w (Y )
2
]

. (7)

Toward characterizing E [L] and E [Q] in terms of n, m,

w1 and w2, note that the channel busy period, X , has the

following distribution for a given j ≥ 1:

P (X = jn+ (j − 1)m) =(1− q1)
j−1(1− q2)

j−1q1, (8)

P (X = jn+ jm) =(1− q1)
j(1− q2)

j−1q2. (9)

Various quantities can now be computed using (8). For in-

stance, since the distributions are all stationary, the starting

AoI of the epoch, Y , has the following distribution:

P (Y = n) =

∞
∑

j=1

P (X = jn+ (j − 1)m) =
q1

q1 + q2 − q1q2
,

(10)

along with P (Y = n+m) = 1− P (Y = n). Using this, one

can directly get

E [Y ] =n+m
(1− q1)q2

q1 + q2 − q1q2
, (11)

E [w (Y )] =
q1w1 + (1− q1)q2w2

q1 + q2 − q1q2
, (12)

E
[

w2 (Y )
]

=
q1w

2
1 + (1− q1)q2w

2
2

q1 + q2 − q1q2
, (13)

E [Y w (Y )] =
q1w1n+ (1− q1)q2w2(n+m)

q1 + q2 − q1q2
. (14)

Finally, after some involved algebraic manipulations,

E [X ] =
n+m(1− q1)

q1 + q2 − q1q2
, (15)

E
[

X2
]

=
(n+m)2 (2− q1 − q2 + q1q2)− 2m (n+m) q1

(q1 + q2 − q1q2)
2

+
m2q1

q1 + q2 − q1q2
. (16)

Substituting (11)-(16) in (6) and (7), we can now fully

characterize the objective function of problem (5) in terms

of w1 and w2 for fixed n and m. To get a handle on such

a fractional optimization problem, we follows Dinkelbach’s

approach [21] and introduce the following auxiliary problem

for some fixed parameter λ ≥ 0:

p(λ) , min
w1,w2

E [Q]− λE [L]

s.t. w1, w2 ≥ 0. (17)



One can show that: 1) p(λ) is decreasing in λ; and 2) the

optimal solution of problem (5) (for fixed n and m) is given

by the unique λ∗ that solves p(λ∗) = 0 [21]. We now have

the following lemma:

Lemma 1 The optimal solution of problem (17) is given by

w∗
1 = [λ− E [X ]− n]

+
, (18)

w∗
2 = [λ− E [X ]− n−m]

+
, (19)

where E [X ] is given by (15) and [·]+ , max (·, 0).

Proof: We show this by deriving the KKT optimality condi-

tions for problem (17) by the Lagrangian [22]

L = E [Q]− λE [L]− η1w1 − η2w2, (20)

where η1 and η2 are non-negative Lagrange multipliers. Ex-

panding only the terms that depend on w1 and w2:

L =
q1w1n+ (1− q1)q2w2(n+m)

q1 + q2 − q1q2
+E [Y ]E [X ] +

1

2
E
[

X2
]

+ E [X ]
q1w1 + (1− q1)q2w2

q1 + q2 − q1q2
+
1

2

q1w
2
1 + (1− q1)q2w

2
2

q1 + q2 − q1q2

− λE [X ]− λ
q1w1 + (1− q1)q2w2

q1 + q2 − q1q2
− η1w2 − η2w2.

(21)

Taking derivative of L with respect to w1 and equating to 0
we get that the optimal w∗

1 satisfies

q1n+ E [X ] q1 + q1w
∗
1 − λq1

q1 + q2 − q1q2
− η1 = 0. (22)

Rearranging and using complementary slackness [22] directly

gives (18). Similar arguments yield (19). �

Lemma 1 indicates that the optimal waiting policy has a

threshold structure. Basically, the optimal waiting function

w∗(·) is given by

w∗(y) = [λ− E [X ]− y]+ , (23)

with y being the realizing of the starting AoI Y . This means

that the transmitter does not send a new measurement unless

the AoI grows above the threshold λ − E [X ]. To have an

operational significance, however, the value of such threshold

needs to be positive. Otherwise, waiting is never optimal. In

the next lemma we show that this is indeed the case at the

optimal λ∗. The proof is in Appendix A.

Lemma 2 λ∗ that solves p(λ∗) = 0 is such that λ∗ > E [X ].

We now have three regions in which λ∗ can lie:

R1 , {λ : E [X ] < λ ≤ E [X ] + n} ; (24)

R2 , {λ : E [X ] + n < λ ≤ E [X ] + n+m} ; (25)

and R3 , {λ : E [X ] + n+m < λ} . (26)

For λ∗ ∈ R1, the zero-wait policy is optimal, i.e., w∗
1 = w∗

2 =
0. While for λ∗ ∈ R2, waiting is only optimal following a

successful transmission from the first decoding attempt, i.e.,

w∗
1 > 0 and w∗

2 = 0. Finally for λ∗ ∈ R3, waiting is always

optimal following a successful transmission, i.e., w∗
1 > 0

and w∗
2 > 0. In the next theorem, we derive necessary and

sufficient conditions for the optimal λ∗ to lie in each region.

The proof is in Appendix B.

Theorem 1 λ∗ that solves p(λ∗) = 0 is given by

λ∗ =

{

λ ∈ R1, if n ≥ m
√
1− q1

λ ∈ R2, otherwise
, (27)

where

λ , E [Y ] +
1

2
E
[

X2
]

E [X ]
, (28)

λ , E [X ] + n+

√

(E [X ])
2 − 2q1

q1+q2−q1q2
CXY − E [X ]

q1
q1+q2−q1q2

,

(29)

with CXY , (E [X ])
2
+ nE [X ]− 1

2
E
[

X2
]

− E [Y ]E [X ] .

Theorem 1 indicates that the optimal waiting policy is such

that one can either wait following successful decoding from the

first attempt, or do not wait at all. It is therefore not optimal to

wait following successful decoding from the second attempt,

since this renders the AoI relatively high and incentivizes

sending a new packet right away. Clearly, choosing the best

policy now depends on the choice of n and m, which governs

the channel behavior through q1 and q2. We discuss this in the

next section, along with some examples.

V. HOW TO CHOOSE n AND m: EXAMPLES

In this section, we discuss how the choices of the codeword

length n and IR length m impact the AoI. Let us denote the

optimal solution of problem (5) by ρ∗. In view of Theorem 1,

let us define the following quantities:

λ
∗
, min

n,m: n≥m
√
1−q1

λ, (30)

λ∗
, min

n,m: n<m
√
1−q1

λ, (31)

where λ and λ are given by (28) and (29), respectively.

Therefore, it is direct to see that

ρ∗ = min
{

λ
∗
, λ∗

}

. (32)

Observe that computing the exact values of λ
∗

and λ∗

involves solving non-linear integer programs. One approach

to alleviate the difficulty of such step is to relax the integer

constraints on n and m, i.e., solve for n,m ∈ R+, and then

project the solution onto the feasible set in Z+. Note that

solving for ρ∗ can be done offline before communication. Our

goal here though is to show how n and m impact the waiting

policy and the AoI. Thus, in what follows we follow a grid

search approach to characterize ρ∗ numerically.

We consider the communication channel to be a binary

symmetric channel (BSC) with crossover probability ǫ ∈
(

0, 1
2

)

. We use an (n+m, ℓ) MDS code, from which we
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Fig. 3. ℓ = 15, n = 20 and ǫ = 0.1. The optimal IR length is m = 1.

take a punctured (n, ℓ) code by removing m columns from

its generator matrix. Note that (n, ℓ), for n ≥ ℓ, is also

MDS [23]. We use the punctured code for the first trans-

mission attempt, and then append the IR bits from the

original code in the second transmission attempt if needed.

This allows us to write q1 =
∑⌊n−ℓ

2
⌋

l=1

(

n
l

)

ǫl (1− ǫ)
n−l

, and

q2 =
∑⌊n+m−ℓ

2
⌋

l=1

(

n+m
l

)

ǫl (1− ǫ)
n+m−l

, where ⌊x⌋ denotes

the highest integer not larger than x. We show how the optimal

m behaves as ǫ varies for fixed ℓ = 15 bits and n = 20 bits.

For ǫ = 0.1, i.e., when the channel is relatively good, the

optimal m = 1 bit, and the optimal AoI λ∗ ≈ 31.54 time

units. It is seen from Fig. 3 that λ∗ ∈ R1 in this case, and

zero-waiting is optimal. On the other hand, for ǫ = 0.4, i.e.,

when the channel is relatively bad, the optimal m = 45 bits,

and the optimal AoI λ∗ ≈ 174.97 time units. From Fig. 4,

we see that λ∗ ∈ R2 and w∗
1 > 0 in this case. Such results

show that the optimal choice of the IR length and the waiting

policy that reduce the AoI varies according to the channel

conditions. In Fig. 5 we plot ρ∗ versus ǫ for different values

of ℓ. Here, we optimize both n and m. We see from the

figure that the age grows with the crossover probability, with

an increasing growth rate as ǫ approaches 0.5, the value at

which no information can be conveyed through the BSC. We

also see that the growth rate is more intense for larger values

of ℓ. Note, however, that choosing ℓ may depend on some

sensor aspects, such as the sampling frequency, and also on

the amount of distortion that can be tolerated in the system

when converting raw measurements to ℓ-bit messages.

VI. CONCLUSION

Designing timely channel coding schemes has been exam-

ined for a transmitter-receiver pair communicating through a

noisy channel. A HARQ protocol has been employed in which

IR bits are transmitted to enhance probability of successful

decoding. An idle waiting period has been introduced follow-

ing successful transmissions. The age-minimal waiting policy

has been shown to have a threshold structure that depends

on the codeword and IR lengths. The optimal threshold has

been obtained analytically in closed-form. A discussion on

how to choose the best codeword and IR lengths for a binary

symmetric channel with MDS codes has been presented.
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Fig. 4. ℓ = 15, n = 20 and ǫ = 0.4. The optimal IR length is m = 45.
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APPENDIX

A. Proof of Lemma 2

We show this by contradiction. Assume that λ∗ ≤ E [X ].
By (18) and (19), this means that w∗

1 = w∗
2 = 0. Substituting

this in (6) and (7), this further means that

λ∗ =
E [Q]

E [L]
= E [Y ] +

1

2
E
[

X2
]

E [X ]
. (33)

Now λ∗ ≤ E [X ] implies

E [Y ]E [X ] +
1

2
E
[

X2
]

≤ (E [X ])
2
. (34)

Substituting (11), (15) and (16) in the above and multiplying

both sides by (q1 + q2 − q1q2)
2

we get that

(n (q1 + q2 − q1q2) +m (1− q1) q2) (n+m (1− q1))

+
1

2
(n+m)

2
(2− q1 − q2 + q1q2)−m (n+m) q1

+
1

2
m2q1 (q1 + q2 − q1q2) ≤ (n+m(1 − q1))

2
, (35)

which is equivalent to having

1

2
(n+m)

2
(2− q1 − q2 + q1q2)−m (n+m) q1

+
1

2
m2q1 (q1 + q2 − q1q2) ≤ (n+m)2 (1− q1)(1− q2)

−m(n+m)q1(1− q1)(1− q2). (36)



One final rearrangement of the above, followed by dividing

both sides by q1 + q2 − q1q2, gives

1

2
(n+m)

2
+

1

2
m2q1 ≤ m (n+m) q1, (37)

⇐⇒ 1

2
n2 +mn(1− q1) +

1

2
m2 ≤ 1

2
m2q1, (38)

which cannot be true, indicating a contradiction.

B. Proof of Theorem 1

Observe that since p(λ) is monotonically decreasing, having

λ∗ ∈ R1 is equivalent to having

p (E [X ] + n) ≤ 0. (39)

Note that for λ = E [X ] + n, w1 = w2 = 0. Substituting this

in (6) and (7), the above inequality condition is equivalent to

E [Y ]E [X ] +
1

2
E
[

X2
]

≤ (E [X ])
2
+ nE [X ] . (40)

Multiplying both sides of (40) by (q1 + q2 − q1q2)
2

and

proceeding via similar simplifications as those in the proof

of Lemma 2, one can show that (40) is equivalent to

1

2
(n+m)

2
+

1

2
m2q1 ≤ m (n+m) q1 + n (n+m(1− q1)) ,

(41)

⇐⇒ m2 (1− q1) ≤ n2. (42)

Therefore, λ∗ ∈ R1 ⇐⇒ n ≥ m
√
1− q1. Finally, it is direct

to see that such λ∗ is given by λ of (28) in this case, and that,

by (40), λ indeed lies in R1.

Now let us assume that n < m
√
1− q1. From the above,

this is equivalent to having p (E [X ] + n) > 0. Therefore,

having λ∗ ∈ R2 in this case is equivalent to having

p (E [X ] + n+m) ≤ 0. (43)

Note that for λ = E [X ] + n + m, w1 = m and w2 = 0.

Substituting this in (6) and (7), the above inequality becomes

q1mn

q1 + q2 − q1q2
+ E [Y ]E [X ] +

1

2
E
[

X2
]

+ E [X ]
q1m

q1 + q2 − q1q2
+

1

2

q1m
2

q1 + q2 − q1q2

≤ (E [X ] + n+m)

(

E [X ] +
q1m

q1 + q2 − q1q2

)

. (44)

This can be further simplified into the following:

E [Y ]E [X ]+
1

2
E
[

X2
]

≤ (E [X ])
2
+ nE [X ]

+mE [X ] +
1

2

m2q1
q1 + q2 − q1q2

. (45)

One can clearly notice the resemblance between (40) and (45).

Proceeding as done after (40), (45) is equivalent to

m2(1− q1) ≤ n2 +m (n+m(1− q1)) +
1

2
m2q1, (46)

which is always satisfied, upon cancelling m2(1 − q1) from

both sides. This shows that λ∗ ∈ R2 ⇐⇒ n < m
√
1− q1.

It finally remains to derive the value of λ of (29). To do

so, we solve p(λ∗) = 0 under the condition that λ∗ ∈ R2.

Equivalently, we replace m in (44) by w1; solve for w∗
1 that

satisfies (44) with equality; and then substitute λ∗ = w∗
1 +

E [X ] + n. Toward that, we solve

1

2

q1
q1 + q2 − q1q2

(w∗
1)

2
+ E [X ]w∗

1 + CXY = 0, (47)

with CXY as defined in the theorem. Solving the above and

adding E [X ] + n directly gives λ of (29). Finally, since n <
m
√
1− q1, therefore (40) does not hold and CXY is strictly

negative. This shows that w∗
1 > 0 and that λ indeed lies in

R2. This completes the proof of the theorem.
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