
rQUIC: Integrating FEC with QUIC
for Robust Wireless Communications

Pablo Garrido∗, Isabel Sánchez†, Simone Ferlin‡, Ramón Agüero§ and Özgü Alay¶
∗Cybersecurity IoT IK-Ikerlan, pgarrido@ikerlan.es
†Specure GmbH, isabel.sanchez@martes-specure.com
‡Ericsson Research, simone.ferlin@ericsson.com

§Dept. of Communications Engineering, University of Cantabria, ramon@tlmat.unican.es
¶Mobile Systems and Analytics, SIMULA Metropolitan, ozgu@simula.no

Abstract—QUIC, fostered by Google and under standardiza-
tion in the IETF, integrates some of HTTP/s, TLS, and TCP
functionalities over UDP. One of its main goals is to facilitate
transport protocol design, with fast evolution and innovation.
However, congestion control in QUIC is still severely jeopardized
by packet losses, despite implemented loss recovery mechanisms,
whose behavior strongly depends on the Round Trip Time. In
this paper, we design and implement rQUIC, a framework that
enables FEC within QUIC protocol to improve its performance
over wireless networks. The main idea behind rQUIC is to reduce
QUIC’s loss recovery time by making it robust to erasures over
wireless networks, as compared to traditional transport protocol
loss detection and recovery mechanisms. We evaluate the per-
formance of our solution by means of extensive simulations over
different type of wireless networks and for different applications.
For LTE and Wifi networks, our results illustrate significant gains
of up to 60% and 25% savings in the completion time for bulk
transfer and web browsing, respectively.

I. INTRODUCTION

Quick UDP Internet Connections (QUIC) [1] is an ex-
perimental transport protocol designed to primarily reduce
connection establishment and transport latencies, as well as to
improve security standards with default end-to-end encryption
in HTTP-based applications. More specifically, QUIC [2]
emerged from the urgent need of innovation in the trans-
port layer, mainly due to difficulties extending TCP [3] and
deploying new protocols. Thus, QUIC’s development had to
take a different approach to avoid imminent ossification, i.e.
inability to deploy updates and fixes. These considerations
already resulted in QUIC’s rapid uptake. Since early large-
scale experiments in 2016 [4], [5], QUIC’s traffic share already
reached over 7% of a European Tier1-ISP [5] and it constitutes
more than 30% of Google’s egress traffic [4].

Dealing with the lossy characteristics of wireless networks
has proven to be very challenging for transport protocols.
Forward Error Correction (FEC) is a well-known technique to
improve reliability in networks that do not guarantee packet
delivery [6], and it has been widely applied in the lower layers
of the network stack. Due to its proven success in the lower
layers, there has been interest to experiment with FEC in
the transport layer. FEC has a long history of being used
over unreliable transport protocols such as UDP, to protect
flows [7] or to deliver different types of traffic, from bulk to
time-sensitive [8]. To keep the trade-off between reliability

and overhead, adaptive FEC has shown to keep latency con-
straints and maintain reliability as network conditions change.
For TCP, FEC is mostly used to avoid retransmissions and
timeouts by introducing redundancy. Different schemes in this
direction have adapted simple duplicate of packets such as
TCP-Tail Loss Probe (TLP) [9], non-adaptive XOR based FEC
transmission such as TCP-Instant Recovery (IR) [10] and its
adaptive extension [11].

Adapting most of its loss detection and recovery features
from TCP, QUIC faces similar challenges in wireless networks.
Therefore, one of QUIC’s key goals, defined at the IETF
QUIC’s working group,1 is to provide FEC support. Given the
importance and the continuity of this topic, in this paper, we
present rQUIC framework that integrates FEC within QUIC.
Our key contributions can be summarized as:

• We introduce rQUIC, which integrates FEC in QUIC
for robust wireless communications. We use an adaptive
XOR-based FEC algorithm, and our design aims to be
as transparent to QUIC as possible, to allow for easy
integration of other FEC algorithms with minimal effort.

• We carried out an extensive simulation campaign, where
we examine the benefits of rQUIC compared to default
QUIC, under different network configurations, changing
bandwidth, end-to-end delay, and random loss parame-
ters. The evaluations are performed for bulk transfer and
web browsing.

• We setup a wireless testbed to complement our emula-
tions with real-world experiments and run performance
analysis of rQUIC in WiFi (IEEE802.11) and LTE net-
works.

• To promote research reproducibility and further improve-
ments of the algorithm, the rQUIC source code, based
on a QUIC implementation in go [12], is made publicly
available.2

The paper is structured as follows: Section II discusses
the related work. Section III depicts rQUIC, explaining our
design and implementation. Section IV presents the experi-
mental setup and performance evaluation. Finally, Section V
concludes the paper and outlooks our future work.

1https://quicwg.org
2https://github.com/pgOrtiz90/quic-go-fec/tree/quic-fec

II. BACKGROUND AND RELATED WORK

Implemented in user space, QUIC [2] runs encapsulated
inside UDP and it is inspired by best practices of several
protocols and extensions such as TCP, TLS 1.3 and HTTP/2.
QUIC aims to reduce connection latency with the possibility
to send data directly at the connection setup. Internally, QUIC
packets have an unencrypted public header and an encrypted
payload, which can include one or more frames. Frames in
the same packet may carry control or data information, and
might belong to the same or different streams, i.e. stream
multiplexing. In case of packet loss, only streams with frames
in the lost packets are blocked, leaving others unaffected. This
is one of the main benefits of QUIC, as it avoids HoL-blocking
with multiple streams. However, if the lost packet contains
frames from multiple streams, it is evident that a mecha-
nism such as the one we propose can help reducing latency
associated to retransmissions. Packet numbers in QUIC are
monotonically increasing. Every transmitted packet, including
retransmissions, carries a different number, avoiding TCP’s
retransmission ambiguity and so simplifying loss detection.
Another fundamental difference lies in the Acknowledgment
(ACK) frames, which carry multiple ACK blocks and in-
formation to yield a more precise RTT estimation. Even
though QUIC runs encapsulated inside UDP, all data is reliably
transmitted due to the stream and connection flow control [13],
and congestion control [14]. The congestion control relies on
Cubic,3 with pacing applied at the sender.

Due to its rising popularity, there is interest to assess QUIC’s
performance and traffic share beyond Google’s perspective.
One of the initial works [15] compares QUIC, HTTP and
SPDY without finding a clear winner, but stating that net-
work conditions actually determine the protocol performance.
This variability motivates an adaptive algorithm to increase
robustness, as the one we propose herewith. Recently, the
authors of [16] focus on a more controlled understanding
of QUIC’s performance following its rapid updates, mainly
driven by gQUIC Chrome implementation. Rüth et al. [5]
focus on finding QUIC’s traffic share and which infrastruc-
tures, e.g. ISPs, Alexa Top 1M, already support QUIC in the
Internet. Motivated by the boost of adaptive streaming, Bhat et
al. [17] analyse the benefits QUIC can bring to adaptive video
streaming (DASH), and evaluate its impact on the QoE.4

Google advocated for the need of loss recovery with FEC
in QUIC [18] very early. However, after discouraging results
with a closed source implementation, they started with a new
approach [19], and FEC is now an IETF agenda item. Our
analysis and evaluations indicate that rQUIC can improve
latency and, due to its adaptability, not hinder QUIC’s per-
formance. Other proposals in the Network Coding Research
Group (NWCRG) [20] list very high-level requirements for
network and network-level packet erasure coding in QUIC. We
adopt some of their recommendations alongside with [11] for
rQUIC. Recently, Michel et al. have integrated FEC function-

3Latest drafts suggest a change to NewReno [14].
4Google serves YouTube’s content over QUIC since 2016. [4]

ality into QUIC [21], but they did not consider an adaptation
scheme as the one promoted by rQUIC. The obtained results
show that for large size files, the performance might not be as
good as expected. Last, this work is an extended version of
our previous short paper [22].

III. RQUIC: DESIGN AND IMPLEMENTATION

In the following, we introduce rQUIC’s framework design
and integration into QUIC in Section III-A. Then, we describe
rQUIC’s implementation in detail in Section III-B, discussing
the limitations in Section III-C.

A. rQUIC Design

We design rQUIC as a framework to enable FEC within
QUIC. Figure 1 shows rQUIC’s building blocks, focusing on
the modifications introduced by rQUIC and its interaction
with QUIC. A QUIC session represents a unique end-to-end
connection. If both congestion and flow control allow the
transmission of stream data (bundled in STREAM frames), the
QUIC session will then generate QUIC packets, which are
encrypted and authenticated.

The encrypted QUIC packet is then input to rQUIC mod-
ule, which builds the rQUIC packet by (i) adding the FEC
Header field to the QUIC header (see Figure 1), and (ii)
applying the corresponding FEC algorithm depending on the
packet type.

rQUIC header: As we can choose to enable or disable
rQUIC in the QUIC session, the presence of the FEC Header
field can be indicated through flags in the QUIC header or
negotiated in the connection establishment. A FEC header
is 4-Byte long including the following fields:

• Type (1B): identifies whether the packet is protected by
FEC or not, or if it is a FEC packet itself. This field
can take different values: 0x00 represents packets that are
not protected, such as ACK or STOP_WAITING frames,
which are transmitted periodically, 0x80 represents a
protected packet, 0xC0 represents a FEC packet.

• Block ID (1B): identifies packets protected by the same
FEC packet, i.e. packets that belong to the same block.

• FEC Ratio (1B): ratio used by the FEC algorithm.
• Count (1B): If protected, this field identifies the order of

the packet in the FEC block.
rQUIC packets (protected, unprotected or FEC) are then sent

to the receiver respecting flow and congestion control. At the
receiver side, FEC packets will be used to recover erasures
while QUIC packets are forwarded to the QUIC session.

FEC Algorithm: One of the challenges introducing sophis-
ticated FEC algorithms to QUIC is the potential latency for
encoding and decoding [20], which goes against QUIC’s la-
tency improvements and may conflict with power-constrained
devices. Hence, a lightweight and efficient algorithm could
help with some initial guidelines for future research. Further,
the design of a FEC algorithm must adapt to the link char-
acteristics, providing a trade-off with bandwidth consumption
due to the introduced overhead. For these reasons, for this

rQUIC

Stream 1 Stream 2 Stream n

QUIC Session

PayloadQh

QUIC Packet

Encryption

Adaptive
FECP̃ayloadQh

Encry. QUIC Packet

rQUIC

Flow
Control

Congestion
Control

rQUIC

Stream 1 Stream 2 Stream n

QUIC Session

QUIC Packet

Decryption

Encry. QUIC Packet

rQUIC

Loss
Detection

ACK’s range

Qh - QUIC header - FEC
FLAGS (1) Conn ID* (8) Version* (4)

Driver NONCE* (32) PN* (1/2/4/6)

FEC Header (4)

FEC header
Type (1) BlockID(1) Ratio (1) Count(1)

Application

UDP - Standard socket API

rQUIC Server

Application

UDP - Standard socket API

rQUIC Client

FECFEC

FEC Block Ratio = 3rQUIC Packet rQUIC Packet

Fig. 1. rQUIC’s framework: data flow from application to network layer.

initial implementation of FEC, we choose an adaptive FEC
algorithm based on XOR, which we explain next.

1) XOR-based FEC: XOR-based FEC only introduces n+1
redundancy, i.e. for every n data packets there is one extra
packet to protect the data block, which is the XOR of the
n data packets. XOR is known to have low computational
complexity but, on the other hand, such a simple approach
only allows to recover one packet per block. In the case of
multiple losses, the XOR FEC will not prevent the classic
loss recovery mechanism with retransmissions,5 but would
consume resources. Consequently, the size of the FEC block
is a key optimization parameter that can significantly impair
the overall performance. That is why we adopt an adaptive
algorithm that varies the FEC ratio according to changes in
the retransmissions that are needed.

2) Adaptive FEC: Losses in wireless channels are difficult
to predict and they may vary over time. Therefore, the FEC
block size should take this into account, providing gains
over transmissions without FEC. For this reason, we follow
an adaptive FEC approach that reduces the overhead in the
absence of losses and increases the redundancy otherwise. The
proposed algorithm is based on steering residual losses, which
are packets that need to be retransmitted due to FEC failing
to recover.

Hence, the adaptive algorithm counts the total transmitted
and retransmitted packets over a period, i, of length T and
computes the residual loss as:

εi =
retransmissions

transmissions− retransmissions
(1)

Measurements of residual losses are then averaged over N
periods:

εi =

∑N
i=1 εi
N

(2)

The FEC ratio is then updated as follows: if the average
residual loss is higher than a target value γ, the FEC ratio
is increased by δ, and decreased by δ otherwise. Both δ and γ

5To date the default algorithms used in QUIC, NewReno and Cubic, take
loss as congestion input signal.

Algorithm 1 Adaptive FEC in rQUIC
r = rinit
if ε > γ then

r = r × (1− δ)
else

r = r × (1 + δ)
end if

0 5 10 15 20 25
0

20

40

60

80

100

t (seconds)

FE
C

ra
tio

,r

α = 0.0 α = 0.01 α = 0.02

α = 0.03 α = 0.05

Fig. 2. Evolution of rQUIC’s adaptive FEC ratio over time, for different link
loss rates with e.g. no injected loss (only congestion) 0, 1, 2, 3 and 5%.

can be seen as the aggressiveness parameters of the algorithm.
These are however configurable and determine the tolerance to
FEC recovery failure. In preliminary experiments, we choose
T = 3·RTT as the measurement period for the residual value,
with the assumption that if a loss occurs during one RTT,
a retransmission will take place in the second and, possibly,
be concluded in the third one. The proposed algorithm (see
Algorithm 1) will increase quickly the FEC ratio on links with
a small error rate, while on high-loss links the FEC ratio will
oscillate between low values. To illustrate rQUIC’s adaptivity,
Figure 2 shows the FEC ratio evolution for different link loss
rates α for a 30-second bulk transfer over a channel with
20Mbps and 25ms RTT and an initial ratio of rinit = 10. One
can see that the FEC ratio quickly converges from the initial
value to minimize residual losses.

In order to avoid RTOs in tail losses of short flows, TLP
is now also part of QUIC [12], [14]. However, we decided to
exclude TLP of rQUIC, as we aim to recover losses with FEC

and avoid retransmissions of packets in any position in a flow,
and not only account for tail losses.

B. rQUIC Implementation

We implement rQUIC based on an open source implementa-
tion of QUIC in go [12] (v0.7.0), keeping its default settings,
e.g. Cubic is used as congestion control. However, quic-go’s
implementation follows the IETF QUIC specification, which
is heavily under development. Thus, we had to opt for the
latest stable release available (v0.7.0) that may not incorporate
the most recent updates. Also, compatibility across quic-go
versions cannot be guaranteed, as the codebase is constantly
refactored.6

We keep rQUIC’s implementation transparent to the other
modules inside QUIC. We highlight in Figure 1 the main
modifications introduced by rQUIC as red blocks. Since
QUIC’s loss recovery mechanism is done at the packet level,
we opt to follow the same strategy. The rQUIC block takes
as input the encrypted QUIC packets, adds the FEC Header
field, and, if the packet contains STREAM frames, it applies
the corresponding FEC algorithm to the encrypted payload.
Since FEC packets count towards the CWND size, rQUIC
also interacts with the congestion control, obeying the allowed
sending rate. Complying with the congestion control impacts
the implementation, as we explain in Sec. III-C.

On the receiver side, the FEC decoder parses all the received
protected packets. If one is lost, the following received packets
from the same Block ID will be held by the decoder until
the following events: another packet is lost in the same FEC
block, there are no further losses in the FEC block and FEC
packet arrives or packet from a different FEC block arrives.
Afterwards, all held packets are forwarded to the upper layer,
including the recovered packet if possible.

Recovering the original QUIC header is very critical, with
special attention needed to the Packet Number (PN). As
mentioned before, QUIC’s payload is encrypted and its header
authenticated. This also includes the PN of the recovered
packet, which is unique for every packet and can be randomly
skipped by the sender [23]. We protect encrypted QUIC
payload with FEC, but we also need to be able to recover
the header of the lost packet. To accurately recover the PN of
an erasure, we set the last 6 bits of the FEC type field in each
packet to the offset with respect to the PN in the previous
protected packet.

The loss detection mechanism counts the different PN’s
received, and it would not see that a packet is missing if the
lost packet is recovered by rQUIC. Such detection mechanism
generates QUIC acknowledgments, notifying the transmitter
the range of PN already received. A FEC packet is seen by
the lost detection and congestion control mechanisms as a
regular QUIC packet, increasing or reducing the CWND if it is
acknowledged or lost. However, if a FEC packet is lost it will
not be retransmitted, but it will generate a CWND reduction.

6quic-go v0.8.0 has recently been released introducing new features
following the guidelines of the IETF QUIC working group [23].

5 10 15 20 25
0

50

100

150

t (seconds)

#
pk

ts

FEC ratio CWND

(a) QUIC session

10 11 12 13 14 15
0

10

20

30

t (seconds)

#
pk

ts

FEC ratio CWND

(b) Zoom t ∈ {10, 15}

Fig. 3. Adaptive FEC and CWND over time for a 3% error rate.

C. Implementation Limitations and Corner Cases

We discuss some limitations and corner cases to provide
guidelines for other FEC algorithms in QUIC.

FEC Ratio: The FEC Ratio value must lie between 2 and
255. In the former case it implies the transmission of only
coded packets, whereas in the latter it is limited by the FEC
Ratio header field of 1 Byte. Note that when the CWND
reaches such small values, this is not a limitation of rQUIC,
but an unstable behavior caused by the connection oscillating
between congestion avoidance and slow-start, which depends
on the congestion control policy.7 Further, the FEC ratio
cannot exceed the CWND, preventing the congestion control
from blocking the transmission in the middle of a FEC block.

Figure 3 shows both the FEC ratio and the CWND evolution
for 25s and how FEC ratio adapts well to the changing
conditions.

Slow-start: It is important to highlight two characteristics
of the congestion control in quic-go: The Initial Window
(IW) has 32 packets, and the ssThreshold is not set,
i.e. the slow-start phase lasts until the first loss occurs. In
our experiments, we observe a spike at the beginning of
the QUIC connection, therefore observing poorer adaptation
performance in the first 5s, which can limit the gains of rQUIC
for web transfers with small objects. To address this issue, one
modification to rQUIC is to disable the FEC in slow-start and
activate it through the connection when needed. We leave this
analysis and optimization as part of our future work.

Out-of-order: If a packet from the next FEC block arrives
before all packets from a previous one, a decoding failure
is assumed and all held packets are forwarded to the QUIC
session. However, packets from the previous block could also
be out-of-order. For future work, we plan on avoiding this
decoding failures by working with a timer at the receiver.

7https://github.com/lucas-clemente/quic-go/blob/master/internal/
congestion/cubic.go

Linux Container

QUIC
Client

Linux Container

QUIC
Server

ns-3 Simulated Network

CSMA
1 Gbps

CSMA
1 Gbps

p2p: {bw, rtt}

Fig. 4. Emulation scenario

TABLE I
NETWORK PARAMETER RANGES FOR DIFFERENT WIRELESS

TECHNOLOGIES

NetType1 NetType2 NetType3

WLAN 4G 2G/3G Satellite

Capacity [Mbps] 20-30 15-40 5-10 1-2
RTT [ms] 20-30 25-40 75-100 350-700
Loss [%] 0-5 0-1 0-1 5-10

IV. EVALUATION AND RESULTS

A. Experimental Setup

For the simulations, we use the NS-38 discrete-event net-
work simulator. With NS-3, we are able to connect real
application traffic over a simulated network, in this case
rQUIC client and server, as described in Section III. The
emulated environment (see Figure 4) consists of client and
server applications running in Linux containers hosted in the
same machine and connected through a simulated network.
The containers are seen by the NS-3 as ghost nodes,9 each
of which is connected through a CSMA network to a node,
which is the router. Then, routers are connected with a
point-to-point link, which can be configured with different
combinations of bandwidth, delay and loss rates, mimicking
various network technologies. Following Table I, we vary the
parameters on the link, so that three Network Types (NetTypes)
with different characteristics are covered. We then vary the
loss rates between 0-5% in all configurations. Although there
exists evidence that cellular networks maintain buffer sizes
larger than the path’s Bandwidth Delay Product (BDP), the
so-called bufferbloat [24], we adjust all buffers to be one BDP.

We perform experiments with bulk and web traffic, us-
ing HTTP/2, and we compare the performance of default
QUIC with our proposed rQUIC scheme.With bulk transfers,
the client downloads a large file (20MB for NetType1 and
NetType2 and 5MB for NetType3) from the server. In the
case of the web transfer, we select www.flickr.com, which
comprises 30 objects, with an overall size of 1, 776 KiB.
We also considered other websites with different combination
of objects and sizes, but due to lack of space and the lack
of noteworthy differences, we just show the results observed
for www.flickr.com. Since rQUIC builds upon the quic-go
project, we cannot use a web browser to download the

8https://www.nsnam.org
9In NS-3, only CSMA and WiFi modules can be connected to ghost nodes.

websites. Instead, we follow the Epload project,10 which
downloads the websites and creates a dependency graph. We
implement an application in go (integrated in our rQUIC
client) that reads these dependencies and generates the cor-
responding HTTP requests.

In order to measure the benefits of rQUIC, we consider the
following metrics: Completion time ratio (ξ) and Overhead.

ξ =
Completion Time rQUIC

Completion Time QUIC
(3)

where Completion Time is the average completion time, i.e the
total time required to complete a download after 100 iterations.
Hence, ξ ≤ 1, represents the performance gain rQUIC yields
over legacy QUIC. The overhead represents the redundant data
(FEC packets) transmitted in a rQUIC session, as a percentage
of the total amount of data transmitted in the session.

B. Performance Evaluation
In this section, we evaluate the performance of rQUIC in

the network configurations shown in Table I. First, we carry
out extensive simulations and analyze the performance of
rQUIC under different network conditions for bulk transfer
and web traffic. Before running the simulations, we conducted
sensitivity analysis for both tolerance and correction ratio to
understand their impact. These results are not presented due
to lack of space. With respect to tolerance value, although the
completion time ratio does not significantly vary, we observed
higher download transfer times for higher tolerance values.
With respect to the correction rate, the completion time ratio
does not dramatically change, but we observe lower download
transfer times as we increase the correction rate. In order to
keep rQUIC generic and adaptive to an unpredictable amount
of random losses, we choose N = 3, δ = 0.33 and γ = 1%.
Unless otherwise stated, we use these values for the rest of
our experimental evaluation.

First, we focus on the performance of rQUIC for bulk
transfer over different emulated channels, shown in Table I. In
Fig. 5 we illustrate the completion time ratio, as well as the
overhead caused by FEC packets (Fig. 5d). We observe that
regardless the RTTs, dynamically adjusting FEC to the link
characteristics, yields a clear benefit, up to 60% over NetType1
and 50% over NetType3. Moreover, the overhead gets higher as
we increase the link erasure ratio, being particularly relevant
with satellite communications. It is worth highlighting that
with very long delay, 400ms, our adaptive algorithm shows
a different pattern compared to the other two cases, which
implies that our adaptive algorithm does not react quickly
enough under these circumstances. With 0% injected loss11

rQUIC does not bring any benefit, as it was expected, but
the performance is neither jeopardized. On the other hand,
the FEC overhead increases as the link error rate gets higher,
as expected from the adaptiveness of the FEC algorithm.
Note that with 0% injected losses, the overhead is below 5%,
regardless the RTT.

10http://wprof.cs.washington.edu/spdy/tool
11Under such circumstance there exist losses due to network congestion.

0% 1% 2% 3% 5%
0

0.5

1

link error rate, α

C
om

pl
et

io
n

ra
tio

,ξ

(a) NetType1 (25ms,20Mbps)

0% 1% 2% 3% 5%
0

0.5

1

Link error rate, α

C
om

pl
et

io
n

ra
tio

,ξ

(b) NetType2 (100ms,10Mbps)

0% 1% 2% 3% 5%
0

0.5

1

Link error rate, α

C
om

pl
et

io
n

ra
tio

,ξ

(c) NetType3 (400ms,1.5Mbps)

0% 1% 2% 3% 5%
0

5

10

15

20

25

Link error rate, α

O
ve

rh
ea

d
%

25 ms
100 ms
400 ms

(d) Overhead

Fig. 5. Completion time ratio for the three scenarios under different amount of random losses for the bulk transfer experiments.

0% 1% 2% 3% 5%
0

0.5

1

1.5

Link error rate, α

C
om

pl
et

io
n

ra
tio

,ξ

(a) NetType1 (25ms,20Mbps)

0% 1% 2% 3% 5%
0

0.5

1

1.5

Link error rate, α

C
om

pl
et

io
n

ra
tio

,ξ

(b) NetType2 (100ms,10Mbps)

0% 1% 2% 3% 5%
0

0.5

1

1.5

Link error rate, α
C

om
pl

et
io

n
ra

tio
,ξ

(c) NetType3 (400ms,1.5Mbps)

0% 1% 2% 3% 5%
0

5

10

15

20

25

Link error rate, α

O
ve

rh
ea

d
%

25 ms
100 ms
400 ms

(d) Overhead

Fig. 6. Completion time ratio for the 3 scenarios under different amount of random losses for the HTTP/2 transfer (flickr.com).

In Figure 6, we present the results obtained through simula-
tion with web traffic, which is characterized by the transmis-
sion of several objects of small size. We observe that rQUIC
yields better performance over lossy networks, specially over
NetType1 and NetType2. With long delay networks, the benefits
brought by FEC are not clear, mainly due to the poor response
during the slow start phase of the congestion control. In our
future work, we plan to disable FEC operation during slow
start, where the dynamic algorithm is not able to correctly
adapt to the channel losses, because the congestion window
increases quickly until the first loss is seen by the transmitter.
On the other hand, the overhead produced by rQUIC follows
the same pattern as the one seen with bulk traffic, but with
lower values. This is due to the fact that most part of the web
transmission is carried out during the slow start phase, where
the FEC ratio quickly increases, not seeing any loss.

We have run further experiments with other websites in-
cluding www.google.com and www.huffingtonpost.com, with
6 and 110 objects respectively. In both cases we saw that
rQUIC yielded a slight performance improvement. We note
that the gains decrease for websites with small objects since
transmission of these objects mostly occurs during slow start.
Results are not discussed due to space constraints.

To complement our simulations with real-world experiments
we also analyzed the performance of rQUIC over real WiFi
(IEEE802.11g) and LTE networks. We used the testbed shown
in Figure 7. Figure 8a shows the completion time ratio results
of the bulk over the WLAN and LTE connections in our
testbed. For WLAN, we observe an average gain of 20%.

Similar to bulk transfer, the results for web traffic, illustrated
in Figure 8b, do not show significant gains for LTE. However,
rQUIC yields a 10% gain on average over WLAN. Note that
these gains are lower than the simulation results, since the
average losses we observed during the experiments were lower
than those considered during the simulations (median loss was
observed to be less than 0.09%). Note that in order to establish
a baseline, we have tested an optimistic scenario in this case,
as there was just one client connected to the Access Point. We
expect that the error rate would be higher in a WLAN if several
devices were connected, due to higher level of interference
and collisions. Under these circumstances rQUIC is expected
to yield stronger benefits, as was shown in the simulation.
On the other hand, with LTE, the average number of losses
is close to 0 and, therefore, the adaptive FEC algorithm can
not bring strong gains. However, LTE networks are known to
be lossy under mobility scenarios where rQUIC benefits will
be much higher. We plan to extend our experimental study in
different WLAN settings and a more extensive measurement
campaign over LTE networks, specially under mobility.

V. CONCLUSIONS

The performance of transport protocols over wireless net-
works is known to be suboptimal, with one of the main
limiting factors being the loss recovery time. In this paper,
we introduced rQUIC framework, which enables FEC in
QUIC for robust wireless communications. To illustrate the
benefits of rQUIC, we presented the design and open source
implementation of an adaptive XOR-based FEC algorithm,

QUIC
Server

QUIC
Client

Wired Internet
Core network

Cellular
Core network

Transit ISP

Tran
sit

ISP

Fig. 7. Wireless testbed scenario.

LTE WLAN
0

0.5

1

1.5

C
om

pl
et

io
n

ra
tio

,ξ

(a) Bulk Transfer

LTE WLAN
0

0.5

1

1.5
C

om
pl

et
io

n
ra

tio
,ξ

(b) HTTP/2 Transfer

Fig. 8. Bulk and web transfer experiment over wireless networks

and we integrated it with QUIC. However, our design is
transparent to QUIC, thus allowing easy integration of other
FEC algorithms with minimal effort. We then evaluate the per-
formance of rQUIC compared to legacy QUIC under different
network scenarios for bulk and web transfers, by means of
an extensive simulation-based analysis including simulation
and real network experiments. Our simulation results show
that for typical wireless networks (WiFi and LTE), rQUIC
yields to significant gains of up to 60% and 25% savings
in the completion time for bulk transfer and web browsing,
respectively (Figs 5a and 6a). Experiments carried out over
real testbeds showed lower gains, since the loss rate was lower,
but the proposed scheme still outperforms legacy QUIC.

In our future work, we plan to focus on addressing the lim-
itations and corner cases discussed previously. Furthermore,
we plan to extend our work by implementing other FEC
mechanisms in rQUIC and evaluating the complexity and gain
trade-offs for these mechanisms. Finally, considering the most
dominant traffic in Internet is video traffic, we plan to analyze
rQUIC performance for video streaming applications.

ACKNOWLEDGMENT

Özgü Alay was partially supported the Norwegian Re-
search Council project No. 250679 (MEMBRANE). Ramón
Agüero was partially supported by the Spanish Government
(MINECO, MCIU, AEI, FEDER) by means of the projects
ADVICE: Dynamic provisioning of connectivity in high
density 5G wireless scenarios (TEC2015-71329-C2-1-R) and
FIERCE: Future Internet Enabled Resilient Cities (RTI2018-
093475-A-100).

REFERENCES

[1] J. Roskind, “QUIC (Quick UDP Internet Connections): Multiplexed
Stream Transport Over UDP,” Technical report, Google, 2013.

[2] Y. Cui, T. Li, C. Liu, X. Wang, and M. Kühlewind, “Innovating
Transport with QUIC: Design Approaches and Research Challenges,”
IEEE Internet Computing, vol. 21, no. 2, pp. 72–76, Mar 2017.

[3] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley, and
H. Tokuda, “Is It Still Possible to Extend TCP?” in Proceedings of
the 2011 ACM SIGCOMM Conference on Internet Measurement, ser.
IMC ’11. ACM, 2011, pp. 181–194.

[4] Langley, A. et al., “The QUIC Transport Protocol: Design and Internet-
Scale Deployment,” in Proceedings of the ACM SIGCOMM. ACM,
2017, pp. 183–196.

[5] J. Rüth, I. Poese, C. Dietzel, and O. Hohlfeld, “A First Look at QUIC in
the Wild,” in International Conference on Passive and Active Network
Measurement. Springer, 2018, pp. 255–268.

[6] M. Watson, M. Luby, and L. Vicisano, “Forward error correction (fec)
building block,” Internet Requests for Comments, RFC Editor, RFC
5052, August 2007.

[7] M. Watson, A. Begen, and V. Roca, “Forward Error Correction (FEC)
Framework,” RFC 6363 (Proposed Standard), Internet Engineering Task
Force, Oct. 2011.

[8] C. Zhang, C. Huang, P. A. Chou, J. Li, S. Mehrotra, K. W. Ross,
H. Chen, F. Livni, and J. Thaler, “Pangolin: Speeding up concurrent
messaging for cloud-based social gaming,” in Proceedings of CoNEXT
’11. ACM, 2011, pp. 23:1–23:12.

[9] N. Dukkipati, N. Cardwell, Y. Cheng, and M. Mathis, “Tail Loss
Probe (TLP): An Algorithm for Fast Recovery of Tail Losses,” IETF,
Internet-Draft draft-dukkipati-tcpm-tcp-loss-probe-01, Oct. 2015, work
in Progress.

[10] T. Flach, N. Dukkipati, Y. Cheng, and B. Raghavan, “TCP Instant
Recovery: Incorporating Forward Error Correction in TCP,” Internet
Engineering Task Force, Internet-Draft draft-flach-tcpm-fec-00, work in
Progress.

[11] S. Ferlin and Ö. Alay, “TCP with dynamic FEC for high delay and lossy
networks,” in ACM CoNEXT Student Workshop, 2016.

[12] M. S. Lucas Clemente, “A QUIC implementation in pure go,” https:
//github.com/lucas-clemente, 2013.

[13] J. Iyengar and M. Thomson, “QUIC: A UDP-based multiplexed and
secure transport,” draft-ietf-quic-transport-01 (work in progress), 2017.

[14] J. Iyengar and I. Swett, “QUIC Loss Detection and Congestion Control,”
Working Draft, IETF Secretariat, Internet-Draft draft-ietf-quic-recovery-
00, November 2016.

[15] P. Megyesi, Z. Krämer, and S. Molnár, “How quick is QUIC?” in 2016
IEEE International Conference on Communications (ICC), May 2016,
pp. 1–6.

[16] A. M. Kakhki, S. Jero, D. Choffnes, C. Nita-Rotaru, and A. Mislove,
“Taking a Long Look at QUIC: An Approach for Rigorous Evaluation
of Rapidly Evolving Transport Protocols,” in Proceedings of the 2017
IMC. ACM, 2017, pp. 290–303.

[17] D. Bhat, A. Rizk, and M. Zink, “Not so QUIC: A performance study of
DASH over QUIC,” in Proceedings of the 27th Workshop on Network
and Operating Systems Support for Digital Audio and Video. ACM,
2017, pp. 13–18.

[18] J. Roskind, “Quick UDP internet connections: Multiplexed stream
transport over UDP,” 2013. [Online]. Available: https://www.ietf.org/
proceedings/88/slides/slides-88-tsvarea-10.pdf

[19] I. Swett, “QUIC FEC v1,” https://docs.google.com/document/d/
1Hg1SaLEl6T4rEU9j-isovCo8VEjjnuCPTcLNJewj7Nk/edit, 2016.

[20] I. Swett, M.-J. Montpetit, and V. Roca, “Coding for QUIC,”
Working Draft, IETF Secretariat, Internet-Draft draft-swett-nwcrg-
coding-for-quic-00, March 2018, http://www.ietf.org/internet-drafts/
draft-swett-nwcrg-coding-for-quic-00.txt.

[21] F. Michel, Q. De-Coninck, and O. Bonaventure, “QUIC-FEC: Bringing
the benefits of Forward Erasure Correction to QUIC,” in IFIP Network-
ing 2019 Conference, May 2019.

[22] P. Garrido, I. Sánchez, S. Ferlin, R. Agüero, and O. Alay, “Poster:
rQUIC: Integrating FEC with QUIC for Robust Wireless Communica-
tions,” in IFIP Networking 2019 Conference, May 2019.

[23] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed and
Secure Transport,” Standards Track, IETF, Internet-Draft draft-ietf-quic-
transport-13, June 2018.

[24] H. Jiang, Y. Wang, K. Lee, and I. Rhee, “Tackling bufferbloat in 3G/4G
networks,” in Proceedings of the 2012 ACM conference on Internet
measurement conference, ser. IMC ’12. ACM, 2012, pp. 329–342.

