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Abstract—Downlink channel estimation in massive MIMO
systems is well known to generate a large overhead in frequency
division duplex (FDD) mode as the amount of training generally
scales with the number of transmit antennas. Using instead
an extrapolation of the channel from the measured uplink
estimates to the downlink frequency band completely removes
this overhead. In this paper, we investigate the theoretical
limits of channel extrapolation in frequency. We highlight the
advantage of basing the extrapolation on high-resolution channel
estimation. A lower bound (LB) on the mean squared error
(MSE) of the extrapolated channel is derived. A simplified LB
is also proposed, giving physical intuition on the SNR gain
and extrapolation range that can be expected in practice. The
validity of the simplified LB relies on the assumption that the
paths are well separated. The SNR gain then linearly improves
with the number of receive antennas while the extrapolation
performance penalty quadratically scales with the ratio of the
frequency and the training bandwidth. The theoretical LB is
numerically evaluated using a 3GPP channel model and we
show that the LB can be reached by practical high-resolution
parameter extraction algorithms. Our results show that there
are strong limitations on the extrapolation range than can be
expected in SISO systems while much more promising results
can be obtained in the multiple-antenna setting as the paths can
be more easily separated in the delay-angle domain.

Index Terms—Channel estimation, extrapolation, FDD massive
MIMO.

I. INTRODUCTION

Knowledge of Channel state information (CSI) at the trans-
mitter (CSIT) is a fundamental prerequisite for operation of
massive multiple-input - multiple-output (MIMO) communi-
cations systems. A massive MIMO system has a much larger
number of antennas at the base station than the number of user
antennas, implying that channel estimation is much less costly
in uplink than in the downlink [1]. In time division duplex
(TDD) systems, the base station (BS) can efficiently perform
downlink channel estimation from uplink pilot transmission
from the user equipments (UEs), since channel reciprocity
holds as long as uplink and downlink transmission occurs
within a coherence time of the channel, and within the same
frequency band. However, in an FDD scenario, reciprocity
cannot be exploited as different bands, usually separated by
more than a coherence bandwidth, are used in uplink and
downlink. On the other hand, estimation of the channel by
downlink pilot transmission and feedback might result in a
large overhead. To solve this dilemma, channel extrapolation
from the uplink to the downlink band might provide a viable
alternative.

Channel extrapolation in frequency was explored in [2],
which suggested estimation of the multipath components

(MPCs) via high-resolution parameter estimation; based on the
MPCs extrapolation over large bandwidths can be achieved.
However, the single-antenna case that was considered in this
paper showed poor performance. Vasisht et al. introduce a
DL channel prediction method, which exploits the channel
reciprocity between uplink and downlink channels to eliminate
the need of UE CSI feedback in FDD systems [3]. In [4],
the authors proposed to acquire CSI through uplink pilots in
combination with a limited feedback from downlink pilots.
More recently, [5] considered extrapolation from uplink pilots
using machine learning algorithms. Channel extrapolation in
frequency also presents formal similarities to extrapolation in
time. In contrast to frequency-domain extrapolation, channel
prediction in time has been extensively investigated in the
literature. A comprehensive review can be found in [6]. In
[7], the authors proposed performance bounds for prediction
in time of MIMO channels. They later extended their study
to MIMO-OFDM channel estimation with interpolation and
extrapolation being done both in time and frequency [8].
The authors make the observation that MIMO provides much
longer prediction lengths than for SISO systems.

To provide understanding of the promise of low-overhead
FDD massive MIMO systems, this paper investigates the
theoretical performance limits of channel extrapolation in fre-
quency. First, we highlight the advantages of high-resolution
channel estimation with respect to conventional least squares
channel estimation resulting in SNR gain and extrapolation
factor. Secondly, we formulate a theoretical LB on the MSE
of the extrapolated channel, using a similar methodology as
in [8]. The proposed LB differs from [8] as it takes into
account elevation angles and the influence of the training
pulse. Furthermore, a simplified LB is also proposed, giving
more physical intuition on the extrapolation range and the
SNR gain that can be expected in practice. The validity of
the LB relies on the strong assumption that the paths are
“well separated". Thirdly, we analyze the performance of the
theoretical LB by numerical simulations using a 3GPP channel
model and showing that the LB can be reached by practical
high-resolution parameter extraction algorithms. Our results
show the very limited extrapolation range that can be achieved
with SISO systems, while much more promising results are
obtained in the MIMO setting as the paths can be more easily
separated in the delay-angle domain.

A. Notations

Vectors and matrices are denoted by bold lowercase and
uppercase letters, respectively. Superscripts ∗, T and H stand
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for conjugate, transpose and Hermitian transpose operators.
The symbols , tr, E, δn, = and < denote the imaginary unit,
trace, expectation, Kronecker delta, imaginary and real parts,
respectively. The operator diag(a) returns a diagonal matrix
with entries of vector a on its diagonal.

II. SYSTEM MODEL

We consider FDD massive MIMO scenarios where each
user has a single-antenna and transmits an uplink orthogonal
training sequence. Thus, the estimation for different users
becomes independent, and in particular the problem of extrap-
olating in frequency a SIMO channel. Moreover, to highlight
the antenna arrays, the SISO case is studied in parallel.

Let us consider the transmission of a baseband equivalent
pulse s(t) a priori known by the receiver. For the sake of
concreteness, we consider in the following s(t) being a root
raised cosine (RRC) pulse with cutoff frequency is 1+β

2T where
0 ≤ β ≤ 1 is the roll-off factor. Extension to an arbitrary
training signal s(t) is straightforward. We assume that the
channel is quasi-static, i.e., constant for the duration of the
transmission. M denotes the number of antennas of the receive
array. We assume that the propagation channel is composed of
L specular paths, where each path is completely characterized
by its deterministic parameters: complex gain αl = αRl + αIl ,
delay τl, azimuth angle φl and elevation angle θl. Assuming
that the ratio of the dimension of the array to the speed of
light c is much smaller than the inverse of the bandwidth of
the signal, the complex baseband-equivalent of the received
signal at antenna m can be expressed as

rm(t) =

L∑
l=1

αlam(φl, θl)s(t− τl) + wm(t), (1)

where wm(t) is complex circularly symmetric white Gaussian
noise and am(φl, θl) is the pattern of antenna m evaluated
in the direction (φl, θl). At the receiver, the signal at each
antenna is pre-filtered and sampled at rate 1/Ts = K/T where
the integer K is the oversampling factor. The pre-filter has a
unit frequency response in the bandwidth occupied by the
signal of interest, i.e., − 1+β

2T ≤ f ≤ 1+β
2T , and is designed

so that the noise is still white after filtering and sampling,
i.e., E (wm[n]w∗m′ [n′]) = σ2

wδm−m′δn−n′ . The oversampling
factor K satisfies the relation K ≥ 1 + β, so that the useful
signal is not impacted by aliasing after sampling. Defining
rm[n] , rm(nTs) and wm[n] , wm(nTs), we obtain

rm[n] =

L∑
l=1

αlam(φl, θl)s(nTs − τl) + wm[n], (2)

for n = 0, . . . , N−1 with N being the number of observation
samples. The SISO case can be seen as a special case of the
SIMO case where each ray is completely characterized by its
complex gain αl and its delay τl while the information on the
angles of arrival is lost. In the following, the index “m" will
be omitted when the single-antenna case is considered.

III. CHANNEL ESTIMATION

This section first describes the conventional low-resolution
channel estimation technique used in most communication

systems. In the light of its limitations, we detail our moti-
vations for going towards high-resolution channel estimation.
We define the channel frequency response evaluated at fre-
quency f and antenna m as

Hm(f) ,
L∑
l=1

αlam(φl, θl)e
−2πfτl . (3)

A. Conventional low-resolution estimation

Taking the discrete-time Fourier transform of the received
signal, we can rewrite (2) in the frequency domain as

Rm(f) = Hm(f)S(f) +Wm(f),

where S(f), Rm(f) and Wm(f) are the discrete-time Fourier
transforms of rm[n], s[n] and wm[n]. Conventional low-
resolution algorithms such as least squares (LS) estimators
perform a simple per-antenna estimation

ĤLS
m (f) =

Rm(f)

S(f)
= Hm(f) +

Wm(f)

S(f)
.

We can easily see that the LS estimator is unbiased and is only
limited by additive noise. Since the noise samples wm[n] are
white and have variance σ2

w, we can write

MSELS(f) , E|ĤLS
m (f)−Hm(f)|2 = σ2

w

N

|S(f)|2
.

Since the transmit signal is a RRC pulse, we can explicitly
write the expression of S(f). Defining s , (s(0), ..., s((N −
1)Ts))

T and SNR , ‖s‖2
σ2
w

, we have

|S(f)|2 =

{
0 if |f | ≥ 1+β

2T

‖s‖2K if |f | ≤ 1−β
2T

MSELS(f) =

{
∞ if |f | ≥ 1+β

2T
1

SNR
N
K if |f | ≤ 1−β

2T

,

where we omitted the transition band 1−β
2T ≤ |f | ≤

1+β
2T for

the sake of simplicity. We can see that the MSE is infinite
out of the bandwidth of the transmit signal, meaning that
no extrapolation is possible. In practice, the MSE might not
be infinite if simple linear extrapolation methods are used.
However, most of these methods would have a very limited
extrapolation range of the order of the coherence bandwidth
of the channel, which can be related to the inverse of the
maximal delay spread. For a delay spread of 2µs, this would
correspond to only 500kHz extrapolation range.

In the signal band, the MSE of the LS estimator linearly
degrades as a function of the ratio Ñ , N

K = NTs

T . We
can see that Ñ actually corresponds to the number of time
periods T on which the received signal is being observed,
including the delay spread of the channel and the transmit
pulse duration. This can be intuitively seen as the number of
delay coefficients that the LS estimator is trying to estimate.
Indeed, because of its low resolution in time (of the order
of T ), the LS estimator does not resolve the specular paths
but estimates instead its convolution with the transmit pulse,
as shown in Fig. 1. To maximize the estimation performance,
Ñ should be well chosen: big enough so that the observation
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Fig. 1. For a scenario with few well separated rays, high-resolution channel
estimation is preferable as it would have to estimate only L = 4 coefficients
instead of about Ñ ≈ 30 for a low-resolution LS estimator.

window captures the useful training signal while being low
enough just to capture useful signal and not noise. The gain
obtained by limiting the number of coefficients Ñ is similar to
an OFDM system that would convert its pilot-based frequency
channel estimates to the time domain, truncate the obtained
impulse response to Ñ coefficients and finally convert it back
to frequency [9]. One can note that applying a LMMSE
filter on the frequency estimates as in [10] might improve
the performance but would require the a priori knowledge of
channel second order statistics.

B. High-resolution estimation

One could wonder if alternatives to conventional low-
resolution channel estimation are possible. If, as depicted in
Fig. 1, the channel only has a few well separated specular
multipath components1, i.e., L << Ñ , an intuitive reasoning
suggests to go for high-resolution estimation of the L different
path parameters directly [2]. There are two main motivations
for this: SNR gain and extrapolation. The SNR gain would
come from two sources. First, the receiver only has to estimate
L complex coefficients rather than Ñ , resulting in a potential
SNR gain of Ñ

L with respect to LS estimation. One should
note that this gain is stronger than the potential gain of using
a frequency correlation filter as in [10]. It does not come
from simply assuming that the channel impulse response has
a finite length ÑT as in [9] but from its sparsity. Secondly, the
received signal at each antenna can be coherently combined
to jointly estimate and separate all path parameters instead
of performing per-antenna independent channel estimation as
in the LS case, which results in a potential total SNR gain
of a factor MÑ

L with respect to LS estimation. One should
here also note that improved channel estimators making using
of correlation in the spatial domain through the antennas
could also achieve a similar gain. By definition, low-resolution
estimators are restricted to the bandwidth occupied by the
training signal. However, high-resolution estimates of the
path parameters allow for simple channel extrapolation in
frequency possibly very far from the initial band of the

1The “few well separated" assumption will be properly formalized in
Section IV.

training signal. If we denote by τ̂l, φ̂l, θ̂l and α̂l the high-
resolution estimates of τl, φl, θl and αl respectively, we can
write the expression of the extrapolated channel as

Ĥm(f, ψ̂) =

L∑
l=1

α̂lam(φ̂l, θ̂l)e
−2πfτ̂l . (4)

Of course, intuitive reasoning tells us that the extrapolated
channel will suffer from the estimation errors on the path
parameters, especially as the extrapolation factor becomes
large. We also assume here that the underlying assumptions
of the model in (1) are still holding, i.e., the inverse of the
extrapolation range is much smaller than the inverse of the
dimension of the array to the speed of light, which implies
that the antenna array response is the same between uplink and
downlink. Furthermore, we assume that the parameters of the
MPCs are independent of frequency. This is well fufilled in
most practical situations, since the range over which these
parameters change is on the order of 10% of the carrier
frequency, which is much larger than the extrapolation range
we can usually obtain, see Section V.

IV. PERFORMANCE ANALYSIS

To theoretically formalize the two potential gains of high-
resolution channel estimation, we will in a first step derive the
Fisher information matrix of the estimated path parameters.
The second step will consist in deriving a range on the MSE of
the extrapolated channel frequency response. In a third step,
a simplified LB will be proved giving much more physical
intuition. Finally, the previous results will be particularized to
the SISO case.

A. Fisher Information Matrix

Let us define the vector r ∈ CNM×1 as containing all
received samples for all antennas and observation samples.
We also define the vector ψ ∈ R5L×1 as containing the 5L
real-valued path parameters. Given the independence of the
noise samples, the log-likelihood of vector r becomes

L (r;ψ) =

N−1∑
n=0

M∑
m=1

L (rm[n];ψ) .

The elements of the Fisher information matrix Iψ ∈ R5L×5L

can be obtained from the log-likelihood function as [11]

[Iψ]u,v = −E
(
∂2L (r;ψ)

∂ψu∂ψv

)
(5)

= −
N−1∑
n=0

M∑
m=1

E
(
∂2L (rm[n];ψ)

∂ψu∂ψv

)
,

where the expectation is taken over the noise distribution.
Since the random variable rm[n];ψ follows a circularly
symmetric complex normal distribution with variance σ2

w and
mean µm,n ,

∑L
l=1 αlam(φl, θl)s(nTs−τl), equation (5) can

be rewritten as

[Iψ]u,v =
2

σ2
w

N−1∑
n=0

M∑
m=1

<
{
∂µ∗m,n
∂ψu

∂µm,n
∂ψv

}
. (6)



Separating the different path parameters in vector ψ, we can
partition the full 5L × 5L Fisher information matrix in 25
submatrices, each of dimension L× L, as

Iψ =
2

σ2
w


Iττ Iτφ Iτθ IταR IταI

ITτφ Iφφ Iφθ IφαR IφαI

ITτθ ITφθ Iθθ IθαR IθαI

ITταR ITφαR ITθαR IαRαR IαRαI

ITταI ITφαI ITθαI ITαRαI IαIαI

 . (7)

Defining ṡ(t) , ds(t)
dt , ȧm,φ(φ, θ) , dam(φ,θ)

dφ and
ȧm,θ(φ, θ) , dam(φ,θ)

dθ , we can write the partial derivatives
appearing in (6) as

dµm,n
dτl

= −αlam(φl, θl)ṡ(nTs − τl)

dµm,n
dφl

= αlȧm,φ(φ, θ)s(nTs − τl)

dµm,n
dθl

= αlȧm,θ(φ, θ)s(nTs − τl)

dµm,n
dαRl

= am(φl, θl)s(nTs − τl)

dµm,n
dαIl

= am(φl, θl)s(nTs − τl).

Inserting these partial derivatives in (6) and for a specific
array pattern am(φ, θ), the Fisher information matrix in (7)
can be easily constructed. In the following, we will make the
following assumption.

(As1): the Fisher information matrix Iψ is nonsingular.
In practice, a rank deficiency of Iψ could arise if two rays,

or more, become extremely close in delay and angle, which
would cause the determinant of Iψ to go to zero. A solution
in this case can be to replace the two correlated rays with
one ray whose amplitude is the sum of the amplitudes of the
components. It is intuitive that this operation will not cause a
large information loss if the rays are close enough.

B. Lower bound on the MSE of the extrapolated channel

Let us denote by ψ̂ ∈ R5L×1 an unbiased estimator of ψ
with covariance matrix

Cψ̂ = E
((
ψ − ψ̂

)(
ψ − ψ̂

)T)
,

where the expectation is taken over the noise distribution.
The Cramer-Rao lower bound (CRLB) tells us that the ma-
trix Cψ̂ − I−1ψ is positive semidefinite, which implies that
gHCψ̂g ≥ gHI−1ψ g for every vector g ∈ C5L×1. If vector g
is chosen as an all zero vector except a one at u-th entry, we
get a LB for the variance of the estimated parameter ψu. The
CRLB only provides a LB on the variance of the estimated
parameters while we are interested on the variance on the error
of the extrapolated channel, which we define as

MSEm(f, ψ̂) , E
∣∣∣Ĥm(f, ψ̂)−Hm(f)

∣∣∣2.
To obtain a performance limit, we would like to lower bound
the MSE by a certain quantity LBm(f, ψ̂) so that

MSEm(f, ψ̂) ≥ LBm(f,ψ),

where LBm(f,ψ) would only depend on deterministic param-
eters. The following theorem gives a closed-form expression
of the LB on the extrapolated channel as a function of the
path parameters ψ and the extrapolated frequency f .

Theorem 1. Under (As1), the LB on the MSE of the
extrapolation error LBm(f,ψ) for any unbiased estimator
Ĥm(f,ψ) can be expressed as

LBm(f,ψ) , gHm,f,ψI
−1
ψ gm,f,ψ,

where we defined the vectors

gTm,f,ψ ,
(
aTm,f,τ aTm,f,φ aTm,f,θ aTm,f,αR aTm,f,αI

)
am,f,τ , −2πfDαDτ

(
am(φ1, θ1) . . . am(φL, θL)

)T
am,f,φ , DαDτ

(
ȧm,φ(φ1, θ1) . . . ȧm,φ(φL, θL)

)T
am,f,θ , DαDτ

(
ȧm,φ(θ1, θ1) . . . ȧm,θ(φL, θL)

)T
am,f,αR , Dτ

(
am(φ1, θ1) . . . am(φL, θL)

)T
am,f,αI , Dτ

(
am(φ1, θ1) . . . am(φL, θL)

)T
,

with Dτ , diag(e−2πfτ1 , ..., e−2πfτL) and Dα ,
diag(α1, ..., αL).

Proof. Proofs are omitted in this document due to space con-
straints, we refer to the journal paper for complete proofs.

C. Separated rays

The LB of Theorem 1 is interesting and is in closed-form,
which allows to easily evaluate it numerically. However, it
requires the inversion of the Fisher information matrix and
does not provide much intuition on the exact SNR gain and
extrapolation factor that we can expect. To further characterize
and try to get more insight on LBm(f,ψ), let us first
define the following vectors in order to introduce assumptions
(As2)− (As3)

sl ,
(
s(−τl) . . . s((N − 1)Ts − τl)

)T ∈ CN×1

ṡl ,
(
ṡ(−τl) . . . ṡ((N − 1)Ts − τl)

)T ∈ CN×1

al ,
(
a1(φl, θl) . . . aM (φl, θl)

)T ∈ CM×1

ȧl,φ ,
(
ȧ1,φ(φl, θl) . . . ȧM,φ(φl, θl)

)T ∈ CM×1

ȧl,θ ,
(
ȧ1,θ(φl, θl) . . . ȧM,θ(φl, θl)

)T ∈ CM×1.

(As2): separation of the L specular rays in delay, azimuth
angle and/or elevation angle. We assume that, for each pair of
rays l, l′ (l 6= l′), at least one of the following two relationships
is verified:

(1) Separation in delay:

sHl sl′ = ṡHl ṡl′ = ṡHl sl′ = 0. (8)

(2) Separation in azimuth and/or elevation angle:

aHl al′ = ȧHl,θȧl,θ = ȧHl,φȧl,φ = ȧHl,θȧl = ȧHl,φȧl = ȧHl,φȧl′,θ = 0.

The assumption (As2) is a strong assumption, whose
accuracy will typically depend on different parameters. The
specular paths will generally become more separated in delay
as the bandwidth of s(t) increases, inducing higher resolution
in time. Similarly, the separation in azimuth and elevation



will be improved as the number of antenna elements M is
increased. More generally, the validity of (As2) will depend
on the pulse shape s(t) and the array pattern am(φ, θ).
(As3): the array pattern has even or odd symmetry in space

implying that

ȧHl,φal = ȧHl,θal = 0.

The following corollary gives a particularization of the LB
of Theorem 1 under additional assumptions (As2) − (As3)
and for the MSE averaged over the receive antennas, i.e.,

MSE(f, ψ̂) ,
1

M

M∑
m=1

MSEm(f, ψ̂).

Corollary 1. Under (As2)−(As3), the expression of the LB
of Theorem 1 averaged over the receive antennas simplifies
to

LB(f,ψ) ,
1

M

M∑
m=1

LBm(f,ψ)

=
1

SNR

L

M︸︷︷︸
SNR gain

( 2︸︷︷︸
Loss factor

+
1

2

(
f

σF

)2

︸ ︷︷ ︸
Extrapolation factor

),

where σ2
F is the mean squared bandwidth of the transmit

signal

σ2
F ,

‖ṡ‖2

(2π)2‖s‖2
=

∫
f
f2|S(f)|2df∫
f
|S(f)|2df

.

By adding some assumptions, the LB proposed in Theo-
rem 1 can be greatly simplified and Corollary 1 provides much
insight into the physical meaning of the different terms of the
LB. We can clearly identify the two main advantages of high-
resolution channel estimation. As expected, a SNR gain of a
factor MÑ

L can be observed with respect to LS estimation.
This gain comes from two contributions: the array gain M
and the fact that we estimate only L channel paths instead of
Ñ in the LS case. However, a loss factor of 2 appears, coming
from the penalty of estimating the real and imaginary gains,
the azimuth and the elevations angles of each path. Secondly,
the channel can be extrapolated in frequency at the cost of
a MSE penalty that quadratically scales with the ratio f/σF
where the denominator indicates that the extrapolation factor
can be quantified in multiples of the signal bandwidth.

Furthermore, it is interesting to see that the dependence of
LB(f,ψ) on the path parameters ψ vanish under (As2) −
(As3). This is in part explained by the fact that each path
is well separated, which cancels the interdependence between
the paths paramters in the expression of the LB. Additionally,
the channel frequency response is evaluated in the direction
of the incoming specular waves, canceling the dependence in
the parameters of each path.

D. Single-input-single-output

The specialization of the above results to the SISO case
is straightforward. As the angles of arrival are not resolved,
the Fisher information matrix becomes a 3L × 3L matrix.

To simplify the LB, we introduce the following adaptation of
(As2) to the SISO case:
(As2′): separation of the L specular rays in delay. We

assume that, for each pair of rays l, l′ (l 6= l′), the condition
(8) is verified.

Corollary 2. The LB on the channel extrapolation error for
any unbiased estimator Ĥ(f, ψ̂) in the SISO case is

LBSISO(f,ψ) , gHf,ψI
−1
ψ,SISOgf,ψ,

where

gTf,ψ ,
(
aTf,τ aTf,αR aTf,αI

)
af,τ , −2πfDα

(
e−2πfτ1 . . . e−2πfτL

)T
af,αR ,

(
e−2πfτ1 . . . e−2πfτL

)T
af,αI , 

(
e−2πfτ1 . . . e−2πfτL

)T
.

Under (As2′), the LB simplifies to

LBSISO(f,ψ) =
L

SNR︸ ︷︷ ︸
SNR gain

( 1︸︷︷︸
Loss factor

+
1

2

(
f

σF

)2

︸ ︷︷ ︸
Extrapolation factor

).

As could be expected, the only SNR gain now comes from
estimating L coefficients rather than Ñ . The extrapolation
factor is the same as in the SIMO case. One can note that the
loss factor is only one versus two in the SIMO case as the
azimuth and elevation angles of each path are not estimated.
The main difference of the SISO case with the SIMO case
is the fact that far fewer observations of the channel are
available, especially compared to a massive MIMO scenario
with a large M . This not only eliminates the array gain but
also makes Iψ,SISO more ill-conditioned as the rays can only
be separated in the delay domain. As a result, (As2′) is a
stronger assumption than (As2) and might only be valid for
a small number of rays L and/or a very large bandwidth.
These observations tend to strongly limit the potential gains
of high-resolution channel estimation in SISO systems [2].

V. NUMERICAL VALIDATION

This section aims at assessing the accuracy of the theoretical
LB of the extrapolated channel through simulations. In the
simulations, we used a RRC pulse shape s(t) with roll-off
factor β = 0.2. The center frequency is set to 3.5 GHz. We
consider a rectangular planar array of antennas at receive side
with an inter-antenna element spacing of λc/2. The antenna
elements have an isotropic pattern implying that (As3) holds.
The SISO performance will also be considered according
to the description in previous sections. Conventional LS
estimation will be considered as a benchmark. For extracting
the MPC, we use the SAGE algorithm presented in [12]
straightforwardly extended to extract elevation angles. The
performance of the algorithm was averaged over multiple
noise realizations. The MPC parameters were generated by
the QuaDRiGa toolbox [13] according to the 3D-UMa NLOS
model defined by 3GPP TR 36.873 v12.5.0 specifications [14].
The same set of parameters was used for all simulations and
is depicted in Fig. 2. One can see that some rays are very
closely spaced in delay and angle.
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Fig. 2. Generated set of parameters (αl, τl, φl, θl) for l = 1, ..., L− 1 with
L = 21 and following 3GPP 3D-UMa NLOS model. The sum of gains is
normalized to one.
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Fig. 3. The SAGE algorithm can reach the performance of the full LB
(Theor. 1). The simplified LB (Corol. 1) gets closer to the full LB as the
number of antenna increases meaning that (As2) is better validated: the
rays are more separated in angle. We also notice a large SNR gain with
respect to conventional LS.

Three rectangular array geometries are considered: M = 8
(4 Horiz. × 2 Vert.), M = 32 (8 Horiz. × 4 Vert.) and M =
128 (16 Horiz.× 8 Vert.). Different values of the bandwidth,
defined as 1/T ,2 are considered as well. The performance in
the figures is shown as a function of frequency normalized in
the signal bandwidth 1/T , as we expect form Corollary 1 that
extrapolation scales accordingly. In the legend of the figures,
the full LB refers to the LB of Theorem 1 averaged over the
receive antennas and the simplified LB refers to the expression
of Corollary 1 if the rays are well separated. In the SISO case,
the full and simplified LB curves refer to the corresponding
expressions in Corollary 2.

A. SAGE performance versus theoretical LB

Fig. 3 shows the LBs of Theorem 1, Corollary 1 and
Corollary 2, the LS and SAGE estimation performance for the
SISO, M = 8 and M = 32 cases. The first important point

2Note that, due to the roll-off factor, the exact bandwidth is actually 1+β
T

.
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Fig. 4. As the bandwidth increases, extrapolation becomes possible in SISO
and the full LB converges to the simplified LB meaning that (As2′) holds.
A bandwidth of 1/T = 800 MHz is necessary for (As2′) to be completely
valid.

to notice is that SAGE can reach the performance of the full
LB. This implies that the LB gives a good indicator of the
achievable MSE. For the sake of clarity, we will omit SAGE
performance in the next figures. Furthermore, the simplified
LB gets closer to the full LB as the number of antenna
increases meaning that (As2) is better verified: the rays are
more separated in angle. The validity of (As2) will be studied
in the following figures. In the SISO case, (As2′) is not at
all valid and no extrapolation is possible. This will be studied
in the following as well. As expected from the discussions
of previous sections, the high-resolution channel estimators
experience a large SNR gain with respect to conventional LS
estimation and this gain scales with the number of antennas
M .

B. Influence of the bandwidth

1) SISO: As just explained, no extrapolation in SISO is
possible in Fig. 3 since the rays are too correlated or in other
words, (As2′) is not valid. Fig. 4 plots the evolution of the full
LB as a function of the signal bandwidth for a SISO system.
As the bandwidth of the system increases, the SISO system
has a larger resolution in time and it can progressively resolve
the different MPC. As the bandwidth increases, (As2′) be-
comes more valid and the full LB converges to the simplified
LB. The gap between the full and simplified LB can be seen
as an indicator of the separability of the MPC.

As opposed to high-resolution channel estimation, increas-
ing the bandwidth is detrimental to conventional LS estimation
as the number of time domain coefficients to estimate becomes
larger. Another way to view this is that the energy is more
spread out in frequency and leads to a lower per-frequency
bin SNR. We can conclude that the price to pay for channel
extrapolation in SISO is to have a very large bandwidth at dis-
posal and/or a channel that exhibits few well separated MPC.
This observations tends to strongly limit the applicability of
extrapolation for conventional SISO communication systems.
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Fig. 6. As the number of antenna elements increases, the rays can be
more easily separated in the angle domain and the full LB converges to
the simplified LB.

2) SIMO: The same type of remarks can be made for Fig. 5
which depicts the performance of a M = 32 SIMO system for
different bandwidths. As the bandwidth increases, assumption
(As2) becomes more valid and the full LB converges to
the simplified LB. The main difference with the SISO case
is that the extrapolation becomes possible for much smaller
bandwidth. This is explained by the fact that the rays can now
be separated in the delay-angle domain and not only the delay
domain. In the end, we see that a 20 MHz SIMO system with
M = 32 antennas can reach the same extrapolation factor as
a 800 MHz SISO system, with an additional SNR gain of 15
dB.

C. Influence of the number of antennas

Fig. 6 depicts the performance of the system for a fixed
bandwidth of 1/T = 20 MHz as a function of the number of
antennas. The same effect previously described occurs, i.e.,

as the number of antennas increases, the resolution in the
angle domain increases and (As2) is more valid, the full
LB converges to the simplified LB. These observations imply
that the separability of the rays can be achieved by trading
bandwidth against number of antennas.

VI. CONCLUSION

This paper investigated the theoretical performance limits of
channel extrapolation in frequency, seen as a potential solution
to completely remove the pilot overhead for downlink channel
estimation in FDD massive MIMO systems. We highlighted
the advantages of basing the extrapolation on high-resolution
channel estimation as compared to conventional estimators. A
LB on the MSE of the extrapolated channel was proposed.
By assuming that the rays are well separated, we were able
to simplify the LB and directly identify the potential extrap-
olation range and SNR gain. It was shown that the SNR gain
linearly scales with the number of receive antennas while the
extrapolation performance penalty quadratically scales with
the ratio of the frequency and the training bandwidth. From
simulations using practical channel models, we saw that the
derived LB can be reached with practical high resolution al-
gorithms. Furthermore, the extrapolation range is very limited
in SISO while much more promising results were obtained
in SIMO as the paths can be separated in the delay-angle
domain. Future works include validation of theoretical results
by channel measurements and study of potential limiting
factors such as channel modeling and calibration errors.
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