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Özgür Umut Akgül⋆†, Ilaria Malanchini†, and Antonio Capone⋆

⋆Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Milano, Italy

Email: oezguerumut.akguel, antonio.capone@polimi.it
†Nokia Bell Labs, Stuttgart, Germany

Email: ilaria.malanchini@nokia-bell-labs.com

Abstract—5G is envisioned to provide substantial increase in
the network performance both in terms of achieved rate and
delay. However, in order to satisfy these goals, the network
operators are forced to make significant investments on the
network infrastructure. Consequently a key question is how
to invest the scarce economical resources to achieve maximum
impact. Unlike the predecessor technologies, 5G contains a
diverse mixture of services with unique requirements and pri-
orities. From a network operator’s perspective, solely focusing
on the particular services makes it harder to determine the
business value of a region. Therefore, in order to efficiently use
the available expansion budget, the conventional approach of
network dimensioning has be revisited. In this work, we propose
a novel utility function based capacity expansion framework
that can be automatized to dynamically and efficiently manage
the infrastructure resources. Build upon three decision metrics,
i.e. the urgency of the required resources, available investment
budget and the expected impact of the capacity increase, our
algorithm determines regions to invest in. Moreover, our analysis
shows that the efficiency of the proposed framework does not
strictly rely on the long term observation of the traffic demand.

I. INTRODUCTION

The lofty expectations posed by 5G require fundamental

increase in the available network capacity. However, this

intense network deployment places unprecedented economical

strains on the network operators. From a broadband com-

munication market perspective, the network operators with

smaller market shares do not have the required revenue to

expand the capacity resources, while the major operators who

serve large portions of the market are unwilling to carry the

economical burden of expansion due to the long return of

investment duration. This economic pressure is forcing the

network operators to reconsider their modus operandi in order

to maintain a sustainable business model. Sharing the available

network resources with other network operators is a promising

solution to reduce costs [1]. In this new business model,

wireless resources, which are provided by a third party, i.e.

the infrastructure provider, are shared among a set of virtual

operators, i.e. the tenants.

Moreover, 5G networks are envisioned to host a multitude

of services and devices with unique requirements and service

priorities. The traditional solution of optimizing the complete

network for a particular service type is no longer applicable

due to the conflicting requirements posed by different services.

A way out is to vertically group network resources (i.s. slicing

the network) in order to create virtual dedicated networks per

service. In this way, each slice can be customized to serve the

respective service in the best possible way.

In the context of slicing and emerging technologies, one

key aspect that has not yet been extensively investigated is the

reinvestment of the collected revenues for capacity expansion.

5G technology gives rise to many business models and service

types, each with demanding quality of service (QoS) expec-

tations and priority. In this highly heterogeneous business

ecosystem, determining the “value” of investing money in a

given region is not clear. In addition to the long term strategies

of the tenant, the value of a region is also a function of

the service mixture in that region as well as the tenant’s

focus on particular services. Moreover, the traffic mixture

variation over different regions makes it harder to understand

the implications of the total QoS degradation on particular

services and the urgency of the service needs [2]. Therefore,

the conventional approach of investing in some regions only

based on the experienced QoS is not necessarily the best

possible strategy. Moreover, as detailed in [3], automated

and fast network planning approaches are required to timely

and efficiently shape the network resources in a multi-tenant

scenario.

A. Related Works

Although the problem of capacity network expansion is usu-

ally investigated under several steps, the two key aspects are

capacity dimensioning and planning. During the dimensioning

of the network resources, decisions are made on deploying

additional resources to different regions but without any

particular decision on the exact location of the new resources,

e.g. [3]–[5]. In contrast, planning phase determines where to

locate the new resources based on radio maps, e.g. [6], [7].

The majority of the existing literature on capacity dimen-

sioning do not consider the existing infrastructure resources

and provide models for complete network deployments [8].

However, unlike the previous technologies, 5G deployment

is not envisioned to replace the 4G infrastructure resources.

Therefore, the network planning in 5G strongly requires

awareness of the existing network infrastructure as well as

the long and short term variations of the network traffic [9].

Moreover, the unique 5G aspects such as multi-tenancy and
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the heterogeneous service requirements have to be considered

in the planning decisions. [3] provides a self-dimensioning

algorithm for small cells in a multi-tenant network. However,

their model relies on average QoS degradation and does not

consider how different services perceive this decreased QoS.

Another challenge, covered in [10], is the fact that the

network operators do not always possess the necessary eco-

nomical revenue in order to upgrade or expand their resources

to reach the maximum utility over all the coverage area. [11]

provides a detailed cost analysis of network deployments,

considering not only the device cost but also the respective

deployment and capacity costs. A popular solution, which is

not only used to handle the excess traffic in short term, but

also for cases of public safety and disaster management, is

deploying mobile base stations [4], [7].

B. Contributions and organization of the paper

A real time trading model of wireless resources is presented

in [12], where we propose a novel market-driven pricing

mechanism. Build upon our framework in [12], this paper

proposes a novel capacity expansion model that guides the

reinvestment strategies by assessing the value of expansion

per region. Consequently, our key contributions in this work

are as follows.

• We design a utility-based decision mechanism to com-

pare the QoS degradation in different regions, taking into

account service requirements and traffic mixture.

• We propose a novel self-dimensioning framework that is

used to reinvest the aggregated economical revenues in

an automated fashion.

• We demonstrate the advantages of short term investment

decisions using a set of simulations based on real traffic

data.

The rest of the paper is organized as follows. We present

our system model and the key assumptions in Section II.

Section III details the proposed mathematical model and

presents our applied algorithm. The evaluation of our model

is performed in Section IV. Finally, Section V concludes the

paper.

II. SYSTEM MODEL

In this work, we use a similar notation to our previous

work in [12]. As presented in Fig. 1, the total geographic

area is given by Ac. For the sake of simplicity, we assume

that Ac is divided into a number of regions R, which are

indexed by r (cf. Fig. 1). The total area, Ac, is assumed to

be totally covered by a number of base stations Br (shown

as blue triangles in Fig. 1), namely there is no coverage

gaps in the area. We assume that being the provider of the

physical resources, the infrastructure provider is responsible

for keeping the capacity resources in line with the demand.

Consequently, the infrastructure provider decides on triggering

the capacity expansion. The need for capacity expansion is

decided within an observation period of Wex. The average

number of users that are served by base station b, during the

observation period is given by Kb.
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Fig. 1: The envisioned network topology

Similar to [12], the SLA between tenants and the infras-

tructure provider sets the utility goal per tenant, i.e. Uth,m

which defines each tenant’s expected average total achieved

utility. The difference between tenants’ utility goals, i.e. Uth,m,

and the actual achieved utility, i.e. Uk(Rk, n), is referred to

as the tenant’s gap, ξm. The total gap of tenants and the

collected revenue for capacity expansion are used to determine

the urgency of the expansion decision over time. Note that

the dynamic pricing framework, which is detailed in [12], is

built upon a market-driven pricing strategy. In this model, the

total cost of a tenant consists of three components. The first

two terms are the operational and capital expenses, which are

scaled according to the actual resource consumption and the

guaranteed resource share of a tenant, respectively. The third

term is the pressure cost, which is scaled proportionally to the

tenant’s gap ξm. During the observation period, the associated

pressure revenues accumulated by the infrastructure provider

can be written as

Racc =
∑

i∈Wex

∑

m∈M

ξm[i]Cpre, (1)

where Cpre is the unit pressure cost set by the infrastructure

provider and M is the set of tenants.

At the end of Wex, the capacity expansion decision is made

based on the accumulated pressure revenue, Racc, and the

total gap per region, i.e. ξr =
∑

b∈Br

∑

m∈M ξm. In case

a tenant does not have any user in a particular base station,

the respective utility expectation is set to zero, Uth = 0, and

consequently the gap of tenant m in the given base station will

be ξm = 0. After modeling the available revenues for capacity

expansion, the key challenge is how to model the cost for the

additional resources. In this case, the considered resource type

plays a key role for determining the cost of a resource. In this

work, we use the cost model proposed in [11], which models

the total cost of building a base station as an aggregation of

equipment cost (C1), capacity cost (A01) and infrastructure

cost (B01). Based on their proposed generic model that can

be customized per technology, the cost of building an eNB

can be calculated as

Ctot(λb) = λbC1 + λuA01 +
λu

λbπ
B01, (2)

where λu and λb indicates user and base station density,

respectively. Since the deployment of the new eNBs are paid

by the aggregated pressure cost during the observation period,



the accumulated revenue (Racc) has to be equal or greater

than the cost of the newly deployed base stations. For the

sake of simplicity, we assume that the densities are calculated

for a unit area, so the cost of a base station is equal to

Ctot = C1 + λuA01 + λu

π B01 and the maximum number of

base stations that can be deployed is λmax
b = ⌊Racc/Ctot⌋.

Depending on the observation window and the preferences

of the tenants and the infrastructure provider, without loss of

generality, (2) can be customized for the preferred expansion

type.

III. SELF-DIMENSIONING FRAMEWORK

Based on the calculation of λmax
b proposed above, the

problem of capacity scaling translates into determining the

most efficient locations for capacity expansion. The efficiency

of capacity expansion is measured in terms of decrease in the

total gap in the region over a unit increase in the available

capacity, ∂ξr
∂λr

. Since increasing the number of base stations

decreases the experienced total gap in a region, we propose

the following objective function for our problem

min
∑

r∈Ac

∂ξr
∂λr

λr. (3)

Based on the correlation between the gap and the achieved

utility, (3) can be rewritten as

min
∑

r∈Ac

∂ξr
∂Rr

∂Rr

∂λr
λr, (4)

where Rr indicates the achieved spectral efficiency in region

r. The first term, i.e. ∂ξr
∂Rr

, measures the change in the total

gap of a region for a unit increase in Rr. By replacing ξr with

the gap definition, i.e. ξr = Uth,m − Ur(Rr, n), we obtain

∂ξr
∂Rr

=
∂(−U(Rr, n))

∂Rr
. (5)

The service heterogeneity envisioned in 5G is modeled

using the quality of experience mapping that we proposed

in [12]. In this study, we focus on four exemplary services

whose utility functions are presented in Fig. 2a. The total

utility function of a region, Ur(Rr, n) is defined as

Ur(Rr, n) =
∑

b∈r

∑

k∈Kb

Uk(Rk, n), (6)

where Uk(Rk, n) is the achieved utility of user k at time slot

n. Unlike our previous work, the proposed self-dimensioning

framework is designed for relatively long time intervals (e.g.

days, weeks or months). Consequently, the number of users in

each base station and the traffic mixture dynamically change

over time. As the network scheduler maximizes the total

achieved utility, the regions with a negative value, presented

in Fig. 2a, have the highest priority in our model. Namely

the biggest priority of the scheduler is to provide resources

to inelastic and machine to machine (M2M) traffic. Therefore,

for the sake of tractability, we assume that all the base stations

have a minimum amount of resources that is sufficient to

satisfy this minimum resource requirements. Consequently,
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Fig. 2: Framework’s adaptability to the changes in the channel

condition

the aggregated utility function (cf. Fig. 2a) does not have any

underutilized region, i.e. the utility values below zero.

Substituting (5) in (4), our objective function becomes

max
∑

r∈Ac

∂Ur(Rr, n)

∂Rr

∂Rr

∂λr
λr. (7)

In (7), the second term estimates the change of spectral

efficiency over a unit increase in the base station density.

However, the actual change in the spectral efficiency depends

on the location of the new base station, therefore, accurately

modeling the implications of a new deployment is very chal-

lenging. On the other hand, in [13], based on the homogeneous

point processes, the expected value of the spectral efficiency

is calculated by using

Rr =
π5/2

2

√

λuλbP

σ2
Erfc

[

π2λu

4

√

P

σ2

]

exp

[

π4λ2
uP

16σ2

]

, (8)

where P shows the transmission power and σ2 is the noise

power. Furthermore, authors in [13] prove that if λu

√

P
σ2 >>

4
π2 , then (8) can be simplified to

Rr = 2

√

λb

λu
. (9)

Thus, the second term in (7) can be rewritten as

∂Rr

∂λr
≡ 1√

λrλu

, (10)

and the complete objective function becomes

max
∑

r∈Ac

∂Ur(Rr, n)

∂Rr

√
λr√
λu

. (11)

Note that λr is the only variable in our objective function,

while λu is a parameter which is calculated a priori by using

Kb. In order to solve the proposed framework with a linear

optimizer, without loss of generality, (11) is linearized as

max
∑

r∈Ac

∂Ur(Rr, n)

∂Rr

λr√
λu

. (12)

The complete optimization model is given in (13.a)-(13.b),

where (13.b) sets the upper bound for the number of deployed

base stations.



max
λr

∑

r∈Ac

∂Ur(Rr, n)

∂Rr

λr√
λu

(13.a)

s.t.
∑

r∈Ac

λr ≤ Racc

Ctot

(13.b)

However, to guarantee an accurate estimation of the loca-

tions where to expand the capacity, we enforce an iteratively

deploy of additional resources, i.e., add one new base station

at the time. Therefore, (13.b) is updated as
∑

r∈Ac

λr ≤ 1. (14)

Finally, the self-dimensioning algorithm is implemented using

Algorithm 1.

Algorithm 1 Proposed self-expansion algorithm

1: for i=1:λmaxr and
∑

r∈Ac

∂Ur(Rr,n)
∂Rr

> 0 do

2: Solve (13.a) - (14)

3: Distribute capacity

4: Recalculate
∂Ur(Rr,n)

∂Rr

1√
λu

IV. SIMULATION RESULTS

A. Traffic model

In our simulations, we use the actual traffic demand col-

lected from Bergamo, Italy. The data contains the total traffic

demand over 39 base stations spanning the 12 months between

March 2018 and March 2019. In the simulations, we focus

on two main scenarios, i.e. the scenario where there are

equivalent traffic distributions in each region (cf. Fig. 3a)

and the asymmetric traffic distribution where the regions are

divided based on the geographical distribution of the base

stations, namely, residential, semi-residential, rural, industrial

and state-facilities (cf. Fig. 3b). In the first scenario, the traffic

mixture is assumed to be homogeneous, whereas in the second

scenario it is assumed to be as given in Table I. Note that

since the traffic data is used to measure the effectiveness of

the proposed model, we assume that the average volume over

one year and the cyclic characteristics do not change over the

simulation horizon. This assumption is made to isolate the
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Fig. 3: Total number of users over time per region

TABLE I: The service distributions in percentage (%) per

region in scenario 2.

Region Type Elastic Inelastic M2M Background

Residential 25 25 25 25

Semi-residential 50 25 0 25

Rural 25 0 0 75

Industrial 25 0 75 0

State-facilities 0 0 100 0
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Fig. 4: Considered characteristic of the scheduler in [12]

effects of applied data set from the framework’s characteristic.

Thus, we have extended one year data into four years by

copying the available data (cf. Fig. 3).

B. Characterization of the real-time scheduler

Built upon real time resource allocations and tradings, the

proposed framework requires a set of observations on the

average demand, the total gap and the respective pressure

revenue. However, in order to accurately estimate the required

capacity and collect a reasonable amount of revenue, the

proposed framework requires relatively longer observation

periods, i.e. in terms of days to months. Thus, in order to

obtain the simulation results within an acceptable time, the

sharing platform is modeled as a function of the number of

users and the traffic mixture, as presented in Fig. 4. Namely,

built upon a large set of simulation results, we generate a

characteristic function that relates the number of users and

the traffic mixture with aggregated pressure cost, i.e.

f(x) = 0.2854x3 − 57.7510x2 + 4496.5x+ 51663. (15)

Note that this function is purely designed for simplicity

and it estimates the values that would be obtained in the

application of real time trading model.

C. Capacity evolution for symmetric traffic demand scenario

An evolution of the proposed framework under the afore-

mentioned first scenario (cf. Fig. 3a) is presented in this

section. Observation window is chosen to be 1 month, i.e.

Wex = 1 month. Fig. 5 shows the evolution of the total

network capacity per region over the simulation horizon. Due

to the inaccurate capacity, through the first year, we observe

a very high capacity deployment phase. As a result of the
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Fig. 6: The evolution of the network performance

symmetric traffic demand and service mixture, during the first

year, we see equivalent slopes in the capacity deployments

over the regions. After this initial phase, the regions show

small changes in their capacity evolution (cf. the second and

the following years in Fig. 5), which is governed by the

monthly variations in the traffic demand and the maximum

number of base stations that can be deployed, λmax
b .

The evolution of the moving arithmetic mean of the total

gap is given in Fig. 6a. The increasing network capacity causes

a decrease in the total gap of the tenants. As an impact of the

aforementioned deployment phase within the first year, the

total gap shows a rapid decrease to nearly one third of the

initial value. However, on the second half of the first year, as

a result of the tremendous increase in the total traffic demand,

the total gap also increases. Following the decrease in the

total gap, a proportional drop in the total aggregated pressure

revenue is also measured (cf. Fig. 6b). Especially during the

first part of the fourth year, the collected revenue is sufficient

to perform one capacity expansion. Consequently, the drop in

the total gap gradually decreases over time, as the number

of expansions decreases. However, as detailed in [12], this

low level of gap is mostly affecting the elastic traffic. As

a consequence of this lack of urgency and the low level of

observed gap, the proposed framework distributes the capacity

expansion process over time.

D. Capacity evolution for asymmetric traffic mixture

This section focuses on the aforementioned second scenario,

where the regions are selected in terms of the service mixture.

We group the base station using their locations, leading to
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Fig. 8: The evolution of the network performance

asymmetrical distributions of the number of base stations per

region and the total traffic demand (cf. Fig. 3b). Fig. 7 presents

the capacity evolution per region for this asymmetric scenario.

The state-facilities (green line) indicates the region with the

uttermost importance, as it contains the area with hospital and

governmental entities, e.g. police. Consequently, in contrast

to the observed low user density in the area, the proposed

framework chooses to expand the resources in this region as

the first place (cf. green line in Fig. 7). Note that despite our

algorithm’s focus on this aforementioned state-facilities, the

proposed framework performs a certain level of investment to

the rest of the regions as well.

Fig. 8 shows the aggregated total revenue over time (cf.

Fig. 8b) and the evolution of the total gap given the reinvest-

ment decisions of the proposed framework (Fig. 8a). Similar

to the results outlined in Fig. 6, the increasing number of

base station decreases the total gap. The main difference

between Fig. 6a and Fig. 8a, i.e. the maximum measured

value of the gap is a direct result of the two additional

regions in this scenario. Moreover, similar to the symmetric

scenario, for asymmetric scenario we can still observe that the

proposed revenue collection mechanism guarantees efficient

and timely capacity expansion (cf. Fig. 8b). More specifically,

the transient conditions or fluctuations in the traffic demand do

not affect the expansion decisions as they cannot accumulate

the necessary revenue for a capacity expansion.

E. Implications of the observation period length

In order to provide a timely capacity increase, a critical

aspect is the total observation period required for an efficient
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Fig. 9: Implications of the observation period on the evolution

of the network performance

expansion decision. In this section, we investigate the implica-

tions of using a smaller period than a month. Fig. 9a demon-

strates the variations of the network performance evolution

when changing observation period. The results show that in

the long term, the observation period length has no visible

impacts on the network performance.

Fig. 9b shows the short term (i.e. up to six months)

implications of different observation windows on the network

performance. On one hand, the shorter observation periods

give the infrastructure provider less data and less money

to use for the capacity expansion decision, on the other

hand, the infrastructure provider has the flexibility to decrease

the total gap faster since the collected revenue is almost

instantaneously reinvested. In Fig. 9b, we observe that the

daily updates (the purple dashed-dotted line) outperforms the

monthly updates (blue line) due to early decision making

mechanism. Consequently having a smaller observation period

gives the infrastructure provider the chance to dynamically

scale the available network resources. A through analysis of

Fig. 9b shows that in our proposed framework, at the end of

each month the overall efficiency of the network is similar

regardless of the length of the observation period. More

specifically, after the capacity expansion at the end of each

month, all methods reach to the same gap level, which shows

that although the different observation windows can cause

differences in the region selection, the expansion decisions

always have equivalent impact on the total gap. This is a direct

result of our utility based decision mechanism. Namely, even

if two different regions are selected for the capacity increase,

their impact on the overall achieved utility is the same.

V. CONCLUSION

The capacity management and reinvestment decisions are

becoming overly complicated as the number of services

sharing the same network increases. In order to preserve

their business value, the network operators are required to

have clear understanding on the business profile (e.g. service

mixture) and the extra capacity need per region. In this paper,

we propose a self-dimensioning algorithm for the reinvestment

decisions that efficiently deploys new base stations according

to the expected impact per region. Based upon the urgency of

the capacity expansion, accumulated revenue and the expected

impact on the total gap, the proposed framework can timely

and accurately take capacity expansion decisions per region.

Moreover, the proposed framework can use small observation

periods (e.g. a day) without loss of efficiency. Therefore, the

network resources can be scaled efficiently within relatively

short time and in a profitable way.
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