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Abstract—This paper investigates the classical statistical signal
processing problem of detecting a signal in the presence of
colored noise with an unknown covariance matrix. In particular,
we consider a scenario where m-dimensional p possible signal-
plus-noise samples and m-dimensional n noise-only samples are
available at the detector. Then the presence of a signal can
be detected using the largest generalized eigenvalue (l.g.e.) of
the so called whitened sample covariance matrix. This amounts
to statistically characterizing the maximum eigenvalue of the
deformed Jacobi unitary ensemble (JUE). To this end, we employ
the powerful orthogonal polynomial approach to determine a
new finite dimensional expression for the cumulative distribution
function (c.d.f.) of the l.g.e. of the deformed JUE. This new
c.d.f. expression facilitates the further analysis of the receiver
operating characteristics (ROC) of the detector. It turns out that,
for m = n, when m and p increase such that m/p is fixed, there
exists an optimal ROC profile corresponding to each fixed signal-
to-noise ratio (SNR). In this respect, we have established a tight
approximation for the corresponding optimal ROC profile.

I. INTRODUCTION

The detection of an unknown noisy signal or a transmit node

is the fundamental task in many signal processing and wireless

communication applications [1]–[5]. For instance, the state-of-

the-art of cognitive radio or radar and sonar systems identify

the presence of the primary user activity or the existence of the

target based on certain statistical properties of the observation

vector [3]. Among all detection techniques, the sample eigen-

value (of the sample covariance matrix) based detection has

gained prominence recently (see [6] and references therein).

In this context, the largest sample eigenvalue, also known as

the Roy’s largest root test, has been popular among detection

theorists. Under the common Gaussian setting with white

noise, this amounts to determine the largest eigenvalue of a

Wishart matrix having a so-called spiked covariance (see [7],

[8] and references therein).

Certain practical scenarios give rise to additive correlated

noise (also known as colored noise) [5], [9]–[11]. Based

on the assumption that one has access to signal-plus-noise

sample covariance matrix and noise only sample covariance

matrix, Rao and Silverstein [2] proposed a framework to use

the generalized eigenvalues of the whitened signal-plus-noise

sample covariance matrix for detection. The assumption of

having the noise only sample covariance matrix is realistic in

many practical situations as detailed in [2]. The fundamental

high dimensional limits of the generalized sample eigenvalue

based detection in colored noise have been thoroughly inves-

tigated in [2]. However, to our best knowledge, a tractable

finite dimensional analysis is not available in the literature.

Thus, in this paper, we characterize the statistics of the Roy’s

largest root in the finite dimensional colored noise setting.

The Roy’s largest root of the generalized eigenvalue detection

problem in the Gaussian setting amounts to finite dimensional

characterization of the largest eigenvalue of the deformed

Jacobi ensemble. Various asymptotic expressions for the Roy’s

largest root have been derived in [12]–[15] for deformed

Jacobi ensemble. However, finite dimensional expressions are

available for Jacobi ensemble only (i.e., without the deforma-

tion) [16], [17]. Although finite dimensional, these expressions

are not amenable to further manipulations. Therefore, in this

paper, we present simple and tractable closed-form solution to

the cumulative distribution function (c.d.f.) of the maximum

eigenvalue of the deformed Jacobi ensemble. This expression

further facilitates the analysis of the receiver operating charac-

teristics (ROC) of the Roy’s largest root test. All these results

are made possible due to a novel alternative joint eigenvalue

density function that we have derived based on the contour

integral approach due to [18]–[22].

The key results developed in this paper enable us to un-

derstand the joint effect of the system dimensionality (m),

the number of samples available from the signal-plus-noise

(p) and noise-only (n) observations, and the signal-to-noise

ratio (γ) on the ROC. For instance, the relative disparity

between m and n improves the ROC profile for fixed values of

the other parameters. However, the general finite dimensional

ROC expressions turns out to give little analytical insights.

Therefore, in view of obtaining more insights, we have partic-

ularly focused on the case for which the system dimensionality

equals the number of samples available from the noise-only

observations (i.e., m = n). Since this equality is the minimum

requirement for the validity of the whitening operation, from

the ROC perspective, it corresponds to the worst possible case

when then other parameters being fixed. It turns out that, under

the above scenario, when m and p increase such that m/p
is fixed, there exists an optimal ROC profile. Therefore, the

above insight can be of paramount importance in designing

future wireless communication systems (i.e., 5G and beyond)

with massive degrees of freedom.

The following notation is used throughout this paper. The
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superscript (·)† indicates the Hermitian transpose, det(·) de-

notes the determinant of a square matrix, tr(·) represents the

trace of a square matrix, and etr(·) stands for exp (tr(·)).
The n × n identity matrix is represented by In and the

Euclidean norm of a vector w is denoted by ||w||. A diagonal

matrix with the diagonal entries a1, a2, . . . , an is denoted by

diag(a1, a2, . . . , an). We denote the m×m unitary group by

U(m). Finally, we use the following notation to compactly

represent the determinant of an n× n block matrix:

det [ai bi,j ]i=1,2,...,n
j=2,3,...,n

=

∣∣∣∣∣∣∣

a1 b1,2 b1,3 . . . b1,n
...

...
...

. . .
...

an bn,2 bn,3 . . . bn,n

∣∣∣∣∣∣∣
.

II. PROBLEM FORMULATION

Consider the generic signal detection problem in colored

Gaussian noise: x =
√
ρh, s + n where x,h ∈ Cm, ρ > 0,

s ∼ CN (0, 1) and n ∼ CNm(0,Σ). Here the noise covariance

matrix Σ may be known or unknown at the detector. The

classical signal detection problem can be formulated as the

following hypothesis testing problem

H0 : ρ = 0 Signal is absent

H1 : ρ > 0 Signal is present.

Nothing that the covariance matrix of x can be written as

S = ρhh† + Σ, where (·)† denotes the conjugate transpose,

we can have the following equivalent form

H0 : R = Σ Signal is absent

H1 : S = ρhh† +Σ Signal is present.

Let us now consider the matrix Ψ = R
−1

S with the eigen-

values λ1 ≤ λ2 ≤ . . . ≤ λm. As such we have

Ψ = R
−1

S = ρΣ−1
hh

† + I,

from which we can observe that in the presence of a signal,

the maximum eigenvalue of Ψ (i.e., λm) is strictly greater

than one, whereas the other eigenvalues are equal to one (i.e.,

λ1 = λ2 = . . . = λm−1 = 1). Capitalizing on this observation

Rao and Silverstein [2] concluded that, given the knowledge

of R and S, the maximum eigenvalue of Ψ could be used to

detect the presence of a signal. It is noteworthy that the matrix

Ψ is also known as the F -matrix or Fisher matrix.

In most practical settings, R and S matrices are unknown.

To circumvent this difficulty, it is common to replace R and S

by their sample estimates. To this end, let us assume that we

have p > 1 i.i.d. sample observations from signal-plus-noise

scenario given by {x1,x2, . . . ,xp}, and n i.i.d. sample obser-

vations from noise-only scenario given by {n1,n2, . . . ,nn}.

Thus, the sample estimates of R and S become

R̂ =
1

n

n∑

ℓ=1

nℓn
†
ℓ and Ŝ =

1

p

p∑

k=1

xkx
†
k (1)

where we assume that n, p ≥ m (this ensures that both R̂ and

Ŝ are positive definite with probability 1 [23]). Consequently,

following Rao [2], we form the matrix

Ψ̂ = R̂
−1

Ŝ (2)

and focus on its maximum eigenvalue as the test statis-

tic.1. As such, we have R̂ ∼ CWm (n,Σ) and pŜ ∼
CWm

(
p,Σ+ ρhh†

)
. Noting that the eigenvalues of Ψ̂ do

not change under the simultaneous transformations R̂ 7→
Σ

−1/2
R̂Σ

−1/2, and Ŝ 7→ Σ
−1/2

ŜΣ
−1/2, without loss of

generality we assume that Σ = σ2
Im. Therefore, in what

follows we focus on the maximum eigenvalue of Ψ̂, where

nR̂ ∼ CWm (n, Im) (3)

pŜ ∼ CWm

(
p, Im + γuu†

)
(4)

with γ = ρ||h||2/σ2 and u = h/||h|| being a unit vector.

Let us denote the maximum eigenvalue of Ψ̂ as λ̂max(γ).
Now, in order to assess the performance of the maximum-

eigen based detector, we need to evaluate the detection2 and

false alarm probabilities. They may be expressed as

PD(γ, µ) = Pr
(
λ̂max(γ) > µth|H1

)
(5)

PF (γ, µ) = Pr
(
λ̂max(γ) > µth|H0

)
(6)

where µth is the threshold. The (PD, PF ) characterizes the

detector and is called the ROC profile.

The main challenge here is to characterize the maximum

eigenvalue of Ψ̂ under the alternative H1. To this end, in

this paper, we use orthogonal polynomial techniques due to

Mehta [25] to obtain a closed form solution to this problem. In

particular, we derive an expression which contains a determi-

nant whose dimension depends through the relative difference

between m and n

III. C.D.F. OF THE MAXIMUM EIGENVALUE

Before proceeding further, we present some fundamental

results pertaining to the joint eigenvalue distribution of an F -

matrix and Jacobi polynomials.

A. Preliminaries

Definition 1: Let W1 ∼ Wm (p,Σ) and W2 ∼ Wm (n, Im)
be two independent Wishart matrices with p, n ≥ m. Then the

joint eigenvalue density of the ordered eigenvalues, λ1 ≤ λ2 ≤
. . . ≤ λm, of W1W

−1
2 is given by [26]

f(λ1, · · · , λm) =
K1(m,n, p)

detp (Σ)

m∏

j=1

λp−m
j ∆2

m(λ)

× 1F̃0

(
p+ n;−Σ

−1,Λ
)

(7)

where 1F̃0 (·; ·, ·) is the generalized complex hypergeo-

metric function of two matrix arguments, ∆2
m(λ) =∏

1≤i<j≤m (λj − λi) is the Vandermonde determinant, Λ =

diag (λm, . . . , λ1), and K1(m,n, p) = πm(m−1)Γ̃m(n+p)

Γ̃m(m)Γ̃m(n)Γ̃m(p)
with the complex multivariate gamma function is written in

terms of the classical gamma function Γ(·) as Γ̃m(n) =
π

1
2m(m−1)

∏m
j=1 Γ (n− j + 1) .

1This is also known as the Roy’s largest root test which is a consequence
of Roy’s union intersection principle [24].

2This is also known as the power of the test.



Definition 2: Jacobi polynomials can be defined as follows

[27, eq. 5.112]

P (a,b)
n (x) =

n∑

k=0

(
n+ a

n− k

)(
n+ k + a+ b

k

)(
x− 1

2

)k

(8)

where a, b > −1,
(
n
k

)
= n!

(n−k)!k! with n ≥ k ≥ 0.

B. Finite Dimensional Analysis of the C.D.F.

Having defined the above preliminary quantities, now we

focus on deriving a new c.d.f. for the maximum eigenvalue of

W1W
−1
2 when the covariance matrix Σ takes the so called

rank-1 spiked form. In this case, the covariance matrix can be

decomposed as

Σ = Im + ηvv† = Vdiag (1 + η, 1, 1, . . . , 1)V† (9)

where V = (v v2 . . .vm) ∈ Cm×m is a unitary matrix and

η ≥ 0. Following Khatri [28], the hypergeometric function

of two matrix arguments given in the join density (7) can be

written as a ratio between the determinants of two m × m
square matrices. Since the eigenvalues of the matrix Σ

−1

are such that 1/(1 + η) has algebraic multiplicity one and

1 has algebraic multiplicity m − 1, the resultant ratio takes

an indeterminate form. Therefore, one has to repeatedly apply

Lôspital’s rule to obtain a deterministic expression. However,

that expression is not amenable to apply Mehta’s [25] orthog-

onal polynomial technique. Therefore, in view of applying

the powerful orthogonal polynomial technique, we derive an

alternative expression for the joint eigenvalue density. This

alternative derivation techniques has also been used earlier

in [18] to derive a single contour integral representation for

the joint eigenvalue density when the matrices are real3. The

following corollary gives the alternative expression for the

joint density.

Corollary 1: Let W1 ∼ Wm(p, Im + ηvv†) and W2 ∼
Wm(n, Im) be independent Wishart matrices with m ≤ p, n
and η ≥ 0. Then the joint density of the ordered eigenvalues

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λm < ∞ of W1W
−1
2 is given by

f(λ1, · · · , λm) = fuc(λ1, · · · , λm)fcor(λ1, · · · , λm) (10)

where

fuc(λ1, · · · , λm) = K1(m,n, p)

m∏

j=1

λp−m
j

(1 + λj)p+n
∆2

m(λ),

fcor(λ1, · · · , λm) =
K2(m,n, p)

ηm−1(1 + η)p+1−m

m∏

j=1

(1 + λj)

×
m∑

k=1

(1 + λk)
p+n−1

m∏

j=1
j 6=k

(λk − λj)

(
1 +

λk

η + 1

)p+n+1−m ,

3It is noteworthy that when the matrices are real, the hypergeometric
function of two matrix arguments does not admit such a determinant rep-
resentation.

and K2(m,n, p) = (m−1)!(p+n−m)!
(p+n−1)! .

Proof: Omitted due to space limitations.

Remark 1: It is worth noting that the function

fuc(λ1, λ2, · · · , λm) denotes the joint density of the

ordered eigenvalues of W1W
−1
2 corresponding to the

case W1 ∼ Wm(p, Im) and W2 ∼ Wm(n, Im).
Remark 2: Alternatively, the above expression can be used

to obtain the joint density of the ordered eigenvalues of

deformed Jacobi ensemble, W1(W2 + W1)
−1 with W1 ∼

Wm(p, Im + ηvv†) and W2 ∼ Wm(n, Im).
We may use the above join density to obtain the c.d.f. of

the maximum eigenvalue, which is given by the following

theorem.

Theorem 1: Let W1 ∼ Wm(p, Im + ηvv†) and W2 ∼
Wm(n, Im) be independent with m ≤ p, n and η ≥ 0. Then

the c.d.f. of the maximum eigenvalue λmax of W1W
−1
2 is

given by

F
(α)
λmax

(t; η) =
K(m, p, α)

(p− 1)! (1 + η)p

(
t

1 + t

)m(α+β+m)

× det [Φi(t, η) Ψi,j(t)]i=1,2,...,α+1
j=2,3,...,α+1

(11)

where

Ψi,j(t) = (m+ i+ β − 1)j−2P
(j−2,β+j−2)
m+i−j

(
2

t
+ 1

)
,

Φi(t, η)

= Qi(m,n, p)

α−i+1∑

k=0

(p+ i− 1)k(α− i+ 2)!

k! (p+m+ 2i− 2)k(α− i− k + 1)!

× (ηt)k+i−1 ((1 + η)(1 + t))p+k

(1 + η + t)
p+k+i−1

,

Qi(m,n, p) = (n+p+i−2)!(p+i−2)!
(p+m+2i−3)! , and K(m, p, α) =

∏α−1
j=0

(p+m+j−1)!
(p+m+2j)! with α = n−m and β = p−m.

Proof: Omitted due to space limitations.

The new exact c.d.f. expression for the maximum eigenvalue

of W1W
−1
2 , which contains the determinant of a square

matrix whose dimension depends on the difference α = n−m,

is highly desirable when the difference between m and n is

small irrespective of their individual magnitudes. For instance,

when n = m (i.e., α = 0) the determinant vanishes and we

obtain a scalar result as shown below. This is one of the many

advantages of using the orthogonal polynomial approach. This

key representation, also facilitates the derivation of the limiting

eigenvalue distribution of the maximum eigenvalue (i.e., the

limit when m,n → ∞ such that m− n is fixed).

Corollary 2: The exact c.d.f. of the maximum eigenvalue

of W1W
−1
2 corresponding to α = 0 is given by

(12)F
(0)
λmax

(t; η) =

(
t

1 + t

)mp (
1 +

η

1 + t

)−p

.

Having armed with the above characteristics of the max-

imum eigenvalue of W1W
−1
2 , in the following section, we

focus on the ROC of the maximum eigenvalue based detector.



IV. ROC OF THE MAXIMUM EIGENVALUE OF Ψ̂

Let us now investigate the behavior of detection and false

alarm probabilities associated with the maximum eigenvalue

based test. To this end, noting that the eigenvalues of Ψ̂ and

W1W
−1
2 are related by λ̂j = (n/p)λj , for j = 1, 2, . . . ,m,

we can represent the c.d.f. of the maximum eigenvalue corre-

sponding to Ψ̂ as F
(α)
λmax

(κx; γ), where κ = p/n.

Now following Theorem 1 along with with (5), (6), the

detection and false alarm probabilities can be written, respec-

tively, as

PD(γ, µth) = 1− F
(α)
λmax

(κµth; γ) (13)

PF (µth) = 1− F
(α)
λmax

(κµth; 0). (14)

In general, deriving a functional relationship between PD and

PF by eliminating the parametric dependency on µth is an

arduous task. However, when α admits zero, we can obtain an

explicit relationship between them as shown in the following

corollary.

Corollary 3: Let us suppress the parameters γ, µth and rep-

resent the detection and false alarm probabilities, respectively

as PD and PF . Then, when α = 0, we have the following

functional relationship between PD and PF

PD = 1− 1− PF(
1 + γ − γ [1− PF ]

1/mp
)p . (15)

From the above relation, taken PD as a function of γ, we

can easily see that, for γ1 > γ2, PD(γ2) > PD(γ1). This

conforms the common observation that the SNR is positively

correlated with the detection probability for a fixed value of

PF .
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Fig. 1: PD vs PF for different valued of γ with (m,n, p) =
(5, 8, 10).

The ROC curves corresponding to different parameter set-

tings are shown in Figs. 1 and 2. The ROC of the maximum

eigenvalues is shown in Fig. 1 for different SNR values.
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n
= 0.2, 0.5, 0.8, 1.0

Fig. 2: PD vs PF for different valued of m/n with m/p = 1
and n = 10 when γ = 5 dB.

The ROC improvement with the increasing SNR is clearly

visible in Fig. 1. The next important frontier which affects the

ROC profile is the dimensionality of the matrices. Therefore,

let us now numerically investigate the effect of the matrix

dimensions on the ROC profile. To this end, Fig. 2 shows the

effect of m/n for m/p = 1. As can be seen, the disparity

between m and n improves the ROC profile. The reason

behind this observation is that the quality of the sample

covariance matrix is improved when the length of the data

record (i.e.,n) increases in comparison with the dimensionality

of the receiver (i.e., m). Since the minimum requirement for

R̂ to be invertible is m = n, we can observe the worst ROC

performance corresponds to m/n = 1.

The joint effect of m and p is characterized with respect to

the scenario where m and p both vary such that m/p = ν > 0
is constant. After some algebra, we conclude that PD attains

its maximum at p = p∗ (m∗ = νp∗), where
√√√√ − ln(1− PF )

−2ν ln
(

γ+1
γ+2

) < p∗ <

√√√√− ln(1− PF )

−ν ln
(

γ+2
γ+4

) . (16)

Having obtained the upper and lower bounds on p∗, a good

approximation of p∗ can be written as4

p∗ ≈ 1

2



√√√√− ln(1− PF )

−ν ln
(

γ+2
γ+4

) +

√√√√ − ln(1− PF )

−2ν ln
(

γ+1
γ+2

)


 . (17)

The above process suggests us that when m and p diverge

such that their ratio approaches a certain limit, the maximum

eigenvalue gradually loses its power.

To further highlight the accuracy of the proposed approx-

imation, in Fig. 3 we compare the optimal ROC profiles

4In general any convex combination of the upper and lower bounds can be
a candidate for the p∗.
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Fig. 3: PD vs PF for the optimal p and approximated p.

evaluated based on (17) and by numerically optimizing (15).

As can be seen from the figure, the disparity between the

proposed approximation and the exact optimal solution is

insignificant. Therefore, when m = n, under the second

scenario, we can choose p as per (17) for fixed PF , γ, and ν
in view of maximizing the detection probability.

V. CONCLUSION

This paper investigates the signal detection problem in

colored noise with unknown covariance matrix. In particu-

lar, we focus on detecting the presence of a signal using

the maximum generalized eigenvalue of so called whitened

sample covariance matrix. Therefore, the performance of this

detector amounts to determining the statistics of the maximum

eigenvalue of the deformed JUE. To this end, following the

powerful orthogonal polynomial approach, we have developed

a new expression for the c.d.f. of the maximum eigenvalue of

the deformed JUE. We then use this new c.d.f. expression to

determine the ROC of the detector. It turns out that, for a fixed

SNR, when m (i.e., the dimensionality of the detector), n (i.e.,

the number of noise-only samples), and p (i.e., the number of

signal-plus-noise samples) increase over finite values such that

m = n and m/p is constant, we obtain an optimal ROC profile

corresponding to specific m,n, and p values. Therefore, in the

above setting, when m, p, and n increase asymptotically, the

maximum eigenvalue gradually loses its detection power. This

is not surprising, since under the above asymptotic setting, the

detector operates below the so called phase transition where

the maximum eigenvalue has no detection power.
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