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Abstract—This paper considers a multi-drone enabled data
collection system for smart cities, where there are two kinds
of drones, i.e., Low Altitude Platforms (LAPs) and a High
Altitude Platform (HAP). In the proposed system, the LAPs
perform data collection tasks for smart cities and the solar-
powered HAP provides energy to the LAPs using wireless laser
beams. We aim to minimize the total laser charging energy of
the HAP, by jointly optimizing the LAPS’ trajectory and the
laser charging duration for each LAP, subject to the energy
capacity constraints of the LAPs. This problem is formulated as a
mixed-integer and non-convex Drones Traveling Problem (DTP),
which is a combinatorial optimization problem and NP-hard. We
propose an efficient and novel search algorithm named Drones
Traveling Algorithm (DTA) to obtain a near-optimal solution.
Simulation results show that DTA can deal with the large-
scale DTP (i.e., more than 400 data collection points) efficiently.
Moreover, the DTA only uses 5 iterations to obtain the near-
optimal solution whereas the normal Genetic Algorithm needs
nearly 10000 iterations and still fails to obtain an acceptable
solution.

Index Terms—Smart Cities, Internet of Things, Trajectory Op-
timization, Low Altitude Platforms, Multiple Traveling Salesmen
Problem.

I. INTRODUCTION

Low Altitude Platform (LAP) (or known as unmanned aerial
vehicle, UAV) has attracted considerable attention [1] due
to its high flexibility, low cost and the benefit of line-of-
sight (LoS) air-to-ground communication links [2]. In order
to collect the desired data, LAPs can fly above the massive
Internet of Things Devices (IoTDs) in the Desired Regions
(DRs). For example, the DRs in smart cities may include
remote factories, farms and crowed buildings, etc.

The critical challenge to design a LAP-enabled data col-
lection system is that the LAP is energy-constrained [3].
Thus, the LAP’s flight time is too limited to perform the data
collection mission for a whole city. The sun is a promising
energy source to prolong the LAP’s flight duration. However,
the solar panel of a LAP is usually relatively small and
the solar radiation intensity is not enough at low altitude.
Consequently, the LAP cannot gather enough solar power.
Fortunately, the High Altitude Platform (HAP) and the laser
charging technique can provide the solution [4].

In this paper, the sun is the energy source of the HAP and
thus the HAP can be aloft in the air continually. Different from
the solar-powered LAP, the HAP can collect and store more
solar energy due to the strong solar radiation and large solar
panels. In addition, the key advantage of the solar-powered
HAPs is their ability to adjust their positions according to
the locations of LAPs. In the 3D aerial network, the HAP is
capable of providing a robust wireless backhaul connectivity
for LAPs [5], [6].

Moreover, the macro LAPs are relatively small and thus
they can be powered by the laser. The HAP is able to make
use of the laser charging technique [4] and then it can shot
laser beams to power LAPs. In addition, the LAPs can bear
the intense laser beams due to the specially designed laser
charging panels. However, the human body may be seriously
damaged because of being exposed to the laser beams [7].
Therefore, the laser charging spot should be fixed and isolated
and the LAPs should return to it in order to be recharged after
one flying cycle. Note that the HAP doesn’t move in the plane
and there is no laser scattering due to its flexibility [8].

Against the above background, in this paper, we aim to
minimize the data collection system energy consumption by
optimizing the LAPs trajectory and the laser charging duration
from the HAP, subject to the energy constraint of the LAPs.
We formulate this problem as a typical one deposit multiple
traveling salesmen problem with the time window [9] and
name this combinatorial optimization problem as the Drones
Traveling Problem (DTP) for brevity. In addition, DTP is NP-
hard and we can not solve it using convex optimization and
the normal block coordinate descent method [3]. Moreover,
the latest search algorithms for DTP, such as the Genetic
Algorithm and the Particle Swarm Optimization [9], are not
time-efficient for drones and most of them could not deal with
the large-scale DTP (i.e., more than 400 DRs). We propose an
efficient and novel search algorithm named Drones Traveling
Algorithm (DTA) for large-scale multi-drone trajectory design.

The rest of this paper is organized as follows. Section II
introduces the system model and the optimization problem.
In Section III, we introduce DTA to solve the proposed
DTP. Section IV provides the simulation results. Finally, we
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conclude the paper in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a new laser-powered multi-drone enabled IoT
data collection system, as illustrated in Fig.1. In the proposed
system, there are two kinds of drones, the LAPs and a solar-
powered HAP served as the energy charging station for all
the LAPs. The multiple LAPs are employed as the mobile
data collectors to collect information from the IoTDs on the
ground.

Data collecting
Laser charging

__loT device -

Fig. 1. The proposed laser-powered multi-drone enabled data collection
system for smart cities

In the proposed system, a frequency division duplexing
(FDD) mode is considered for the links between the HAP
and LAPs [5], the time division duplexing (TDD) mode is
applied in each DR covered by the LAP [10].

Without loss of generality, a three-dimensional (3D) Eu-
clidean coordinate is adopted. We define O as the laser
charging spot which is the geometric center of the target area.
In our proposed system, there are K DRs. We assume the
geometric center of each DR is fixed and known [3]. The
HAP designs the LAPs trajectory and controls M LAPs, each
j-th LAP hovers above .S; DR centers one by one to collect
IoTDs’ information.

The location of the HAP and the j-th LAP are denoted by
(0, 0, H) and (x;, y;, h) respectively, j € M ={1,2, ... ,M}.
We assume each LAP completes the data collection operations
of each k-th DR in T* seconds, k € K = {1, 2, ... ,K}, during
which the [oTDs upload their data to the LAP.

A. Trajectory Model

In our proposed system, each LAP flies straightly from
one DR to another. Each LAP hovers above the geographic
coordinate center of each DR to collect the IoTDs data. We
consider the HAP hovers at (0, 0, H) and shots laser beams
to the LAPs one by one at a fixed position ¢;[0] = (0, 0, ).
Each LAP is powered by a large capacitance, which can be
recharged by laser power beams at the laser charging spot
to maintain their continuous flight. In addition, according to
our proposed system model, each j-th LAP will return to the

same safe laser charging spot (i.e., ¢;[0]) after one flying cycle.
Therefore, one has

4;[5;] = ¢;[0], Vj € M (1)

We assume each j-th LAP serves S; DRs. Furthermore,
we define ¢;[t], V¢t € T; = {1, 2, ... ,S;}, as the coordinate of
the ¢-th DR geographic center the j-th LAP hovers above. We
define d;[t] as the distance between the geographic coordinate
center of DRs, thus one can have

di[t] = llg;[t] — s [t = 1]l Vi e M, VE€T;  (2)
Note that if the j-th LAP chooses the k-th DR as its ¢-th

hovering DR, af[t] = 1, otherwise, a%[t] = 0. In order to

guarantee that each DR is covered and served only once, we
have

M
Z a?[t]zl’vjeM,VkelC,Vte’]} (3)

The hovering time of each j-th LAP is given as

-3yt

k=1t=1
The total meters of each j-th LAP flight tour length is

L, _Zd

We assume each LAP flies in a straight line from one DR to
the next DR with the same constant speed v m/s. Therefore,
the flight time of each j-th LAP is given as

[Tk, Vje M,VEke K, VteT; (4

l,VteT;, VjeM &)

J

L,
TF = ﬁ VjeM (6)

B. The Drones Energy Consumption Model

Assuming the LAP consumes energy for its hovering and
flight, we define PH as the power consumption when the LAP
is hovering, whereas P¥" as the LAP power consumption when
it is flying straightly. Then each j-th LAP energy consumption
is

E; = PIT{ + PPT], Vj e M )
However, each j-th LAP could not fly perpetually because of
its laser capacitance capacity limitation C';, therefore

E; <C;,VjeM (8)

The laser energy each j-th LAP received from the HAP
should be enough for its flight

njPim; > E;, Vj € M )

The 7; is the laser charging time for each j-th LAP. We define
P; as the external-cavity laser power received at the j-th LAP
laser powering beam receiver, le as the laser beam power shot
to the j-th LAP and «; as the laser attenuation coefficient.
Then 7; = ﬁ = e %(H=N) j5 the laser transmission
efficiency between the j-th LAP and the HAP [4].



C. Problem Formulation

In this subsection, we propose the DTP, where we aim to
minimize the energy consumption of the proposed data col-
lection system. Let A = {af [t], Vi € M, Vk € K, Vt € T;},
S ={S;,VjeM},Q={q[t], VjeM,VteT;} and T =
{Tj, Vj e M}

In the optimization problem below, we aim to jointly
optimize the DRs selection (i.e., A), the multi-LAP routes
(i.e., @), the hovering times of each LAP (i.e., S) and the
laser charging durations (i.e., 7). The DTP is formulated as

M

P1: minimize ;mp}n (10a)
st E; < Cj,VjeM (10b)
n;Pjrj > Ej, Vj € M (10¢)
q;[S;] = q;[0], Vj e M (10d)

M S
SN =L Vje M VkeK, Ve T, (100)

Jj=1t=1
d;lt] = llg;[t] — [t — 1]||. Vt € T;, Vi € M (10f)
T, ={1,2,...,8;}, Vi € M (102)

The LAPs use the laser energy to fly and hover, the charging
duration 7} is optimal if and only if the laser energy is not
wasted, which means the equality holds in (10c). Therefore,
we can relax the DTP (i.e., P1) by holding the equality of
(10c) and obtain

K s; . s; _
_ D k=1 2ot PHG? [T + 3272, PFd,[tv!
;P

5

(1)

Let the optimal charging time substitute into the original
P1, the objective function becomes the total energy consump-
tion of the M LAPs. One can have

M K S M S;
minimize PHak[TF + P [tlv!
inimiz ;;; U ;t; 51t
s.t. (10b), (10d), (10e), (10f), (10g)
(12)
One can see that problem (12) is still NP-hard [9] and it
is known to be difficult to find its optimal solution. Note that
different from the other optimization problems [3], [8], [11],
the S; is also required to be optimized. Moreover, constraint
(10g) makes it a complex combinatorial optimization problem
and we can not solve it using convex optimization and the
block coordinate descent method.

III. TRAJECTORY DESIGN

In this section, we consider the multi-drone trajectory
design. We first analyze the DTP in order to obtain the optimal
direct graph s* and then we propose the DTA.

A. Analysis of The Drones Traveling Problem

By observing the structure of problem (12), we find that
the solutions A, S and Q actually define a direct graph s
consisting of NV points and M cycles with the same starting
point [12] (i.e., the laser charging spot g;[0]), therefore,
solving problem (12) is equivalent to obtaining the optimal
direct graph s* to minimize the object function of problem
(12). Furthermore, in order to obtain the optimal direct graph
s*, we first give the analysis of the DTP as follows.

Similar to the standard definition of the multiple traveling
salesmen problem [9], we describe each LAP as a salesman,
the DRs are treated as cities and the hovering duration T* is
described as the time window in each k-th city. Given any
candidate direct graph s, we can obtain the solutions A, S
and Q of problem (12), we define the summation of the LAPs’
energy consumption (i.e., the object function of problem (12))
as the utility function denoted by f(s).

Based on the above observation, we discover that the poor
solutions of DTP usually have many crossover points, we
describe each crossover point as a knot in the graph. To
be specific, there are two kinds of knots in the graph, i.e.,
the knots in the cycle that crosses over itself and the knots
between any two cycles. The well-known 2-opt algorithm is
an efficient algorithm to eliminate the first kind self-knot by
reordering the route of a cycle [13].

Motivated by 2-opt algorithm [13], we introduce Theorem 1
to eliminate the second kind of knots between any two cycles.

Theorem 1. Define the No-knot graph as the graph with no
knots. Given a candidate direct graph s with one or more
knots between any two cycles, the total LAPs’ tour length of
the No-knot graph is always less than the tour length of s.
The No-knot graph can be obtained by reordering the drones
route Q using the Flow Direction Method.

Proof. The sum of the two sides of the triangle is greater than
the third side. Refer to Example 1 to find the introduction of
the Flow Direction Method. O

Example 1. The Flow Direction Method in the DTP: By
exploring the structure of the knots in the candidate direct
graphs, we summarize all kinds of knots between any two
cycles into ‘Reverse Flow Knot’ and ‘Co-current Flow Knot’,
which are defined and illustrated in Fig. 2.

Fig. 2. (a) Co-current flow knot; (b) Reverse flow knot

In Fig. 2, each q[0] is the same charging spot. The other
trajectory points are included in the dotted line. We reorder
the two LAPs’ route as follows. For the co-current flow knot,



the routes are reordered and given as q[0] — -+ = d — ¢ —
o= q[0] and q[0] = - > e —a—b— - — q[0]. For
the reverse flow knot, the new routes are q[0] — - - — e —
d— - —q[0landql0] - -+ > c—a—>b— - —q[0]

B. The Drones Traveling Algorithm (DTA)

Before we introduce the DTA (i.e., Algorithm 1), we first
give a brief introduction to our search mechanism.

o We define the local optimum graph as the graph with no

self-knot in each LAP cycle;

o We develop an efficient method to Jump from the local
optimum graph to a better graph where the better
graph is defined as the graph with less f(s). The
Jump operations includes three simple operations: the
Exchanging, Shifting and the Knot Removing;

o The near-optimal or even the optimal graph s* can be
obtained by the iterations between the Local Optimum
Search Method (LOSM) and the Jump Method (intro-
duced next) until the utility function f(s) does not
decrease.

1) LOSM: We define LOSM as that the 2-opt algorithm

[13] has been applied to each j-th LAP cycle in graph s.

2) Jump Method: The Jump method is reordering the route
Q of the direct graph s. We define a as the current DR, which
is picked from the set of DRs (i.e., K). We also define that
DR b is from N(a), which is the neighborhood [13] of a .
We define N'(a) consists of 6 DRs, which is suitable to cover
enough neighbor points and reduce the algorithm complexity
[14]. In addition, c is the next DR connected to a.

Then the ‘Exchanging’ operation is defined as that ex-
changing b and c in the route @; the ‘Shifting’ operation
is defined as that taking b out and inserting b between a and
c; the ‘Knot Removing’ operation is defined as that using the
Flow Direction Method to eliminate all the knots between any
two cycles. Note that the Jump Method is terminated until all
the DRs and their neighbor DRs have been searched.

Example 2. Given a candidate direct graph s in which a
and b are in the same cycle, the results of the Exchanging
and Shifting can be illustrated as Fig. 3.

a
b
)
a © c
S2
c d\/}9; . a
S1 /}2"0
c
S3

Fig. 3. The ‘Exchanging’ and ‘Shifting’ operations in the same cycle

One can see that the tour length of sy > s; and the tour
length of s3 < s, which means only the shifting operation
works, and s3 becomes the new graph.

Example 3. Given a candidate direct graph s in which the b
and c are in two different cycles, the results of the Exchanging
and Shifting can be illustrated as Fig. 4.

.\m\‘%\\\% %C

50 S5 @

b
c
35 .
a e,
S4 %‘

b
c

Se a

Fig. 4. The ‘Exchanging’ and ‘Shifting’ operations in two different cycles

One can see that the tour length of s5 > s4 and the tour
length of sg < s4, which means sg becomes the new graph.
We illustrate the Examples in Fig. 5 for easily understanding.
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Fig. 5. An approximate illustration of the examples

Algorithm 1: The Drones Traveling Algorithm (DTA)
for P1
Input: A% Q°, S§°: Random Solutions
Output: A*, Q*, S*, 7*: The Near-optimal Solutions
r < 1; // the iterations of DTA
Generate a direct graph s” using A° Q°, 89
f(8%) « oo; // initialize the utility function
while f(s") < f(s"71) do
Use the 2-opt algorithm to obtain the local optiaml
direct graph s";
6 Use Algorithm 2 to Jump from graph s” to a new
direct graph s"*1;
r—r+1;
8 end
9 Use direct graph s” to obtain A*, Q*, S*;
10 Use Equation (11) to obtain the optimal 7*;
11 return: A*, Q*, S*, 7*.

n oA W N -

Based on the above introduction, we provide the detailed
Jump Method of DTA as Algorithm 2.



Algorithm 2: The Jump Method of DTA
Input: s: The Local Optimum Direct Graph
Output: s: A New Direct Graph

1 § < s; // initialize graph s
2 for k <+ 1 to K do

3 a <+ the k-th DR; // the current DR
4 ¢ + the next DR connected to a;
s | for i<« I to the size of N'(a) do
6 Select an unselected DR b; from N (a);
7 Exchange b; and c in the DRs route @ and
generate a new graph g; // the Exchanging
operation, refer to Example 2 and Example 3
8 if the graph g is feasible and the Utility
Function f(g) < f(8) then
9 S+ g;
10 break;
11 end
12 Insert b; between a and c in @ and generate a
new graph g; // the Shifting operation, refer
to Example 2 and Example 3
13 if the graph g is feasible and the Utility
Function f(g) < f(s) then
14 s« g;
15 break;
16 end
17 Reorder route @ by the ‘Flow Direction
Method’ and generate a new graph g; //the
Knot Removing operation, refer to Example 1
18 if the graph g is feasible and the Utility
Function f(g) < f(8) then
19 5+ g;
20 break;
21 end
22 end
23 end

24 return: s.

IV. SIMULATION RESULTS

In this section, simulation results are presented to show the
effectiveness of our proposed DTA. We suppose that there are
3 LAPs flying over K = 500 DRs, which are distributed within
a geographic area of size 5 km x 5 km. In addition, the HAP
is suspended at a fixed altitude H = 5 km and the LAP flies at
a fixed altitude h = 100 m. Therefore, the laser transmission
efficiency n; is given by 0.6 [4]. The laser beam power is set
as 1 kW [7]. The LAP hovering power consumption is set as
PH =50 W and the LAP flight consumption is set as PF =
100 W. The LAP hovering time T is set as 5 seconds. The
LAP flight speed is set as 10 m/s. We run all the simulation on
the computer with the 3.20 GHz CPU and 8 GB RAM. The
simulation software is Matlab 2017a running on Windows 10.

Next, we validate the performance of DTA as compared to
two well-known benchmark schemes, which are designed for
the DTP, namely the near-neighbor Greedy search algorithm
and the genetic algorithm [9]. The near-neighbor Greedy

search algorithm takes turns to choose the nearest but not
yet visited DR as the next DR until all the DRs are visited.
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Fig. 6. The energy consumption versus the number of DRs.

One can see from Fig. 6 that with the increasing of the
number of DRs, the energy consumption increases, as ex-
pected. Furthermore, the system designed by DTA consumes
less energy compared with the other benchmarks. Therefore
DTA is energy-efficient.
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Fig. 7. The running time versus the number of DRs.

Fig. 7 presents the time-effectiveness of the DTA. One can
see that the running speed of DTA is about 10 times faster
than Genetic Algorithm and the performance of the DTA is
much better than the Genetic Algorithm according to Fig. 6.
Therefore, the DTA is time-effective and thus it is suitable for
the large-scale multi-drone trajectory design.

In Fig. 8, we test the DTA in the large scale scenario (i.e.,
500 DRs). In Fig. 8 (a) to (c), compared with the greedy
algorithm and the genetic algorithm, the DTA’s solution graph
has no knots and has the least energy consumption, thus the
DTA outperforms the other algorithms. Moreover, the DTA
only uses 5 iterations to obtain the acceptable near-optimal
solution whereas the Genetic Algorithm uses 10000 iterations
and fails to obtain an acceptable solution. In Fig. 8 (d), we
show the DTA efficiency. One can see from Fig. 8 (d) that
the utility function is significantly reduced during each DTA
Jump operation. Therefore, the DTA is very efficient.
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V. CONCLUSION

In this paper, we optimize the LAPs trajectory and the HAP
laser power duration for energy saving purpose. The opti-
mization problem is NP-hard. We propose an efficient search
algorithm named DTA to obtain a near-optimal solution. Sim-
ulation results show that DTA only uses 5 iterations to obtain
the near-optimal solution whereas the Genetic Algorithm uses
10000 iterations and still fails to obtain an acceptable solution
in the case of the large scale DTP.

ACKNOWLEDGMENT

The work in the paper was partly funded by Natu-
ral Science Foundation of China (Grant No. 61620106011,
61572389, 61971421), Zhongshan City Team Project (Grant

No.

180809162197874) and UK EPSRC Project NIRVANA

(EP/L026031/1).

(1]

[2]

[3]

REFERENCES

J. Wang, C. Jiang, Z. Han, Y. Ren, R. G. Maunder, and L. Hanzo,
“Taking drones to the next level: Cooperative distributed unmanned-
aerial-vehicular networks for small and mini drones,” IEEE Vehicular
Technology Magazine, vol. 12, no. 3, pp. 73-82, Sep. 2017.

J. Wang, C. Jiang, Z. Wei, C. Pan, H. Zhang, and Y. Ren, “Joint UAV
hovering altitude and power control for space-air-ground IoT networks,”
IEEE Internet of Things Journal, vol. 6, no. 2, pp. 1741-1753, Apr.
2019.

Y. Du, K. Wang, K. Yang, and G. Zhang, “Energy-efficient resource
allocation in UAV based MEC system for IoT devices,” in 20/8 IEEE
GLOBECOM, Dec. 2018, pp. 1-6.

50Eorcl)ergy Consumpution: 1628.8 (KJ) lterations: 10000

4000 1

Meters

1000 T,

0
0

Energy Consumpution (KJ)

1000 t

3000

2000 1

1600 r

1400 1

1200 r

2000 3000 4000
Meters

(b) Genetic Algorithm

1000 5000

50 100 150 200 250 300 350
DTA Jump Operations

(d) DTA Efficiency

with the greedy algorithm and the genetic algorithm.

[4]

[5]

[6]

[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

Q. Zhang, W. Fang, Q. Liu, J. Wu, P. Xia, and L. Yang, “Distributed
laser charging: A wireless power transfer approach,” IEEE Internet of
Things Journal, vol. 5, no. 5, pp. 3853-3864, 2018.

M. Mozaffari, A. Taleb Zadeh Kasgari, W. Saad, M. Bennis, and
M. Debbah, “Beyond 5G with UAVs: Foundations of a 3D wireless
cellular network,” IEEE Transactions on Wireless Communications,
vol. 18, no. 1, pp. 357-372, Jan. 2019.

K. Yang, S. Ou, K. Guild, and H. Chen, “Convergence of ethernet
PON and IEEE 802.16 broadband access networks and its QoS-aware
dynamic bandwidth allocation scheme,” IEEE Journal on Selected Areas
in Communications, vol. 27, no. 2, pp. 101-116, Feb. 2009.

H. Kaushal and G. Kaddoum, “Applications of lasers for tactical military
operations,” IEEE Access, vol. 5, pp. 20736-20753, 2017.

Y. Sun, D. Xu, D. W. K. Ng, L. Dai, and R. Schober, “Optimal 3D-
trajectory design and resource allocation for solar-powered UAV com-
munication systems,” IEEE Transactions on Communications, vol. 67,
no. 6, pp. 4281-4298, Jun. 2019.

H. Zhou, M. Song, and W. Pedrycz, “A comparative study of improved
GA and PSO in solving multiple traveling salesmen problem,” Applied
Soft Computing, vol. 64, pp. 564-580, 2018.

K. Yang, S. Ou, H. Chen, and J. He, “A multihop peer-communication
protocol with fairness guarantee for IEEE 802.16-based vehicular net-
works,” IEEE Transactions on Vehicular Technology, vol. 56, no. 6, pp.
3358-3370, Nov. 2007.

K. Wang, P. Huang, K. Yang, C. Pan, and J. Wang, “Unified offloading
decision making and resource allocation in ME-RAN,” IEEE Transac-
tions on Vehicular Technology, vol. 68, no. 8, pp. 8159-8172, Aug.
2019.

D. B. West et al., Introduction to graph theory. Prentice Hall, Upper
Saddle River, New Jersey, 1996, vol. 2.

G. A. Croes, “A method for solving traveling-salesman problems,”
Operations research, vol. 6, no. 6, pp. 791-812, 1958.

Z. Yuan, “Solving multiple traveling salesmen problem with minimal
maximum,” Computer Systems and Applications, vol. 27, pp. 145-149
(in Chinese), 2018.



	Select a link below
	Return to Previous View
	Return to Main Menu




